
Mobile Networks and Applications Journal manuscript No.
(will be inserted by the editor)

A context-aware multi-agent system as a middleware
for Ambient Intelligence?

Andrei Olaru · Adina Magda Florea? ·
Amal El Fallah Seghrouchni

Received: date / Accepted: date

Abstract There is currently a lot of work in Ambient Intelligence – or AmI
– reporting on specific scenarios, or on implementations of particular cases.
In the same time, there is a common agreement of the fact that AmI applica-
tions should be pervasive, covering a large number of devices, assisting a large
number of people, and serving a large number of purposes. In an attempt to
achieve scalable scenarios and implementations, we have focused our research
on the development of a generic middleware layer for the context-aware trans-
fer and exchange of information between devices. This paper presents a model
for a such middleware, based on software agents, in which context-awareness is
implemented both in the agent’s representation of context information, and in
the logical topology of the agent system. The model is oriented towards decen-
tralization of the system and relies mostly on local behavior. The paper also
reports on several proof-of-concept applications that have been developed and
tested using the proposed model, proving thus the validity of the approach.

Keywords Ambient intelligence · Context-awareness · Multi-agent systems

? The final publication is available at www.springerlink.com

? Both Andrei Olaru and Adina Magda Florea are main authors of this paper.

This work has been supported by CNCSIS–UEFISCSU, project number PNII–IDEI
1315/2008.

Andrei Olaru · Adina Magda Florea
Department of Computer Science, University Politehnica of Bucharest
313 Splaiul Independentei, 060042 Bucharest, Romania
Tel.: +40-21-4029358
E-mail: cs@andreiolaru.ro, adina@cs.pub.ro

Amal El Fallah Seghrouchni
Laboratoire d’Informatique de Paris 6, University Pierre et Marie Curie
4 Place Jussieu, 75005 Paris, France
Tel.: +33-1-44278753
E-mail: amal.elfallah@lip6.fr

2 Andrei Olaru et al.

1 Introduction

Ambient Intelligence – or AmI, for short – is a vision of a future where people
will be constantly surrounded by a very large number of devices – mostly
sensors and actuators, but also smart appliances and devices – which, by means
of communication and collective reasoning, will help people and assist them
in their day-to-day tasks [6].

There are two aspects in the real-scale deployment of an Ambient Intel-
ligence system that are central to our work. One of them is scale, and how
will the system remain available and useful throughout high loads and/or
faults. The other is information transfer. Mark Weiser, considered the father
of Ubiquitous Computing, sees such an environment as a world of information
conveyers [35].

In an ideal future deployment, Ambient Intelligence will be a unified system
that interconnects devices that are present in every object, in every material, in
the whole world. The system will assist everyone continuously, in any situation,
provide them with the appropriate information and actions with no delay, and
even with a certain degree of anticipation. This behavior would be the result of
processing large quantities of information. These requirements call for features
like robustness, resilience and availability.

The information in an AmI system comes from various parts of the system,
reaching those users and devices that are in need of it. Thus, the exchange and
transfer of relevant information is the backbone of any AmI system. This means
that dedicated components for this purpose should exist in an AmI system.
As AmI is deployed on devices with highly heterogeneous capabilities, these
components should also be adaptive in order to appropriately use the device’s
capabilities for the storage and processing of information.

Moreover, the information that is processed by the system would be rele-
vant with respect to a wide range of applications and purposes, and serve the
needs of a great variety of users. Ideally all the necessary information should be
transferred through a unitary system, using the same algorithms to compute
relevance regardless of the user, application, and domain.

In this context, the question that we want to answer is: in a future real-scale
AmI system, how should the system handle the generic part of the manage-
ment and exchange of information? In this paper we look into how to build
a middleware for Ambient Intelligence which deals with the generic transfer
of relevant information from the entities (devices or users) that provide it,
to the entities that need it. The middleware would transfer the information
via the ubiquitous network in the AmI system, and it would offer the rele-
vant information directly to the user via the interface, or to an intermediary
layer of application-specific processing. In this way, many features that are
common to many AmI applications and scenarios would be isolated in the
middleware: availability, robustness, context information retrieval and generic
context-aware actions (based on situation detection).

Our approach is based on two key elements. The first one is software agents
as the building blocks of the middleware. Agents offer features that answer to

A context-aware multi-agent system as a middleware for Ambient Intelligence?? 3

key needs in Ambient Intelligence [9,28]. Autonomy enables agents to act
and take decisions with or without information from other agents, and to
easily adapt to changing contexts. Reasoning and proactivity allow agents to
act before the user requires it explicitly, making the AmI system be more
useful and appear more intelligent. Especially coupled with mechanisms of
self-organization, using a multi-agent system means more effective and reliable
delivery of the relevant information, and a high level of decentralization.

Context-awareness is central to Ambient Intelligence, and it is the second
fundamental element of our approach. Context is defined as the interrelated
conditions in which something exists or occurs. In the case of Ambient Intel-
ligence, it denotes those elements that affect the interaction between the user
and the system. A context-aware application adapts its behavior to context. In
our perspective, the relevance of information with respect to a user is directly
linked to the context of that information and to the context of the user. This is
why a middleware for information transfer should integrate context-awareness
at a fundamental level.

The integration of context-awareness is done by the use of context pat-
terns [24], which represent situations that are relevant to the agent, and may
indicate the appropriate action that the agent should take. Context informa-
tion and context patterns are represented by means of graphs, leading to more
flexibility, and allowing the use of existing graph matching algorithms for situ-
ation detection. Context-awareness and improved performance is also obtained
by the integration of context-related agent topologies, which employ mobile
agents, and which are particularly appropriate in the condition of mobile de-
vices and dynamic context [9].

This paper presents the model for a middleware that gathers the features
presented above and shows how this model may be used in different scenarios
and applications. The main features of the model, which are validated by im-
plemented applications, are the context-aware topology of the agent system,
the integration of context patterns and context matching to detect situation,
and an agent behavior that relies on exchanging potentially interesting infor-
mation between agents that share context.

After a look into the related work in the field in the next section, our
general approach to the problem is presented in Section 3. The architecture of
the system, the implementation of context-awareness, and the structure and
behavior of agents are detailed in Section 4. Section 5 enumerates several proof-
of-concept applications and experiments that constitute parts of the effort to
build the modeled middleware. The last section draws the conclusions and
gives some insight on future work.

2 Related Work

The idea of creating a middleware for Ambient Intelligence is not new. In fact,
most systems for ambient intelligence feature some sort of middleware, as a
layer between the human-machine interface and the hardware.

4 Andrei Olaru et al.

There are agent-based systems for Ambient Intelligence that do not ex-
plicitly use context-awareness, and also some that do not use agents as a dis-
tributed computing paradigm [4,5,13,31,33]. There is however research that
concerns larger number of agents, distributed control, and fault tolerance, as
we will see in the following.

The SpatialAgents platform [32] employs mobile agents to offer functional-
ity on the user’s devices. Whenever a device (used by a user), which is also an
agent host, enters a place that offers certain capabilities, a Location Informa-
tion Server (LIS) sends a mobile agent to execute on the device and offer the
respective services. When the agent host moves away, the agent returns to the
server. The architecture is scalable, but there is no orientation towards more
advanced knowledge representation or context-awareness, however it remains
very interesting from the point of view of mobile agents that offer capabilities
to the user.

The LAICA project [2] brings good arguments for relying on agents in the
implementation of AmI. It considers various types of agents, some that may
be very simple, but still act in an agent-like fashion. The authors, also having
experience in the field of self-organization, state a very important idea: there
is no need for the individual components to be ”intelligent”, but it is the whole
environment that, by means of coordination, collaboration and organization,
must be perceived by the user as intelligent. However, here the middleware
itself is not agent-oriented and is not distributed.

The AmbieAgents infrastructure [22] is proposed as a scalable solution for
mobile, context-ware information services. Context Agents manage context
information, considering privacy issues; Content Agents receive anonymized
context information and execute queries in order to receive information that
is relevant in the given context; Recommender Agents use more advanced rea-
soning and ontologies in order to perform more specific queries. The structure
of the agents is fixed and their roles are set.

The CAMPUS framework [8] considers issues like different types of contexts
and decentralized control. It uses separate layers for different parts of an AmI
system: context provisioning is close to the hardware, providing information
on device resources and location, as well as handling service discovery for
services available at the current location; communication and coordination
manages loading and unloading agents, directory services, ACL messaging and
semantic mediation, by using the Campus ontology; ambient services form the
upper layer, that agents can use in order to offer other services in turn. The
architecture is distributed, having only few centralized components, like the
directory service and the ontology.

Agents with reduced memory and performance footprint for AmI have
been developed in the Agent Factory Micro Edition project [23]. The authors
succeed in implementing a reliable communication infrastructure by using rea-
sonably simple agents, however there is no higher level view that includes more
complex global behavior and there is no context-awareness.

The implementation of the SodaPop model [15] is another application shar-
ing common features with our own, especially the use of self-organization for

A context-aware multi-agent system as a middleware for Ambient Intelligence?? 5

an AmI system, but it does not use the agent paradigm and it handles a quite
specific case.

In our work, we are trying to focus only on one layer of an Ambient In-
telligence environment, and use agents for what they are good at: reasoning,
autonomy, proactivity. We assume that the information can be provided by the
layers below, and that interfacing with the user can be done in the layer above
– we believe that applying a layered structure is a better way to deal with
the design of such a complex system as a flexible, generic Ambient Intelligence
environment.

There are many implementations of middleware for Ambient Intelligence
that do not rely on software agents. As in our model agents are a core com-
ponent, it is difficult to compare it with non-agent-based approaches. The
main advantage of agent-based systems is that the agent paradigm and agent-
oriented development tools offer features (like autonomy and proactivity) that
are integrated in the paradigm itself. Another important advantage is the in-
telligence of the system, which is at the core of the agent-oriented paradigm,
which means that the system and the entities composing it can learn and rea-
son by themselves, without the need to program it for every specific task [20,
30].

Some mechanisms that we use are similar to the Directed Diffusion model
[19] used for wireless sensor networks, and we are using similar techniques
to spread information through the system based on local agent interaction.
However, we use a more complex context representation for a much more
refined spread.

As for context-awareness, certain infrastructures for the processing of con-
text information have been proposed [1,11,14,16,18,22], containing several
layers: sensors, processing, storage and management, and application. This
type of infrastructures are useful when the context information comes from
the environment and refers to environmental conditions like location, temper-
ature, light or weather. However, physical context is only one aspect of context.
Moreover, these infrastructures are usually centralized, using context servers
that are queried to obtain relevant or useful context information.

Modeling of context information uses representations that range from tu-
ples to logical, case-based and ontological representations [27]. Henricksen et
al use several types of associations as well as rule-based reasoning to take
context-aware decisions [16]. While ontologies make an excellent tool of repre-
senting known concepts, context is many times just a set of associations that
changes incessantly, so it is very hard to dynamically maintain an ontology
that describes the user’s context by means of concepts. In previous work we
have proposed a more simple, but flexible and easy-to-adapt dynamical rep-
resentation of context information, based on the notions of concept map and
conceptual graph [24].

Our model differs from infrastructures in which context information is pro-
duced and consumed by entities situated below and above the middleware [2,
29], in that the agents are both able to extract information from what they
receive, and to create new information and disseminate it into the system. Our

6 Andrei Olaru et al.

Fig. 1 A visual representation of the layers of an Ambient Intelligence system, as envisioned
by Seghrouchni [7]. The application layer has been split between the middleware and domain-
specific processes.

model for managing context is somewhat related to publish / subscribe archi-
tectures [21], but here the agents are both publishers and subscribers, and the
information is not sent to / retrieved from centralized repositories, but sent
directly to agents that may consider it interesting.

3 General Approach

We can view an Ambient Intelligence system as having several layers [7]. A
visual representation of these layers is presented in Figure 1. The system is
based on the hardware layer, composed of all the devices that are part of the
AmI environment: sensors, actuators, intelligent appliances, smartphones and
tablets, workstations and servers. All devices are interconnected by means of a
ubiquitous network that uses various protocols, and mostly wireless transmis-
sion. The data that is transferred is offered to the layers above in a uniform
format, and by means of standard protocols, assured by the interoperability
layer. The context-aware, intelligent transfer of information, as well as specific
context-aware services are offered by the application layer. The application
layer interacts with the user by means of the intelligent interfaces, that sup-
port multi-modal, natural ways of communication with the human users.

Our aim is to build a middleware that will serve as a sublayer of the ap-
plication layer, dealing with the context-aware, but generic (as in application-
independent) transfer of information between the entities in the system. The
application-specific processes will form a sublayer above the middleware. The
middleware would be able to communicate with the user directly, through the
interface, or would provide information to the application-specific processes.

A context-aware multi-agent system as a middleware for Ambient Intelligence?? 7

Fig. 2 A visual representation of the middleware. Software agents that compose the mid-
dleware execute on their respective devices. The agents use for input and output the sensors
and interfaces provided by the devices, passing through an interoperability layer. The infor-
mation exchanged between the devices is controlled by the agents.

The middleware would isolate several processes and features that are com-
mon to many, if not all, Ambient Intelligence applications and scenarios: the
delivery of context information, captured from the environment, to the inter-
ested users or applications; the transfer of new information about users and
their activity, to the concerned (and authorized) parties; the detection of the
user’s situation and context; in some cases, the decision on appropriate action
that should be taken in the given situation. By isolating these processes in
an AmI system, all there is left to do for users and applications is to ”insert”
information into the system, and this information will reach the other appro-
priate users and devices. The only requirement is that information inserted
into the system respects the representation that is proposed. Obviously, it is
still the application that performs domain-specific processing.

One important observation is that, as opposed to context-processing archi-
tectures that assure the flow of information from the perceiving entities (e.g.
sensors) to the consuming entities (e.g. applications), the middleware that we
propose is bidirectional – applications and users can also insert new or aggre-
gated information into the system, and this will reach other applications and
users.

In order to implement the middleware that we have described, we have
chosen software agents as a building block. Agents – which are cognitive –
can act by themselves, or collaborate as part of a multi-agent system [12].

8 Andrei Olaru et al.

Agents offer features that are very useful to Ambient Intelligence [28]: they
are autonomous and adaptable, resulting in higher robustness for the sys-
tem and in better service for the users; and they feature reasoning and are
proactive, making the system appear as more intelligent and allowing antici-
pation. If used as an information transfer middleware for AmI, the flexibility
and resilience of a multi-agent system, especially one featuring mechanisms
of self-organization, means more effective and reliable delivery of the relevant
information. A high level of decentralization would also lead to robustness and
increased performance. In the middleware, it will be agents that will handle
the flow of information between devices, and that will detect the context (using
the information that they have) and choose appropriate action.

We also use mobile agents as entities that are able to offer services and
domain-specific processing locally, helping both performance and a better and
more privacy aware organization of information [9].

4 System Architecture

In the design of the system’s architecture, there were two main priorities: first,
keep a high degree of distribution and decentralization – this works in favor
of the system’s availability, robustness, and performance, especially coupled
with the self-organization mechanisms integrated in the agents; second, iso-
late inside the middleware all processes related to the transfer of information
between devices – this makes the system more modular and easy to be used
together with different components.

In the resulting architecture, each agent in the middleware runs on a device
that is part of the Ambient Intelligence system. There may be more agents
on a device, that serve different purposes. The agent uses the interface of the
device to communicate with the user, as well as the sensors and actuators
that may exist on the device, to interact with the user’s environment. To
exchange information with agents situated on other devices, an agent uses the
interoperability layer, as well as the networking capabilities of the device. This
structure for the system is represented in Figure 2.

The positioning of agents with respect to the layers of the AmI system is
presented in Figure 1: agents form the information exchange middleware, which
interacts directly with the interface, or with the domain-specific processes.
Agents use components from the interoperability, network and hardware layers
to communicate by means of a uniform protocol, and also to retrieve sensor
data and send actuator data in a uniform manner.

Our goal is to integrate context-awareness in the middleware for infor-
mation exchange, so that agents in the multi-agent system naturally access,
process and share context information.

Agents use context information to detect situations that have been pre-
configured or that have been detected before, thus taking appropriate action.
Pieces of context information are received from other agents and assembled

A context-aware multi-agent system as a middleware for Ambient Intelligence?? 9

into the context graph of the agent. Similarly, the agent sends pieces of context
information to other agents that may be interested in them.

The integration of context awareness in the agent system has two aspects.
On the one hand, the representation of context information inside the agents,
coupled with the mechanisms for situation recognition. On the other hand,
the context-aware topology of the agent system causes agents to exchange
information only with other agents that share context with them, and also
produces an implicit representation of context in the topology itself. These two
aspects will be described together with the formal model for the middleware,
in the sections below.

4.1 Formal Model

There are two important elements that are relevant to the functioning of the
middleware:

– containers are entities that are bound to devices and where agents are
able to move to, be create in, and execute on;

– agents are processes that execute inside containers, and that are able to
move between containers, keeping their execution state intact; they are also
able to communicate with other agents or components of the system.

For a good isolation of the information transfer processes, all communica-
tion between devices passes through the agents on those devices. This separates
the concerns of domain-specific processing and information transfer.

The system is defined by two topologies, that are overlaid one on top of
the other. These topologies are visible in the representation in Figure 3. While
the topology of the network, which sets the relations between containers, is
decided by the physical layout of the connections, the topology of the multi-
agent system is based on logical hierarchies of agents, and changes depending
on context, as we will see in Section 4.2. The multi-agent system is organized
on three levels: containers, agents, and knowledge / context information. The
state of the system at a given time represents the current state of the world,
according to the perspective of the system as a whole. Likewise, the context
graphs held by each agent represent the current state of the world from the
perspective of the agent.

Containers are assigned to physical machines, and at any given time each
agent executes on one container. The knowledge of each agent is represented
by its context graph, and by its context patterns. Each of the three levels forms
a graph, that is a subgraph of the whole three-level graph, that we will call
the Tri-Graph. We will describe the components of the Tri-Graph in what
follows.

The containers form a subgraph which we consider to be a complete (all
containers can communicate with each other) – the ContainerGraph:

ContainerGraph = (Containers, Connections)
Containers = {Container | Container is a container that allows executing

agents }

10 Andrei Olaru et al.

Fig. 3 A visual representation of the different graphs in the modeling of an example scenario
involving 5 agents and 4 machines.

Connections = {∀(Ci, Cj) | Ci, Cj ∈ Containers}
Connections shows from what container to what other container can the

agents move. In this work it will be considered as containing a pair for each two
containers. This works if the communication is done over the Internet through
TCP/IP. This would change in a Wireless Sensor Network, for instance, where
the connections between containers would depend on the physical layout of
the sensor system.

The assignment between agents and containers is done by a supplemen-
tary component of the Tri-Graph: AgentLocations ⊂ Agents×Containers×
{resides-on}.

4.2 Context-Awareness Outside the Agent

The agents form the subgraph AgentGraph = (Agents,AgentRelations) in
which edges are labeled with types of relations representing shared context.

Agents ⊂ AgentNames;
AgentRelations = {(Ai, Aj , Relation)} where Ai, Aj ∈ Agents and

Relation ∈ AgentRelationTypes;
AgentRelationTypes = {is-in, part-of , of , in, controlled-by, executes-on}.
We propose the use of a topology induced by context: if two agents

share context, they should be neighbors. Shared context can be a com-
mon activity, a common place, etc. The neighborhood relations in the topology
represent context in a partial manner, by being related to the different types

A context-aware multi-agent system as a middleware for Ambient Intelligence?? 11

of context that are shared by the agents. Namely, two agents are neighbors
in the topology of the system if and only if they share context. There are 5
aspects of context that are considered – the four aspects identified by Chen
and Kots [3] and a fifth aspect identified by Henricksen et al. [16,17] – spatial
context, temporal context, computational context, social context, and activity
context.

For each type of context, we introduce types of agents and types of directed
relations between agents, as follows:

– for spatial context – places – the Place agent and the is-in relation. This re-
lation can exist between subordinate Place agents, or between Place agents
and other types of agents – like Users, Devices, Services or Activities. For
instance, when a Service agent is a child of a Place agent, it means that
it is a context-aware service that is offered within that place (and is useful
only there, as it is specifically configured for that place). Place agents exe-
cute on machines that are connected to the network access points in those
respective spaces.

– for computational context – devices and services – the Device and Service
agents and several relations: executes-on for services and controlled-by for
devices, together with the is-in relation. In the case of devices, multiple
parents for Device agents exist: when a device is not in use, it will only
have one parent, a Place or another Device, and the relation will be is-in.
However, when used, it will become a logical child of the User agent, by
means of the relation controlled-by, while keeping the link with its location
(in the case the device does not move – like a presentation screen).

– for activity context, the Activity agent and the part-of relation. The Ac-
tivity agents execute on a machine that is related to the organization of
the activity, or to the user that coordinates the activity. For the user’s
personal activities, the Activity agent is a child of the User agent, linked
by a part-of relation.

– for social context, the User agent is used to represent users of the system.
The User agent executes on the user’s PDA, or on other devices that the
user is currently using. For representing relationships between users of the
system, two relations are used: the in relation shows that the user is part
of a larger group of users – managed by a Group agent. The connected-to
relation shows that two users are connected, without them being part of
a common group, taking part in a common activity or being in the same
place.

While temporal context is an aspect of context that we consider, we do not
have a specialized agent for time intervals (which would be the hierarchical
element of temporal context), as an agent that manages a time interval does
not make much sense: since the internal context representation, as well as the
relations between agents, happen in the present – therefore shared temporal
context is already achieved. However, should specific indications of time inter-
vals be needed – for instance in the case of activities, availability of devices

12 Andrei Olaru et al.

or services, and temporary user groups – this information may be attached to
the agent’s knowledge.

The role of the context-aware topology is, on the one hand, to organize
the agent system depending on context, creating an implicit representation
for context, and, on the other hand, to direct and restrict the communication
between agents to particular contexts. There are two reason for this: first, a
piece of information shared by an agent is not interesting for another agent
that has no context in common with the sharing agent – information will
remain in the context where it is relevant; second, when searching for devices,
services, or other agents, the search will first take place in the current context,
then in a larger context, and so on – it is more likely that the relevant results
exist in a ”closer” context. Restricting the communication only to agents that
share context, by means of the context-aware topology, also leads to better
performance of the system by restricting the number of agents that an agent
is allowed communicate with.

4.3 Agent Structure and Context-Awareness Inside of the Agent

An agent A is modeled as a tuple A(Name, CGA, Patterns, R, I, GoalList),
with the following components:

Name ∈ AgentNames, the name of the agent;

CGA = (V,E), as defined below;

Patterns = {(GP
s , relevance, persistence)}, defined below;

R ⊂ (AgentNames−Name)×AgentRelationTypes× {in, out}, all rela-
tions with other agents (see Section 4.2);

I = {(Agent, s, factor) | Agent ∈ AgentNames, s ∈ patternNames,
factor ∈ (0, 1]}, the observed interests of other agents for different patterns;

GoalList = {Goal(G′, GP
s , importance) | G′ ⊂ CGA, importance ∈ (0, 1],

GP
s ∈ Patterns}, the sharing goals of the agent, which contain a certain piece

of information (subgraph of CGA) that matches a pattern (see below).

The agent’s Context Graph (CGA) is in fact the agent’s knowledge base,
and represents all the information that the agent currently has (i.e. valid and
relevant with respect to the current context), together with indications of
persistence of the pieces of information (i.e. associations between concepts,
represented as edges in the graph).

The set of Patterns represent the situations that the agent is able to
recognize, and that it is interested in (in certain amounts, according to the
relevance indication of the pattern). As presented in Section 4.5, the agent’s
patterns are at the base of the agent’s behavior, and influence the information
that it remembers, the information that it shares, and the actions that it takes.

The agent also knows the agents that are its neighbors in the topology,
and the types of relations with them. These relations are dynamic, and they
change when the context of the agent or of the neighbor changes. Information
about these relations is also present in the Context Graph.

A context-aware multi-agent system as a middleware for Ambient Intelligence?? 13

The agent is able to observe the interests of other agents, and this infor-
mation is stored in the I component of the agent. Adding this component was
one of the results of the studies and experiments performed with the AmIciTy
framework, presented in Section 5.1. Knowing the interests of other agents
means that the agent knows what pieces of information to send and whom to
send them to. The interests of other agents are computed from the information
that is received from them.

Finally, the GoalList contains pointers to the pieces of information to send
to other agents, ordered depending on the importance of the goal. The goals
of the agent are created when patterns match the context graph. Goals with
lower priority may be removed before fulfilling, depending on the total length
of the goal list.

Inside the agent, context information should be represented in a power-
ful, yet flexible manner, so that the same representation can be used on both
capable and less capable devices. To support decentralization, agents should
not rely strongly on centralized components, and must be able to use context
information even in the lack of contact with the centralized components. An
additional requirement is that agents should be able to easily aggregate infor-
mation they receive, and that is interesting to them, with information already
in their knowledge bases.

These are the reasons why we chose a graph-based, RDF-like representa-
tion for context information. Moreover, we introduced the notion of context
patterns to define the interests of an agent and to help the agent detect the
information that is relevant to its activity.

Each agent A has a Context Graph CGA = (V,E) that contains the infor-
mation that is currently relevant to its function.

CGA = (V,E), where V ⊂ Concepts and E = {edge(from, to, value,
persistence) | , from, to ∈ Concepts, value ∈ Relations, persistence ∈ (0, 1]
}

The elements of Concepts and Relations are strings or URIs; Relations
also contains the empty string, for unnamed relations.

An agent also has a set of context patterns Patterns: Patterns = {(GP
s ,

relevance, persistence) | s ∈ PatternNames, GP
s a graph pattern, relevance,

persistence ∈ (0, 1]}. The property relevance shows how important an infor-
mation from the context graph is, if it is matched by the pattern; persistence
shows for how long a new information will persist after being matched by a
pattern.

A context pattern s contains a graph GP
s = (V P

s , EP
s) that has some special

properties1, i.e. can have question marks instead of vertex labels, and can have
regular expressions as labels for edges. Edges are also characterized by two
features: characteristic defines how characteristic the edge is for the pattern,
and influences the measurement of how well a pattern matches a subgraph;
actionability measures how correct it would be for the agent to infer the

1 We will mark with ” P ” graphs and elements that contain ? nodes, regular expressions,
and other generic features.

14 Andrei Olaru et al.

Fig. 4 An agent relies on its knowledge base to store external knowledge and context infor-
mation. The agent’s pattern matcher continuously matches patterns against the knowledge
base, and activates domain-specific behavior or user notifications.

existence of this edge in the context graph if the pattern matches a subgraph
in CG, but this edge is missing.

A match i between a context pattern GP
s and an agent A’s context graph

CGA is defined2 [24] as MA-si(G
′
A, G

P
m, GP

x , f, kf). G′
A, G

P
m, GP

x are graphs:
G′

A ⊂ CGA is the subgraph matched by the pattern, GP
m = (V P

m , EP
m) is the

part of the pattern that matches G′
A (or solved part), and GP

x = (V P
x , EP

x) is
the rest of the pattern, which is unmatched. There is no intersection (common
nodes or edges) between GP

m and GP
x . When a pattern matches a graph, it

means that every non-? vertex from the solved part matches (same label) a
different vertex from G′

A, every non-RegExp edge from the solved part matches
(same label for the edge and vertices) an edge from G′

A, and every RegExp edge
from the solved part matches a series of edges from G′

A.
The number kf ∈ (0, 1] indicates how well the pattern GP

s matches G′
A in

match MA-si, and is given by the normalized sum of the characteristic factors
of matched edges, i.e.

kf =

∑
eP
i

∈EP
m

ePi .characteristic

∑
eP
j

∈EP
s

ePj .characteristic

4.4 Unification of the Components

The Tri-Graph is formed by the union of the graphs for containers, agents,
and agent knowledge: Tri-Graph = (Nodes,Edges), where

Nodes = Containers ∪Agents ∪
⋃

A agent

CGA.Concepts

Edges = Connections ∪AgentRelations
∪ AgentLocations ∪

⋃
A agent

CGA.Relations

Note that an agent may ”know” any part of the Tri-Graph (at any level),
therefore ∀A agent, CGA ⊂ Tri-Graph

2 There may be multiple matches between the same pattern and the same graph.

A context-aware multi-agent system as a middleware for Ambient Intelligence?? 15

4.5 Agent Behavior

Agents in the middleware are supposed to handle all the information exchange
between the different entities in the AmI system. Moreover, they should share
and exchange information in a context-aware manner, so that the information
reaches other agents that are interested in it, and that are suppose to obtain
it in the current context.

The main components of the agent, as presented in Figure 4, are the Knowl-
edge Base, the set of Patterns, and the pattern matcher. Other components
are related to the communication between agents and the communication be-
tween the agent and the interface. An agent may also feature domain- or
application-specific components. The agent communicates by means of infor-
mation represented as graphs, mainly to share information with other agents.
Both the interface layer and the domain-specific processes, as well as the other
agents, are supposed to be able to work with this representation.

Agents in the middleware are defined by three behaviors in their work with
pieces of information. First, the agent is able to integrate pieces of informa-
tion that it receives from other agents, or from the layers above; second, the
agent is able to recognize context, based on the context information that it
has, detecting the situation in which the user is, and can either take action
that is appropriate in the context, or notify the user (by means of the inter-
face) or adequate processes in the agent of the context that was recognized;
third, the agent shares context information that it considers relevant, with
the agents to which it considers that information is relevant. Let us detail
these behaviors bellow:

– An agent in the middleware receives various pieces of information from
its environment: either from other agents in the middleware, or from the
upper layers of the AmI system. When an agent receives a new piece of
information from agent Ag, defined by a graph G′

Ag:
– if the graph matches no context pattern with a sufficient k, the infor-

mation is considered as irrelevant and discarded;
– otherwise, the interest of agent Ag for the pattern(s) matched by the

information is recorded in I;
– match G′

Ag against CGA (as graphs are particular cases of patterns, it
is possible to match two graphs against each other); if any match has
a sufficient k, assemble the new information in CGA in the matched
location;

– otherwise, add G′
Ag to CGA, without connection to the rest of the

graph.
– Based on a continuous matching of its patterns against its context graph

(CGA), the agent is able to detect situations:
– if a partial match is detected (with sufficient k), and there are actionable

edges (above a certain threshold) that are connected to the matching
part, the actionable edges are added to the graph; appropriate action,
associated with the edges, is taken (examples include adding neighbors
or moving to another machine);

16 Andrei Olaru et al.

– Sharing information is a fundamental process in our approach: the agent
should share information that it finds relevant with agents that may be
interested in that information:
– if a partial or full match is found between a pattern and CGA, the

match is added to GoalList to be shared; importance of the goal is
computed depending on the relevance of the pattern;

– the agent considers the goals in the order of their importance;
– when the agent makes a plan for a goal in GoalList, it chooses to share

the information with the fraction of neighbors that are potentially in-
terested in the matching pattern; the fraction is computed using infor-
mation on the other agents’ interests in I and the importance of the
goal.

An important process that is not presented in the enumeration above is
the removal of parts for the context graph. When new edges are added to
the CGA, it is because a pattern s = (GP

s , relevance, persistence) k-matches
a subgraph G′ ⊂ CGA and a number of k edges are added to CGA, with
persistence according to the persistence parameter of the pattern. With time,
persistence of the edges in the context graph fades, and as it reaches zero, the
edge is removed (along with any resulting isolated nodes).

5 Model Validation

The different aspects of the model presented in the previous sections have
been validated by means of several proof-of-concept applications. Each of these
implementations validated one or more aspects of the presented model. Each
aspect of the model was the answer to a specific question, and the applications
needed to prove that the implementation correctly answered that question.

5.1 Large-Scale Emergent Information Dissemination

We see an Ambient Intelligence environment as a large number of devices
that serve the needs of their respective users. The devices are mostly going
to deal with information: delivering relevant information to interested users,
aggregating, filtering and reasoning about information. The problem that is
asked is: given a certain piece of information, how to deliver that piece of
information to the interested users – the users to which that information is
relevant? Development of the AmIciTy middleware was part of the answer
to this question [25,26]. The implementation is based on two elements: the
use of agents and the application of mechanisms of self-organization. In this
application, agents used a behavior similar to the one presented in Section
4.5 in order to obtain context-aware sharing of information, by using local
behavior and communication and limited knowledge and reasoning.

The experiments used a large number of agents that have a location in
space, covering a rectangular area. The agents can only communicate with

A context-aware multi-agent system as a middleware for Ambient Intelligence?? 17

(a) (b) (c) (d) (e) (f)

Fig. 5 In each panel, a view on the multi-agent system is presented: in panels (a)-(c),
each cell corresponds to an agent and is colored according to the interest of the agent for a
domain of interest (A, B or C, in this order), at simulation step 130; in panels (d)-(f), each
cell in the grid corresponds to an agent and shows if it has a certain piece of information, at
simulation step 271 – there are three pieces of information, each related to one of the three
domains.

their spatial neighbors. The agents exchange pieces of information, character-
ized by several context-aware measures: first, space is implicitly considered,
because of the structure of the system, that relies on local behavior and com-
munication; second, temporal context is implemented as a period of validity
for each piece of information, called persistence; third, each piece of infor-
mation is related to certain domains of interest – it has a specialty; last, each
piece of information carries a direct indication of its relevance (estimated by
the source) – this is stored in the indiction of pressure.

The goal of the experiments was to observe how a piece of information that
is inserted in the system reaches all agents to which it is relevant. Figure 5
shows some of the relevant results that have been obtained [25]: it is easy to
see the direction of the spreading is strongly influenced by the preexisting spe-
cialty of agents. The other context measures also influence the spread: higher
pressure makes information spread considerably faster; after the persistence
of information expires, it quickly disappears from the system; and, of course,
the first agents that get to know a piece of information are the ones closer to
its source.

A secondary goal of the experiments was to show that the implemented
agent behavior (using mechanisms of self-organization) leads to a scalable and
robust system. Indeed, experiments show that information reaches a large
number of agents (even agents not interested in it, that will quickly discard it,
but not before disseminating it further). A piece of information may reach an
interested agent by multiple, redundant paths. The performance of the system
is also very good, and local behavior means the system is scalable.

This implementation showed that relying on a local behavior can lead
to good global results. While the context measures were simple, they can
be replaced with relevance computed using context patterns; and while the
topology was simple, it can be replaced with a context-aware topology.

18 Andrei Olaru et al.

5.2 Context-Aware System Topology

The Ao Dai (Agent-Oriented Design for Ambient Intelligence) prototype [10]
is an implementation of a multi-agent system using a context-aware topology.
It validates the integration of context-awareness outside the agents.

The Ao Dai project has been implemented in CLAIM3, an agent-oriented
programming language [34] that is based on explicit declaration of agent’s char-
acteristics: knowledge, goals, messages, capabilities. It uses first-order predi-
cate logic. CLAIM offers strong mobility of agents and allows agents to be
placed in a logical hierarchy that can span across different machines.

The goal of the Ao Dai prototype is to demonstrate that using a hierarchical
topology for the agent system, that maps to a partial, hierarchical representa-
tion of context, is a valid solution for building a decentralized system in which
communication only happens between agents sharing context.

In Ao Dai, several context elements are represented by agents: places, com-
putational devices, and users. Computational devices, as well as users, exist
in certain places; computational devices can also be used by users. These rela-
tions can change over time, but the dynamic topology improves performance
and scalability. For instance, searching for devices / services with certain ca-
pabilities is done first in the agent’s subtree of agents, then the agents queries
its parent, which in turn searches in a larger context. This procedure has two
advantages: first, the communication is decentralized, and the system is able
to scale; second, the first results will be found in a context that is closer to
the user.

The Ao Dai prototype has been demonstrated in a simulated environment,
running on two different machines, during the 5th NII-LIP6 Workshop, held
in June 2010 in Paris, France4.

5.3 A Platform for Testing AmI Applications

In order to further test the model that we have developed for a middleware for
AmI, we have built a platform for the testing of agent-based AmI applications
– the Ao Dai / tATAmI platform (towards Agent Technologies for Ambient
Intelligence)5. It was implemented using a modular structure, and featuring
tools for the visualization and tracking of agents, as well as for the realization
of repeatable experiments, based on scenario files. The platform is underpinned
by JADE6 for the management and mobility of agents.

3 The Ao Dai project has been implemented in collaboration with Thi Thuy Nga Nguyen
and Diego Salomone-Bruno, under the supervision of prof. Amal El Fallah Seghrouchni.

4 Workshop held in collaboration by the National Institute of Informatics in Tokyo and
the Laboratory of Computer Science of University Paris 6. Details at http://www-desir.

lip6.fr/~herpsonc/5workshopNii/program.htm
5 The realization of the platform has been a collaborative effort of Andrei Olaru, Thi

Thuy Nga Nguyen and Marius-Tudor Benea, under the supervision of prof. Amal El Fallah
Seghrouchni and with the assistance of Cédric Herpson.

6 Java Agent Development Framework http://jade.tilab.com/

A context-aware multi-agent system as a middleware for Ambient Intelligence?? 19

The platform allows the implementation of various AmI applications and is
meant to validate the model presented in Section 4.1 through the integration
of all of its components.

The platform uses an evolved version of the CLAIM language, called S-
CLAIM, which is simpler and easier to use. Figure 6 presents a snippet of
S-CLAIM code, partially defining an agent. The definition is based on behav-
iors, which can be reactive or proactive. The agents in the Ao Dai platform
use Knowledge Bases that are accessed by means of a small number of func-
tions that use patterns to locate information in the Knowledge Base. The
S-CLAIM code is designed to be simple enough so that it can be used by non-
programmers – it relies on a small number of primitives and uses simple data
structures.

There are two important features of S-CLAIM agents and of the Ao Dai
platform, that come from the model that we propose for the middleware. First,
as in CLAIM, agents have a logical hierarchy, that is kept organized as to map
the structure of context; agents are mobile, so that it is easy for them to move,
together with their children, in order to reflect changes in the context. Second,
the S-CLAIM language is oriented toward working with patterns: information
in the knowledge base is retrieved by means of matching it against a pattern,
and also messages are matched against patterns before activating a behavior.

Because interoperability is important if we want to interface the middle-
ware with other components of an AmI system, Ao Dai agents can use not only
the FIPA protocol to communicate with other entities, but also Web Services.
They can be both accessed as web services, and can access web services them-
selves. Web service integration is done using the same S-CLAIM primitives as
for normal inter-agent communication.

Also important for an AmI-related component like the middleware that we
propose is the possibility of deployment on various platform, smart devices
being among the most relevant. This is why Ao Dai agents integrate the pos-
sibility to be deployed on Android7 devices. This requires some changes in
the interface of agents, but otherwise much of the code works out-of-the-box.
Figure 7 presents the three tabs in the mobile interface: the connection with
the platform, choosing agents, and visualization of the agent logs8.

The Ao Dai platform has been tested as middleware for AmI applications
using the SmartRoom at the NII Institute in Tokio – a room enriched with
application-controlled devices and a wireless sensor network for the detection
of people. The Ao Dai platform has been deployed on multiple machines and
has been integrated with the different components of the room with virtually
no effort.

The first experiments used the following scenario: the Computer Science
Course is taking place in a new building of the University, that features sen-
sors, people detection, devices controllable by means of web services, many

7 http://www.android.com/
8 These features have been developed by Marius Tudor Benea during his internship at

LIP6.

20 Andrei Olaru et al.

CourseAgent.adf2 agent definition file
1. (agent Course ?courseName ?parent
2. (behavior
3. (initial register
4. (send ?parent (struct message managesCourse this ?courseName))
5.)
6.

7. (reactive registerUser
8. (receive assistsUser ?agentName ?userName)
9. (addK (struct knowledge userAgent ?userName ?agentName))
10.)
11.

12. (reactive changeRoom
13. (receive managesRoom ?roomAgentName ?roomName)
14. (condition (readK (struct knowledge scheduling ?courseName ?roomName)))
15. (addK (struct knowledge roomAgent ?roomName ?roomAgentName))
16. (forAllK (struct knowledge userAgent ?userName ?userAgentName)
17. (send ?userAgentName

(struct message scheduling ?courseName ?roomAgentName))
18.)
19. (in ?roomAgentName)
20.)
21. . . .
22.)
23.)

Fig. 6 Sample of S-CLAIM code, used in the Ao Dai platform scenario for the CS Course
agent.

Fig. 7 Interface of Ao Dai agents, on Android OS.

multi-purpose screens, and other AmI-specific equipment. As students that
are new to the building approach the room where the course will be held,
they are guided towards the room by messages on their PDAs. When the first
person enters the room, it automatically configures itself (lights, screens, mi-
crophones) for the course, and it will also reconfigure in every of the different
phases of the course. Among these, the activity phase consists of the students
being divided into groups and discuss certain approaches to a problem, using
their PDAs to enter opinions for or against the approaches. As they move in

A context-aware multi-agent system as a middleware for Ambient Intelligence?? 21

Fig. 8 Images from the testing of the Ao Dai platform in the SmartRoom. The two last
images show how opinions are moved to the back screen after the student changes location.
As further proof of the platform’s flexibility, one of the machines (above) runs Apple OS X
and the other (below) runs Microsoft Windows 7.

the room and between the groups, the content they entered follows them on
the large wall screens.

As the experiments were recorded on video, some images from the exper-
iments are presented in Figure 8. In the figure, one can see the simple agent
interface, showing the agent’s activity log, and some input and output fields,
and, in the second and third images, we can see how, as a student moves be-
tween the two large screens, his opinions move automatically on the second
screen.

The easy implementation and correct execution of the scenario proved that
the platform is appropriate to implement AmI applications, and that the pre-
sented model is valid with respect to managing context-related information.

While the scenario that was used to test the Ao Dai platform together with
the SmartRoom was very simple, what was important was that the platform
was very easy to deploy and that the agents were written in a language that
is easy to learn.

22 Andrei Olaru et al.

6 Conclusions

While many approaches to the development of Ambient Intelligence envi-
ronments attempt to deal with all layers of an AmI system, and result in
application-specific implementations, the work presented in this paper focuses
o a single layer of AmI applications, which is responsible with the generic, but
context-aware exchange of information between devices. We have presented an
agent-based middleware model and we have integrated context-awareness at
two levels: inside the agent, the agent’s behavior using context patterns to rec-
ognize situation and to decide upon appropriate action; outside the agent, the
context-related topology of the system making communication among neigh-
bors ”local” in terms of context, helping decentralization and performance.

We have also presented several proof-of-concept applications of our pro-
posed model: the AmIciTy project for the study of the context-aware dissem-
ination of information in a system formed of a large number of agents; the
Ao Dai prototype demonstrating the use of mobile agents for the implemen-
tation of an AmI scenario; and the Ao Dai platform which offers tools for the
simulation and testing of AmI applications, using context-aware agents and a
dedicated agent-oriented programming language.

Future work deals with several aspects of our research. The agent-based
model introduced in this paper must be further tested, using different scenarios
and other environments. Temporal context, uncertainty, and privacy of the
information must also be considered in our approach. While the development
of the middleware has been oriented towards high performance and reliability,
these features must be tested thoroughly using formally defined scenarios.

Acknowledgements The authors would like to thank Cristian Gratie for the participation
in the development of the AmIciTy platform; Thi Thuy Nga Nguyen and Diego Salomone
Bruno for their participation in the development of the Ao Dai prototype; and Marius Tudor
Benea and again Thi Thuy Nga Nguyen for their participation in the development of the
Ao Dai platform, as well as to Cédric Herpson for his assistance and advise.

References

1. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. Interna-
tional Journal of Ad Hoc and Ubiquitous Computing 2(4), 263–277 (2007)

2. Cabri, G., Ferrari, L., Leonardi, L., Zambonelli, F.: The LAICA project: Supporting am-
bient intelligence via agents and ad-hoc middleware. Proceedings of WETICE 2005, 14th
IEEE International Workshops on Enabling Technologies, 13-15 June 2005, Linköping,
Sweden pp. 39–46 (2005)

3. Chen, G., Kotz, D.: A survey of context-aware mobile computing research. Technical
Report TR2000-381, Dartmouth College (2000)

4. Chen, H., Finin, T.W., Joshi, A., Kagal, L., Perich, F., Chakraborty, D.: Intelligent
agents meet the semantic web in smart spaces. IEEE Internet Computing 8(6), 69–79
(2004)

5. Costantini, S., Mostarda, L., Tocchio, A., Tsintza, P.: DALICA: Agent-based ambient
intelligence for cultural-heritage scenarios. IEEE Intelligent Systems 23(2), 34–41 (2008)

6. Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J., Burgelman, J.: Scenarios for
ambient intelligence in 2010. Tech. rep., Office for Official Publications of the European
Communities (2001)

A context-aware multi-agent system as a middleware for Ambient Intelligence?? 23

7. El Fallah Seghrouchni, A.: Intelligence ambiante, les defis scientifiques. presentation,
Colloque Intelligence Ambiante, Forum Atena (2008)

8. El Fallah Seghrouchni, A., Breitman, K., Sabouret, N., Endler, M., Charif, Y., Briot, J.:
Ambient intelligence applications: Introducing the Campus framework. 13th IEEE In-
ternational Conference on Engineering of Complex Computer Systems (ICECCS’2008)
pp. 165–174 (2008)

9. El Fallah Seghrouchni, A., Florea, A.M., Olaru, A.: Multi-agent systems: A paradigm
to design ambient intelligent applications. In: M. Essaaidi, M. Malgeri, C. Badica (eds.)
Intelligent Distributed Computing IV, Proceedings of the 4th International Symposium
on Intelligent Distributed Computing - IDC 2010, Tangier, Morocco, September 16-
18 2010, Studies in Computational Intelligence, vol. 315, pp. 3–9. Springer Berlin /
Heidelberg (2010). DOI 10.1007/978-3-642-15211-5\ 1. URL http://dx.doi.org/10.

1007/978-3-642-15211-5_1. ISBN 978-3-642-15210-8 (ISI Proceedings)
10. El Fallah Seghrouchni, A., Olaru, A., Nguyen, T.T.N., Salomone, D.: Ao Dai: Agent

oriented design for ambient intelligence. In: Proceedings of PRIMA 2010, the 13th
International Conference on Principles and Practice of Multi-Agent Systems (2010)

11. Feng, L., Apers, P.M.G., Jonker, W.: Towards context-aware data management for am-
bient intelligence. In: F. Galindo, M. Takizawa, R. Traunmüller (eds.) Proceedings of
DEXA 2004, 15th International Conference on Database and Expert Systems Applica-
tions, Zaragoza, Spain, August 30 - September 3, Lecture Notes in Computer Science,
vol. 3180, pp. 422–431. Springer (2004)

12. Ferber, J.: Multi-agent systems: an introduction to distributed artificial intelligence.
Addison-Wesley (1999)

13. Hagras, H., Callaghan, V., Colley, M., Clarke, G., Pounds-Cornish, A., Duman, H.:
Creating an ambient-intelligence environment using embedded agents. IEEE Intelligent
Systems pp. 12–20 (2004)

14. Harter, A., Hopper, A., Steggles, P., Ward, A., Webster, P.: The anatomy of a context-
aware application. Wireless Networks 8(2), 187–197 (2002)

15. Hellenschmidt, M.: Distributed implementation of a self-organizing appliance middle-
ware. In: N. Davies, T. Kirste, H. Schumann (eds.) Mobile Computing and Ambient In-
telligence, Dagstuhl Seminar Proceedings, vol. 05181, pp. 201–206. ACM, IBFI, Schloss
Dagstuhl, Germany (2005)

16. Henricksen, K., Indulska, J.: Developing context-aware pervasive computing applica-
tions: Models and approach. Pervasive and Mobile Computing 2(1), 37–64 (2006)

17. Henricksen, K., Indulska, J., Rakotonirainy, A.: Modeling context information in perva-
sive computing systems. Lecture notes in computer science pp. 167–180 (2002). URL
http://www.springerlink.com/content/jbxd2fd5ga045p8w/

18. Hong, J., Landay, J.: An infrastructure approach to context-aware computing. Human-
Computer Interaction 16(2), 287–303 (2001)

19. Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion: A scalable and robust
communication paradigm for sensor networks. Proceedings of MOBICOM 2000 pp.
56–67 (2000)

20. Johanson, B., Fox, A., Winograd, T.: The interactive workspaces project: Experiences
with ubiquitous computing rooms. IEEE pervasive computing pp. 67–74 (2002). URL
http://www.computer.org/portal/web/csdl/doi/10.1109/MPRV.2002.1012339

21. Kindberg, T., Fox, A.: System software for ubiquitous computing. Pervasive computing
pp. 70–81 (2002)

22. Lech, T.C., Wienhofen, L.W.M.: AmbieAgents: a scalable infrastructure for mobile and
context-aware information services. Proceedings of the 4th International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS 2005), July 25-29, 2005,
Utrecht, The Netherlands pp. 625–631 (2005)

23. Muldoon, C., O’Hare, G.M.P., Collier, R.W., O’Grady, M.J.: Agent factory micro edi-
tion: A framework for ambient applications. In: V.N. Alexandrov, G.D. van Albada,
P.M.A. Sloot, J. Dongarra (eds.) Proceedings of ICCS 2006, 6th International Confer-
ence on Computational Science, Reading, UK, May 28-31, Lecture Notes in Computer
Science, vol. 3993, pp. 727–734. Springer (2006)

24. Olaru, A., Florea, A.M., El Fallah Seghrouchni, A.: Graphs and patterns for context-
awareness. In: P. Novais, D. Preuveneers, J. Corchado (eds.) Ambient Intelligence - Soft-
ware and Applications, 2nd International Symposium on Ambient Intelligence (ISAmI

24 Andrei Olaru et al.

2011), University of Salamanca (Spain) 6-8th April, 2011, Advances in Intelligent and
Soft Computing, vol. 92, pp. 165–172. Springer Berlin / Heidelberg (2011). DOI 10.1007/
978-3-642-19937-0\ 21. URL http://dx.doi.org/10.1007/978-3-642-19937-0_21

25. Olaru, A., Gratie, C.: Agent-based, context-aware information sharing for ambient in-
telligence. International Journal on Artificial Intelligence Tools 20(6), 985–1000 (2011).
DOI 10.1142/S0218213011000498. URL http://www.worldscinet.com/ijait/20/2006/

S0218213011000498.html

26. Olaru, A., Gratie, C., Florea, A.M.: Context-aware emergent behaviour in a MAS for in-
formation exchange. Scalable Computing: Practice and Experience 11(1), 33–42 (2010).
URL http://www.scpe.org/index.php/scpe/article/view/637

27. Perttunen, M., Riekki, J., Lassila, O.: Context representation and reasoning in pervasive
computing: a review. International Journal of Multimedia and Ubiquitous Engineering
4(4), 1–28 (2009)

28. Ramos, C., Augusto, J.C., Shapiro, D.: Ambient intelligence - the next step for artificial
intelligence. IEEE Intelligent Systems 23(2), 15–18 (2008)

29. Ranganathan, A., Campbell, R.: A middleware for context-aware agents in ubiquitous
computing environments. In: Proceedings of the ACM/IFIP/USENIX 2003 Interna-
tional Conference on Middleware, pp. 143–161. Springer-Verlag New York, Inc. (2003)

30. Román, M., Hess, C., Cerqueira, R., Ranganathan, A., Campbell, R., Nahrstedt, K.: A
middleware infrastructure for active spaces. Pervasive Computing, IEEE 1(4), 74–83
(2002)

31. Sadeh, N.M., Gandon, F.L., Kwon, O.B.: Ambient intelligence: The MyCampus expe-
rience. Tech. Rep. CMU-ISRI-05-123, School of Computer Science, Carnagie Mellon
University (2005)

32. Satoh, I.: Mobile agents for ambient intelligence. In: Proceedings of Massively Multi-
Agent Systems I, First International Workshop, MMAS 2004, Kyoto, Japan, December
10-11, 2004, Revised Selected and Invited Papers, Lecture Notes in Computer Science,
vol. 3446, pp. 187–201. Springer (2004)

33. Spanoudakis, N., Moraitis, P.: Agent based architecture in an ambient intelligence con-
text. Proceedings of the 4th European Workshop on Multi-Agent Systems (EUMAS’06),
Lisbon, Portugal pp. 1–12 (2006)

34. Suna, A., El Fallah Seghrouchni, A.: Programming mobile intelligent agents: An oper-
ational semantics. Web Intelligence and Agent Systems 5(1), 47–67 (2004)

35. Weiser, M.: Some computer science issues in ubiquitous computing. Communications -
ACM pp. 74–87 (1993)

