
Context-Awareness in Multi-Agent Systems for
Ambient Intelligence∗

Andrei Olaru

Abstract There is a large body of research that lies at the intersection of the do-
mains of context-awareness, multi-agent systems (MAS) and Ambient Intelligence
(AmI) / Ubiquitous Computing (UbiComp). This is because, while multi-agent sys-
tems are an appropriate architecture for AmI implementations, one essential require-
ment for AmI is to be aware of the user’s context and to act accordingly. In order to
implement context-awareness in a MAS for AmI applications, one must on the one
hand choose an appropriate representation for context, that is suitable for agents of
all sizes and functions, and, on the other hand, create an agent-based architecture
that facilitates communication between agents that share context.
This chapter presents a model, mechanisms and methods for integrating context-
awareness in multi-agent systems for AmI. The model is based on experience with
several implementations of MAS dealing with various aspects of context-awareness.

1 Introduction

Ambient Intelligence – or AmI – is a pervasive electronic environment that will
assist people in their daily lives, in a pro-active but non-intrusive manner [1, 6]. In
order to be able to take the appropriate action at the right time, AmI must consider
the situation – or context – of the user, in order to help the user, potentially by
means of proactive action, without disrupting the user’s focus. Context-awareness
is therefore a central element in Ambient Intelligence, being instrumental in AmI

∗ The final publication is available at
http://link.springer.com/chapter/10.1007/978-1-4939-1887-4_33.

Andrei Olaru
Department of Computers, Faculty of Automatic Control and Computers,
University “Politehnica” of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania,
e-mail: cs@andreiolaru.ro

1

2 Andrei Olaru

appearing as “intelligent”. An AmI system must “understand” the context of the
user before acting upon it.

In context-aware AmI applications, context is many times viewed as set of pieces
of information that originate outside the AmI system, and that the system can per-
ceive and manage in order to provide it to the various algorithms involved in de-
cision. However, only so much context information will come from the outside of
the system. Applications in the system will also produce information that is relevant
to other applications, essentially creating more complex elements of context. We
therefore view applications and agents in an Ambient Intelligence system as both
consuming and producing context information.

Moreover, there are a few processes related to context information that can be
found in most of context-aware applications: the application must be able to detect
the context information that is relevant to it; it must detect the appropriate action to
take, considering the context; and it must share new context information that it has
perceived or aggregated (if any), in order to make it available to other components
of the system.

The purpose of this chapter is to present a model that makes possible the iso-
lation of application-independent context-related processes in a specific layer – a
middleware that relies on a simple, flexible and generic context representation in
order to perform tasks such as situation detection, decision, and sharing of context
information.

Moreover, in order to enable simple situation detection and action without the
need for domain-specific processes, context information and recognized situations
should be easy to view, edit and manage by the user directly.

Throughout this chapter we will be using, as example, an Ambient Assisted Liv-
ing (AAL) scenario: Emily is an elderly woman that lives alone. Most of her activity
happens indoors, but some days she goes shopping outside of the house. Her care-
takers have configured an AmI system that uses motion sensors, RFID tags and AI
to detect potential emergency situations and assist Emily in her daily life.

After discussing some related work in the fields of MAS for Ambient Intelli-
gence, and of context-awareness in AmI, we elaborate on our perspective on the
problem in Section 3. Section 4 will present the model of a context-awareness layer
for AmI. The practical experience with implementing this model is detailed in Sec-
tion 5. The last section draws the conclusions.

2 Related Work

In the field of agent-based Ambient Intelligence platforms, there are two main di-
rections of development: one concerning agents oriented toward assisting the user,
based on centralized repositories of knowledge (ontologies) and complex platforms
[14, 10], and one concerning the coordination of agents associated with devices,
sometimes using agent mobility, in order to resolve complex tasks that no agent
can do by itself, also considering distributed control and fault tolerance [12, 3]. In

Context-Awareness in Multi-Agent Systems for Ambient Intelligence† 3

both approaches context-aware reasoning is lacking, or is performed in centralized
repositories, away from the agents in need of the reasoning process. We propose a
model in which reasoning can be done in the agent, close to the user, not depending
on centralized components.

In context-awareness for pervasive computing, infrastructures for the processing
of context information [11, 9] contain several layers, going from sensors to the ap-
plication. This type of infrastructures is useful when the context information comes
from the environment and refers to environmental conditions such as location, tem-
perature, light or weather, also having a simpler representation. Our approach is
directed towards an infrastructure that is decentralized, in which each entity / agent
has knowledge about the context of its user [?].

The research group of Diane Cook working on activity detection proposes a
method that bears much similarity to our own, in the sense that textual pattern de-
tection is used to detect behavioral patterns in activity data recorded as text [5]. By
comparison, this work is directed towards activity recognition (rather than detec-
tion) and proposes a representation for context / situation information that is easier
to read and handle by the carer of the assisted person.

Modeling of context information uses representations that range from tuples to
logical, case-based and ontological representations [11]. These are used to deter-
mine the situation that the user is in. However, these approaches are not flexible
throughout the evolution of the system – the ontologies and rules are hard to modify
on the go and in a dynamical manner. Moreover, a less informed user is unlikely to
be able to modify an ontology or a set of rules based on FOPL, as opposed to a vi-
sual representation based on graph. The work of Sowa [13] on conceptual graphs is
interesting with respect to our research, but in our work we focus on graph matching
for situation detection.

3 Context-Awareness from an Application-Independent
Perspective

We position this work at the intersection of Ambient Intelligence, context-awareness
and multi-agent systems.

Software agents (and multi-agent systems [8]) are an appropriate paradigm for
the implementation of AmI [6, 14], as agents are autonomous, therefore more reli-
able in a dynamic environment and more capable of focusing on just one user or one
functionality. Moreover, there is a large amount of research that can be used from
the fields of multi-agent platforms and agent reasoning and communication. Even
if an AmI system does not use agents, reliability and robustness concerns call for
distributed, autonomous application components that are much like software agents.

As most of the agents in an AmI system need to access context information that is
relevant to their activity, many features of context-aware behavior can be integrated
in a generic, application-independent layer below the main application functionality,
to serve as component in a middleware for context management. Such a context-

4 Andrei Olaru

(a) (b)

Fig. 1 (a) A layered view of an Ambient Intelligence system, dividing the application layer into
context-awareness middleware and domain-specific processes. (b) A schematic view of an agent’s
internals, presenting the context graph (KB), matcher and patterns, and domain-specific processing.

awareness middleware would handle context information transfer, detection of in-
formation that is relevant to the application, a certain range of context-aware deci-
sions, and sharing of new context information with other agents. This approach is
directed towards a decentralized solution (supporting robustness and dependability)
in which all context information is stored in the agents to which that information is
potentially relevant at the current time (the context is the “dressing” of the agent’s
focus [2]).

An Ambient Intelligence system can be modeled as having several layers (see
Figure 1 (a)) [7]: the devices that compose the system; the pervasive network
connecting the devices; an interoperability layer ensuring uniform representations
throughout; the application layer, concerned with intelligent behavior and applica-
tion logic; and the multi-modal natural user interface. In this model, the context-
awareness middleware fits inside the application layer, underlying domain-specific
processes. Ideally, the middleware handles all incoming and outgoing communica-
tion between agents, providing applications the information relevant to their activ-
ity. There may be agents that don’t even have any application-specific logic, and rely
only on the functionality offered by the middleware to provide data to the interface.

By using the underlying middleware, the application must be able to access con-
text information (e.g. know about the activity of the user), must understand the
context (e.g. understand the relations between the different facts and to evaluate
the relevance of a piece of information) and must be able to decide upon correct
context-aware action (e.g. know about the user’s experience and expectations, de-
tect appropriate action and also be able to perform the action). Most of these features
can rely on the functionality of the middleware. Its architecture is presented in the
next section.

Context-Awareness in Multi-Agent Systems for Ambient Intelligence† 5

4 The Context-Awareness Layer

The middleware presented in this chapter offers to AmI applications that use it a pos-
sibility of integrating context-awareness, by providing them with storage of context
information, detection of situations specified by the application, suggesting poten-
tial action, and sharing with other devices and applications context information that
is potentially interesting to them.

In order to make these processes generic, an appropriate representation for con-
text information is needed, such that it is possible to represent the user’s situation
and also to be able to say if the user is in a specified situation or not. For this pur-
pose, the model that we propose uses context graphs to represent information and
context patterns to represent interesting situations [?]. Context graphs and patterns
have been developed specifically for a general, non-restrictive representation of in-
formation that allows matching patterns against graphs. Context matching can be
used to compute the relevance of incoming information, to detect situation and ap-
propriate action, and to extract information potentially relevant to other agents.

Beside the internal representation of context, the model also specifies that agents
only communicate with other agents that share some context, creating a topology
of the agent system that is an overlay of the actual network topology. This helps
efficiency and privacy.

4.1 Formal Model

This section presents the model that the context-awareness middleware – integrated
in a multi-agent system – relies on. In this model, the multi-agent system is orga-
nized on three levels (see Figure 2): containers (or machines), agents, and knowl-
edge / context information. Each of these levels is modeled as a graph: the Container
Graph shows what containers can communicate directly with each other; the Agent
Graph specifies which agents share context (see Section 4.3), and what is their re-
lation; and each agent contains a ContextGraph with the information relevant to its
activity).

The Tri-Graph is formed by the reunion of ContainerGraph = (Containers,
Connections), AgentGraph = (Agents, AgentRelations); and agents’ context graphs
CGAgent :

Tri-Graph = (Nodes,Edges), where
Nodes =Containers∪Agents∪

⋃
A agent

CGA.V

Edges =Connections∪AgentRelations∪AgentLocations ∪
⋃

A agent
CGA.E

CGA =(V,E), where V ⊆Concepts and E = {edge(f rom, to, value, persistence)
| f rom, to ∈Concepts, value ∈ Relations, persistence ∈ (0,1] }

In a context graph CGA, the elements of Concepts and Relations are strings or
URIs; Relations also contains the empty string, for unnamed relations. The value

6 Andrei Olaru

Fig. 2 A visual representation of the various graphs, in the modeling of an example scenario in-
volving 5 agents and 4 machines.

attribute is the label of the edge. The persistence attribute specifies how long the
edge will persist after it has been added to the context graph.

Situation recognition is done by means of context patterns. A pattern represents
a set of associations that are specified by the user, the applications, or are extracted
by the agent from the history of context information.

A pattern is also a graph, but there are several additional features that make it
match a wider range of situations. For instance, some nodes may be labeled with ”?”
and are generic; also, edges may be labeled regular expressions (matching series of
edges in the context graph.

Each agent has a set of context patterns that it matches against its context graph
and against the information that it receives, in order to determine relevant situations
and solve potential problems:

Patterns = {(GP
s ,relevance, persistence) | s ∈ PatternNames, GP

s a graph pat-
tern, relevance, persistence ∈ (0,1]}.

A graph pattern is a graph GP
s = (V P

s ,EP
s) with:

V P
s = {vP

i | vP
i .label ∈Concepts∪{?}}

EP
s = {(f rom, to, label,characteristic,actionable) | f rom, to ∈ V P

s , label ∈
Regexps(Relations), characteristic, actionable ∈ (0,1]},

The characteristic feature of a pattern edge influences the measurement of how
well a pattern matches a subgraph. Its actionability feature measures how correct it
would be for the agent to infer the existence of this edge in case of a partial match
between the pattern and the context graph. The relevance of a pattern shows how
important is an information matching the pattern; persistence shows for how long
new information will persist after being matched by the pattern. Once a pattern has
been matched, its persistence value will be assigned to all edges in the matched
subgraph. Labels in both context graphs and patterns are unique (with the exception
that there may be more than one generic node in a pattern).

Context-Awareness in Multi-Agent Systems for Ambient Intelligence† 7

(a) message −→
New information

+
Context Graph

||· −→ full match −→ nothing new
−→ partial match −→ add GP

x to CGA

(b)

Pattern

+
Context Graph

||·
−→ full match −→ situation detected
−→ partial match −→ infer action-
able edges in GP

x
−→ otherwise −→ inform user

(c) Observed interest of agent B +
Context Graph

||· relevant match −→ send to agent B

Fig. 3 Processes happening in a context-aware agent: (a) integrating new information; (b) detecting
situation; (c) sharing information with other agents. The matching has been marked with ||· .

A match i between a pattern GP
s and an agent A’s context graph CGA is defined3

as MA-si(G′A,G
P
m,G

P
x , f ,k f).

G′A,G
P
m,G

P
x are graphs4, with G′A ⊆ CGA, G′A = (V ′,E ′), GP

m = (V P
m ,EP

m), GP
x =

(V P
x ,EP

x), where V P
m ∩V P

x = /0, V P
m ∪V P

x =V P
s , EP

m∩EP
x = /0 and EP

m∪EP
x = EP

s
That is, G′A ⊆ CGA is a full match for the solved part GP

m of pattern GP
s . What

is left of the pattern is the unsolved part GP
x (also called the problem). There is

no intersection between the solved and unsolved parts of the patterns (no common
nodes or edges).

The matching function f : V P
m → V ′ establishes a correspondence between the

vertices of the solved part and the match in the graph with the conditions that every
non-generic vertex from the solved part must match a different vertex from G′A;
every non-RegExp edge from the solved part must match an edge from G′A; every
RegExp edge from the solved part must match a chain of edges from G′A; and G′A
does not contain other nodes or edges than the ones that are matched by the pattern
(G′A is minimal).

The number k f ∈ (0,1] indicates how well the pattern GP
s matches G′A in match

MA-si, and is given by the normalized sum of the characteristic factors of matched
edges, i.e.

k f = ∑

eP
i ∈EP

m

eP
i .characteristic / ∑

eP
j ∈EP

s

eP
j .characteristic

Equivalently, we can define the match of any 2 graphs GX and GY – where GY
is the ”pattern” – as MGX -GY i(G′X ,G

P
m,G

P
x , f ,k), since a graph is a particular case of

graph pattern.

3 There may be multiple matches between the same pattern and graph.
4 GP

x is not a proper graph, as it may contain edges without containing their adjacent vertices.

8 Andrei Olaru

4.2 Reasoning

Based on the formal model presented in the previous section, there are three pro-
cesses that occur constantly in the context-awareness component of the agent: the
agent is able to integrate new information coming from other agents (e.g. an RFID
reader notifies Emily’s activity manager that Emily has her keys with her); the agent
is able to detect situation and act upon it (e.g. Emily’s activity manager infers that
Emily is going to go out and notifies her she should take a shopping bag); and the
agent is able to share information with its neighbors (e.g. Emily’s activity man-
ager informs her caretaker that she will go shopping). We have previously shown
that these processes (behaviors) are essential and sufficient to ensure that interesting
information reaches the potentially interested agents..

Whenever the agent receives a message from which a graph can be extracted,
the graph is matched against the context graph of the agent. If there is no match,
it means that the information has no relevance with respect to the agent’s activity,
and it is discarded. If there is a full match, the agent already has the information,
so no change occurs. If there is a partial match, the new information is integrated
with the agent’s context graph, by simply adding the unsolved part of the match to
the context graph. This way, the agent acquires new information (see the example
in Figure 3 (a)).

Whenever the context graph of the agent changes, related patterns of the agent
are matched against the context graph, to detect if the situation of the agent has
changed. In case of a full match, the situation is considered as current. In case of a
partial match, the actionability of the edges in the unsolved part is checked, and if
it is greater than the k f of the match, the edges are added to the context graph. This
is how the agent infers new information. Otherwise, depending on the k f , the user
may be notified of the partial match, as user action may be needed and action cannot
be taken by the agent autonomously (see the example in Figure 3 (b)).

As the agent receives information from other (neighbor) agents, it forms an ’ob-
served interest’ record for the agents. Since agents send only information that is
interesting to them, extracting interest indication from received messages may be
useful. This indication can be represented as patterns of the agent that may be inter-
esting for the other agent. Whenever information matching those patterns is found,
it will be sent to the other agent, as it may be potentially interesting to it (see the
example in Figure 3 (c)).

An important process in the agent is the removal of parts from the context graph
– forgetting outdated information. For example, if the system detected that Emily
was in the kitchen 5 minutes ago and her position has not been reconfirmed since, it
may well be that she has moved elsewhere and that information can be considered
as obsolete, as a new detection should take its place. When new edges are added,
their persistence is set according to the indications of the pattern that contains the
edge. With time, persistence of the edges in the context graph of the agent (CGA)
fades, and as it reaches zero, the edge is removed (along with any resulting isolated
nodes).

Context-Awareness in Multi-Agent Systems for Ambient Intelligence† 9

Table 1 The possible relations between different agent types, resulting from the mapping of con-
text to system topology.
Agent type
(context type)

Possible incoming relations (and their sources) Possible outgoing relations (and their des-
tinations)

Place (spatial) is-in (←− Activity, User, Device, Service, Place) -
Activity (activity) part-of (←− User, Group, Activity, Service) of (−→ User)
Device (computing) executes-on (←− Service) is-in (−→ Place), controlled-by (−→ User)
Service (computing) - executes-on (−→ Device), is-in (−→ Place),

part-of (−→ Activity)
User (social) controlled-by (←− Device), of (←− Activity),

connected-to (←− User)
part-of (−→ Activity), in (−→ Group),
connected-to (−→ User)

Group (social) in (←− User) part-of (−→ Activity)
Organization (social) part-of (←− User, Group, Place, Activity) part-of (−→ Organization)

All actions that an agent can take are related to matched patterns and added edges
(creation of relations between concepts). The actual actions that are connected to
the addition of edges are performed by attached procedures that are part of the
application-specific part of the agent, allowing the agent to actually change its envi-
ronment accordingly. This is why the only edges that are ”actionable” should be the
ones that correspond to effects that the agent can actually create.

4.3 Dynamic Agent Topology

Our approach is directed towards the context-aware transfer of information in a
distributed, decentralized MAS for Ambient Intelligence. But to achieve communi-
cation efficiency, and to deal with privacy concerns, we have devised for our model
an agent topology that is induced by context. In this context-based topology, if
two agents share context, then they should be neighbors. The topology becomes an
overlay on the actual network that the agents use to communicate. Shared context
can be a common activity, a common place, etc.

There are five types of context that we consider for the agent hierarchy, four
being identified by Chen and Kotz [4], and the fifth being activity, an important
aspect in the association-based model of Henricksen et al [9]. The five types are
spatial context, temporal context, computational context, activity context and
social context. For each aspect of context we introduce agent types and relations
between agents. The possible relations between agents are presented in Table 1.
While temporal context is an aspect of context that we consider, we do not have
a specialized agent for time intervals (which would be the hierarchical element of
temporal context), as an agent that manages a time interval does not make much
sense: since the internal context representation, as well as the relations between
agents, reflect the present situation – therefore shared temporal context is already
achieved. The temporal aspect is further discussed in Section 4.4.

Using such a topology has several advantages: the agents only send information
to agents that share context with them – an agent would not find any interest in
information received from an agent with absolutely no common context with it; and

10 Andrei Olaru

Fig. 4 Example of Timeline of an agent. The dotted line represents the current moment of time.

when looking for information, the search will be kept local (in terms of context),
there where it makes more sense (and is more likely to yield results).

Moreover, in previous work we have explored the idea of mapping context struc-
ture to agent hierarchies [?]. Most aspects of context are hierarchical: places are
parts of other places, activities are part of more general activities, computational
resources belong to places or are related to certain activities, social structure is hi-
erarchical, etc. Using hierarchies not only helps us organize the system, but allows
us to use hierarchical mobility – in which a mobile agent moves together with its
subtree of agents.

Whenever the context of an agent changes, the relations with the other agents
change as well – the topology of the system is dynamic. In some cases, mobile
agents may be used. For example, the Shopping List agent may normally execute
on the same machine as the kitchen agent, but when Emily goes shopping, it should
move, as a part of her Shopping activity, to Emily’s personal device, which will stay
with her. It makes sense that an agent managing an activity should reside closer to
the place where the activity takes place.

The choice of the presented types of context and relations is not random, as they
cover the types identified in the literature. The use of specific types of agents and
relations does not reduce the generality of the model, as these types may be used for
any Ambient Intelligence application. The context-aware topology is not claiming to
be a complete implicit representation of context – it only helps organize the system
and keep information transfer between the agents local in terms of shared context.

4.4 The Temporal Aspect

Using context graphs and patterns is very useful when working on the current sit-
uation. If the Context Graph represents context information about the present, then
patterns can identify the situation(s) that the user is in right now. However, some
situations depend on the passage of time. For example, if the system knows Emily
is in the bathroom, it cannot tell if any problem has occurred. If Emily has been in
the bathroom for 5 minutes, it is alright; if she has been there for one hour, then it
is likely that there is a problem. Time-related situations such as this may be handled
by introducing time moments or time intervals as nodes in the context graph, and
can be handled by specialized processes in the application specific part of the agent.

Context-Awareness in Multi-Agent Systems for Ambient Intelligence† 11

However, as time-related situations are frequent in all types of AmI scenarios, we
have developed a generic solution. This is our most recent research.

Beside the “instantaneous” patterns already presented in Section 4.1, an agent can
also contain Timelines. A timeline is a second-order graph pattern: T P

s = (V P,EP),
with V P ⊆ Patterns and EP = { (f rom, to, value, characteristic, actionable) |
f rom, to ∈ V P

s , characteristic, actionable ∈ (0,1]}. The label of an edge can take
values that are time lengths (e.g. “5 minutes”, “more than 1 hour”, etc), special val-
ues (e.g. next) or the empty string. Timelines are restricted to be single root directed
acyclic graphs, so that they can represent branching paths of temporal events. Once
a timeline is activated, its nodes and edges describe a sequence in which patterns
should be matched.

A particular timeline becomes active when the pattern in the root of the timeline
is matched. The edges going out from the root become enabled. Enabled edges
can become active depending on their value. When the pattern at the destination
of an active edge is matched, all other edges are inactivated and disabled and the
edges outgoing from the matched node are enabled. The process continues until
no edges are enabled or active, in which case the timeline is inactivated. Edges
with no value are activated immediately and remain so indefinitely (until they are
disabled by external events); edges labeled with “less than time” become active
immediately and are inactivated after time; edges labeled with next become inactive
when their source node is not matched anymore and their destination node is not
matched immediately after; edges specifying precise times, or lower limits on times
(“more than 30 minutes”) become active only after the specified amount of time
passes.

In the example in Figure 4, the simple timeline specifies that if Emily entered the
bathroom and has not come back to the living room (which is next to the bathroom)
in under 1 hour, then the alarm must be activated. Using timelines is a simple and
easy to visualize method to specify possible sequences of events.

5 Practical Experience

The model that we have presented in the previous section has been developed to-
gether with the experience of several software projects using agents for integrating
context-awareness in Ambient Intelligence applications. This section will highlight
some of the practical results in this experience.

5.1 Agent Behavior and Topology

The described agent behavior and topology have been designed through experiments
using platforms described in previous work [?].

12 Andrei Olaru

Agent behavior has been studied through a large number of simulations us-
ing the AmIciTy:Mi platform, that allows for fast simulations of large numbers
of agents, using scenario files that completely specify the evolution of the simu-
lation5. Simulations of up to over 1000 agents have been used to study the context-
aware dissemination of information based on local communication, relying on self-
organization mechanisms. The leading principle of the best behavior was that agents
should send information that is interesting to them to neighbor agents that are po-
tentially interested in that information.

The context-based hierarchical agent topology described in Section 4.3 improves
the one in AmIciTy:Mi experiments and has been validated through experiments
using the agent-oriented programming (AOP) language CLAIM, based on ambient
calculus, that supports hierarchical mobile agents. A distributed AmI scenario has
been publicly demonstrated [?].

5.2 Context Representation and Matching

As all of the processes in the context-awareness middleware that we present rely
on matching graphs, we have developed a purpose-build, efficient graph matching
algorithm, dedicated especially to directed graphs in which most edges are labeled6

[?].
The context-matching algorithm is focused on matching edges. It works with

valid partial matches of various sizes and merges them in order to form larger (bet-
ter) matches. The algorithm has two phases. First, it generates a set of all possible
single-edge matches. Then, it selects pairs of compatible matches that it merges in
order to create new matches. The search for new matches is close to a depth-first
search, in order to get better matches faster. The gist of the algorithm is that it does
not test the compatibility (from the point of view of merging) of the matches before
each merger, but instead uses for each match a set of data structures (a frontier, a
set of adjacent, “immediate”, merger candidates and a set of non-adjacent, “outer”
merger candidates) that allow the algorithm to know precisely if two matches can
be merged or not.

Single-edge matches are compatible if their pattern edges have any common ver-
tices and if those vertices correspond to the same node in the matched graph. The
match could be potentially merged, later, with any other match that is not adjacent to
it. In the second phase of the algorithm, for each match, new matches are created by
merging it with immediate merger candidates (guaranteed to be compatible). When
matches M1 and M2 are merged, the newly created M match has candidate sets that
are guaranteed to be correct without actually checking them. The set of immediate
merger candidates of M is the union of immediate merger candidates for both M1

5 We thank Cristian Gratie, Guillaume Masson, Alexandre Hocquard and Sofia Neatză for their
contributions to the project.
Code is open source at https://github.com/andreiolaru-ro/AmIciTy-Mi.
6 Code is open source at https://github.com/andreiolaru-ro/net.xqhs.Graphs.

Context-Awareness in Multi-Agent Systems for Ambient Intelligence† 13

(a)

(b) Emily(−→ schedule contains−−−−→ go shopping)(is−→ 87) is-in−−→
Entry Hall

(c) Emily (-> schedule-contains -> go shopping)
(-is-> 87) -is-in-> Entry Hall

Fig. 5 Various representation of a graph: (a) graphical; (b) textual; (c) ASCII.

and M2, immediate candidates for M1 that are outer candidates for M2 and immedi-
ate candidates for M2 that are outer candidates for M1. The outer merger candidates
are candidates that were acceptable by both M1 and M2 but were not immediate
merger candidates for any of the two.

Both the experimental results and the complexity analysis [?] have shown that the
algorithm is particularly appropriate for the problem of context matching, yielding
good results for graphs that come from AmI scenarios. As an additional feature,
the algorithm can be stopped at any time, as with time it builds better and better
matches. Not waiting for the algorithm to complete does not mean that no results
are obtained, only that they may not be the best.

Representation Features have been developed so that context graphs and pat-
terns in the agent can be visualizable and editable by the user directly, even without
application-specific processes. First, we have developed a linear textual represen-
tation of directed graphs, for the purpose of displaying a human-readable form of
graphs in the output console and to easily input graphs from the keyboard. It uses
vertex and edge names, arrows, stars and parentheses to completely display a graph.
Each edge is shown once, and nodes are repeated once per graph cycle. For instance,
a graph that is formed of three nodes (A,B,C) linked by two edges a and b is repre-
sented as A a−→ B b−→C; the cycle ABC is represented as A−→ B−→C−→∗A; a tree with
root A and children B and C is represented as A(−→ B) −→C. This representation is
also easy to copy and paste between various applications on desktop PCs or mobile
devices. Based on the linear textual representation, we have also built a graphical
representation for graphs and for matches. An example is shown in Figure 5.

A Continuous Context Matching Platform has been developed, that allows for
one context graph to be matched against a large set of graph patterns, but avoiding
that a full graph matching process is carried out at every change in the graph. In-
stead, intermediate matches are kept in memory so that at any modification to the
context graph the algorithm creates only new matches that are based on an added
edge, or removes matches that include a deleted edge. This platform can be used by
an agent to assist it in its context-aware behavior (as presented in Section 4.2.

14 Andrei Olaru

5.3 Context-Based Agent Platform

In order to further test the model that we have developed for a context-awareness
middleware for AmI applications, we have integrated context-awareness features
in a platform for building and running AmI applications – the tATAmI platform
(towards Agent Technologies for Ambient Intelligence)7 [?]. The platform was im-
plemented using a modular structure, and features tools for the visualization and
tracking of agents, as well as for the realization of repeatable experiments, based on
scenario files. The platform is underpinned by JADE8 for communication, manage-
ment and mobility features.

The platform allows the implementation of various AmI applications and is
meant to validate the model presented in Section 4 through the integration of all
of its components. The platform uses an evolved version of the CLAIM language,
called S-CLAIM, which is simpler and easier to use. The definition of agents is
based on behaviors, which can be reactive or proactive. The agents use Context
Graph Knowledge Bases for context information that are accessed by means of a
small number of functions that use patterns represented in text to locate information
in the Knowledge Base. Agents also feature hierarchies and hierarchical mobility is
implemented, allowing for the definition of the context-aware topology.

6 Conclusions and Future Work

This chapter presents a model in which generic functionality related to context-
awareness in AmI applications can be isolated to a layer below domain-specific
processing. In an agent-based architecture, the context-aware middleware lives in
the ’lower’ part of the agent, handling incoming context information, situation de-
tection and context information sharing.

The model relies on a representation for context that is based on graphs, and pat-
terns that are matched against the current context to detect interesting information
and current situation. Outside the agent, an agent topology can be defined that re-
flects the actual context of the agent. The model of context patterns can be extended
to handle temporal relations and sequences of events.

Practical experience with the model includes an algorithm for persistent con-
text matching involving multiple patterns, graphical and textual representations for
graphs and patterns that are easy to read and to input, as well as a platform for
context-aware AmI applications.

Future work involves the implementation and simulation of more complex sce-
narios, as well as the deployment of the tATAmI platform in the Ambient Intelli-

7 We thank Thi Thuy Nga Nguyen, Marius-Tudor Benea, Emma Sevastian, prof. Amal El Fallah
Seghrouchni, and Cédric Herpson for their contributions to the project. The code is open source
and can be found at https://github.com/tATAmI-Project.
8 Java Agent Development Framework http://jade.tilab.com/.

Context-Awareness in Multi-Agent Systems for Ambient Intelligence† 15

gence Laboratory of our Faculty, to serve as a context-aware middleware for AmI
applications. Temporal elements in context matching are still at the beginning, and
more work is required to cover a wider range of time-related issues and scenarios.

Acknowledgements This work has been supported by the Sectoral Operational Programme Hu-
man Resources Development (POS DRU) 2014-2020 of the Romanian Ministry of Labor, Family,
Social Protection and Elderly.

References

1. Augusto, J.C., McCullagh, P.J.: Ambient intelligence: Concepts and applications. Computer
Science and Information Systems (ComSIS) 4(1), 1–27 (2007)

2. Brézillon, J., Brézillon, P.: Context modeling: Context as a dressing of a focus. In:
B. Kokinov, D. Richardson, T. Roth-Berghofer, L. Vieu (eds.) Modeling and Using Con-
text, Lecture Notes in Computer Science, vol. 4635, pp. 136–149. Springer Berlin Heidelberg
(2007). DOI 10.1007/978-3-540-74255-5 11. URL http://dx.doi.org/10.1007/
978-3-540-74255-5_11

3. Cabri, G., Ferrari, L., Leonardi, L., Zambonelli, F.: The LAICA project: Supporting ambient
intelligence via agents and ad-hoc middleware. Proceedings of WETICE 2005, 14th IEEE
International Workshops on Enabling Technologies, 13-15 June 2005, Linköping, Sweden pp.
39–46 (2005)

4. Chen, G., Kotz, D.: A survey of context-aware mobile computing research. Technical Report
TR2000-381, Dartmouth College (2000)

5. Cook, D.J., Krishnan, N.C., Rashidi, P.: Activity discovery and activity recognition: A new
partnership. Cybernetics, IEEE Transactions on 43(3), 820–828 (2013)

6. Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J., Burgelman, J.: Scenarios for ambient
intelligence in 2010. Tech. rep., Office for Official Publications of the European Communities
(2001)

7. El Fallah Seghrouchni, A.: Intelligence ambiante, les defis scientifiques. presentation, Col-
loque Intelligence Ambiante, Forum Atena (2008)

8. Ferber, J.: Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence, 1st
edn. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1999)

9. Henricksen, K., Indulska, J.: Developing context-aware pervasive computing applications:
Models and approach. Pervasive and Mobile Computing 2(1), 37–64 (2006)

10. Lech, T.C., Wienhofen, L.W.M.: AmbieAgents: a scalable infrastructure for mobile and
context-aware information services. Proceedings of the 4th International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2005), July 25-29, 2005, Utrecht,
The Netherlands pp. 625–631 (2005)

11. Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Context aware computing for the
internet of things: A survey. IEEE Communications Surveys and Tutorials 16(1), 414–454
(2013)

12. Rogers, A., Corkill, D., Jennings, N.: Agent technologies for sensor networks. IEEE Intelli-
gent Systems 24(2), 13–17 (2009)

13. Sowa, J.: Conceptual graphs. Foundations of Artificial Intelligence 3, 213–237 (2008)
14. Tapia, D., Abraham, A., Corchado, J., Alonso, R.: Agents and ambient intelligence: case stud-

ies. Journal of Ambient Intelligence and Humanized Computing 1(2), 85–93 (2010)

