Agent Oriented Design for Ambient Intelligence

Ao Dai

Andrei Olaru
LIP6, University Pierre et Marie Curie, Paris
AI-MAS Group, University Politehnica Bucharest

13.10.2010
Agent Oriented Design for Ambient Intelligence

overview
The Ao Dai Project:

· presented and demonstrated at the 5th NII-LIP6 Workshop, in June 2010.

· developed by Thi Thuy Nga Nguyen, Diego Salomone-Bruno and Andrei Olaru, under the supervision of prof. Amal El Fallah Seghrouchni.

· part of the ongoing collaboration between:

 ▶ LIP6/SMA team – University Politehnica of Bucharest
 Andrei Olaru is PhD student in co-supervision between UPB and UPMC (prof. Amal El Fallah Seghrouchni and prof. Adina Magda Florea).

 ▶ LIP6/SMA team – Institut de la Francophonie pour l’Informatique, Hanoi
 PhD thesis of Thi Thuy Nga Nguyen.

 ▶ LIP6/SMA tema – PUC-Rio
 Diego Salomone-Bruno, Project STIC-AmSud.
Ubiquitous electronic environment that supports people in their daily lives, in a proactive, but "invisible" and non-intrusive manner [Ramos et al., 2008, Weiser, 1993]

What is AmI?

Scenario

Context

Agents

CLAIM

Architecture

Experiment

Conclusion & Future Work
Ubiquitous electronic environment that supports people in their daily lives, in a proactive, but "invisible" and non-intrusive manner [Ramos et al., 2008, Weiser, 1993]
Ubiquitous electronic environment that supports people in their daily lives, in a proactive, but "invisible" and non-intrusive manner [Ramos et al., 2008, Weiser, 1993]

What is AmI?

Scenario
Context
Agents
CLAIM
Architecture
Experiment

People · Devices

Conclusion & Future Work
Ubiquitous electronic environment that supports people in their daily lives, in a proactive, but "invisible" and non-intrusive manner [Ramos et al., 2008, Weiser, 1993]

What is AmI?

Scenario

Context

Agents

CLAIM

Architecture

Experiment

People · Devices · Services

Conclusion & Future Work
Ubiquitous electronic environment that supports people in their daily lives, in a proactive, but "invisible" and non-intrusive manner [Ramos et al., 2008, Weiser, 1993]

People · Devices · Services · Communication
Two researchers arrive for the first time on the floor of the LIP6 laboratory – they both must attend a meeting in room 105.

Elements of an Ambient Intelligence environment:

- guiding people by means of light intensity or sound;
- appropriate adjustment of lights and other elements according to user preferences / aggregation of user preferences;
- appropriate choice of available screens for displaying useful information;
- choosing information to display depending on its estimated relevance to the present users;
- detection of incompatible contexts – e.g. unappropriate resources for the users’ activity.
Context is any information that can be used to characterize the situation of an entity. An entity is a person, place, or object that is considered relevant to the interaction between a user and an application, including the user and applications themselves. [Dey and Abowd, 2000]
Context is any information that can be used to characterize the **situation** of an entity. An entity is a person, place, or object that is considered relevant to the interaction between a user and an application, including the user and applications themselves.

[Dey and Abowd, 2000]
Context is any information that can be used to characterize the **situation** of an entity. An entity is a person, place, or object that is considered **relevant to the interaction** between a user and an application, including the user and applications themselves. [Dey and Abowd, 2000]

In the Ao Dai project, we have so far considered:

- the spatial location of the user
- the user's preferences
- the available computing resources
Context is any information that can be used to characterize the situation of an entity. An entity is a person, place, or object that is considered relevant to the interaction between a user and an application, including the user and applications themselves. [Dey and Abowd, 2000]

Aspects: [Chen and Kotz, 2000]

▶ physical aspect (location, conditions)
▶ user profile and preferences
▶ computing resources
▶ associations
 (e.g. time – place – activity)

▶ temporal aspect
▶ activity
▶ social aspect
Context is any information that can be used to characterize the situation of an entity. An entity is a person, place, or object that is considered relevant to the interaction between a user and an application, including the user and applications themselves. [Dey and Abowd, 2000]

Aspects: [Chen and Kotz, 2000]
- physical aspect (location, conditions)
- user profile and preferences
- computing resources
- associations (e.g. time – place – activity)

In the Ao Dai project, we have so far considered:
- the spatial location of the user
- the user’s preferences
- the available computing resources
Software agents are an appropriate implementation for AmI, considering they satisfy the needs of AmI in terms of:

- reactivity
- proactivity
- autonomy
- anticipation
- reasoning
Software agents are an appropriate implementation for AmI, considering they satisfy the needs of AmI in terms of:

- reactivity
- proactivity
- autonomy
- anticipation
- reasoning

Agents also offer beliefs, goals, intentions and easier implementation of a human-inspired behaviour.
Software agents are an appropriate implementation for AmI, considering they satisfy the needs of AmI in terms of:

- reactivity
- proactivity
- autonomy
- anticipation
- reasoning

Agents also offer beliefs, goals, intentions and easier implementation of a human-inspired behaviour.

For Ao Dai, we use CLAIM + Sympa as agent-oriented programming language and platform.
Agent-Oriented Design for Ambient Intelligence

Ao Dai

Introduction

Scenario

Context

Agents

Why CLAIM?

- Agent-Oriented programming language created by Alexandru Suna, during his Thesis at LIP6 [Suna and El Fallah Seghrouchni, 2004]
- Eases the programming task involving a Multi-Agent System

CLAIM is based on explicit declaration of agent’s characteristics:

- Knowledge
- Goals
- Capabilities
- Procedures
 - Conditions
 - Triggers
 - ...

Architecture

Experiment

Conclusion & Future Work

Andrei Olaru

JFLI Workshop

Paris, 13.10.2010
Agent-Oriented Design for Ambient Intelligence

 Ao Dai

 Introduction

 Scenario

 Context

 Agents

 Why CLAIM?

 Architecture

 Experiment

 Conclusion & Future Work

 · Agent-Oriented programming language created by Alexandru Suna, during his Thesis at LIP6 [Suna and El Fallah Seghrouchni, 2004]
 · Eases the programming task involving a Multi-Agent System

 CLAIM is based on explicit declaration of agent’s characteristics:
 ➤ Knowledge
 ➤ Goals
 ➤ Capabilities
 ➤ Procedures
 ➤ Conditions
 ➤ Triggers
 ➤ ...

 Andrei Olaru
 JFLI Workshop
 Paris, 13.10.2010
Idea: map contexts to agents:

- each agent represents a device, or a service, or a location, or a user;

- the agent sub-tree of every agent represents the context of the agent and moves together with it.
Idea: map contexts to agents:

· each agent represents a device, or a service, or a location, or a user;

· the agent sub-tree of every agent represents the context of the agent and moves together with it.

Examples:
Agent Oriented Design for Ambient Intelligence

Introduction

Scenario

Context

Agents

CLAIM

System Architecture

Experiment

Conclusion & Future Work

Idea: map contexts to agents:

- each agent represents a device, or a service, or a location, or a user;

- the agent sub-tree of every agent represents the context of the agent and moves together with it.

Examples:
Agent interacts only with its parent or its children

Example: Search

1. Search
2. Search/Not found
3. Search
4. Not found
Agent interacts only with its parent or its children

Example: Search

1. Search
2. Search/Not found
3. Search
4. Not found
5. Search
6. Search/Not found
Agent interacts only with its parent or its children

Example: Search

![Diagram of agent interactions]

- Ao Dai
- Introduction
- Scenario
- Context
- Agents
- CLAIM
- System Architecture
- Experiment
- Conclusion & Future Work
Agent interacts only with its parent or its children

Example: Search

1. Search
2. Search/Not found
3. Search
4. Not found
5. Search
6. Search/Not found
7. Search
8. Search/Not found
9. Search
10. Found (Dev a)
11. Search
12. Not found
Agent interacts only with its parent or its children

Example: Search

1. Search
2. Search/Not found
3. Search
4. Not found
5. Search
6. Search/Not found
7. Search
8. Search/Not found
9. Search
10. Found (Dev a)
11. Search
12. Not found
12. Found (Dev a)
Agent interacts only with its parent or its children

Example: Search

Ao Dai

Introduction

Scenario

Context

Agents

CLAIM

System Architecture

Experiment

Conclusion & Future Work

Andrei Olaru

JFLI Workshop

Paris, 13.10.2010
- Agent interacts only with its parent or its children

Example: Search

![Diagram of the search process involving multiple agents](image)

- Ao Dai
- Introduction
- Scenario
- Context
- Agents
- CLAIM
- System Architecture
- Experiment
- Conclusion & Future Work
Agent interacts only with its parent or its children

Example: Search
Agent Oriented Design for Ambient Intelligence

Ao Dai

Introduction

Scenario

Context

Agents

CLAIM

Architecture

Ao Dai Demo

Conclusion & Future Work

- presented at the 5th NII-LIP6 Workshop, and developed by Thi Thuy Nga Nguyen, Diego Salomone-Bruno and Andrei Olaru, under the supervision of prof. Amal El Fallah Seghrouchni.
Agent Oriented Design for Ambient Intelligence

Ao Dai

Introduction

Scenario

Context

Agents

CLAIM

Architecture

Ao Dai Demo

Conclusion & Future Work

presented at the 5th NII-LIP6 Workshop, and developed by Thi Thuy Nga Nguyen, Diego Salomone-Bruno and Andrei Olaru, under the supervision of prof. Amal El Fallah Seghrouchni.
Agent Oriented Design for Ambient Intelligence

Ao Dai Demo

Introduction

Scenario

Context

Agents

CLAIM

Architecture

Conclusion & Future Work

Andrei Olaru

JFLI Workshop

Paris, 13.10.2010
Agent Oriented Design for Ambient Intelligence

Introduction

Scenario

Context

Agents

CLAIM

Architecture

Experiment

Concluding & Future Work

- The Ao Dai project means implementing the idea of linking the two concepts of context and agent in a hierarchy.

- The project was implemented in CLAIM, that offers to developers an easy way to work with agents and hierarchies of agents, at a higher level.

- The demonstration showed how a simple scenario can be implemented, supporting context-aware actions that support the user.

- Future work includes developing the features of agents, a better representation of context, and the extension of the types of context that are supported.
A survey of context-aware mobile computing research.

Towards a better understanding of context and context-awareness.

Ambient intelligence - the next step for artificial intelligence.
IEEE Intelligent Systems, 23(2):15–18.

Programming mobile intelligent agents: An operational semantics.

Some computer science issues in ubiquitous computing.
Communications - ACM, pages 74–87.
Thank you!

Any Questions?