A Framework for Integrating Heterogeneous Agent Communication Platforms

Andrei Olaru and Adina Magda Florea

cs@andreiolaru.ro

Al-MAS Group

AI-MAS Group, University Politehnica of Bucharest

23.09.2015

. Andrei Olaru and Adina Magda Florea

cs@andreiolaru.ro ACSys Workshop | SYNASC 2015, Timișoara, Romania 23.09.2015

Motivation

Architecture

Routing

Bootstrap

A Framework for Integrating Heterogeneous Agent Communication Platforms

overview

Conclusion

AL-MAS Group

Andrei Olaru and Adina Magda Florea

cs@andreiolaru.ro

 There are currently many MAS development & deployment frameworks to choose from.

 $\cdot \mbox{ E.g. Jade [Bellifemine et al., 2001], JIAC [Lützenberger et al., 2013], Jason [Bordini et al., 2007], Agent Factory [Russell et al., 2011], or XJAF/Siebog [Mitrović et al., 2014]. }$

Choosing a framework likely means restricting the architecture to:

- \cdot a messaging platform (e.g. Jade, JMS, etc);
- · an agent architecture (based on goals, behaviors, logic, etc);
- · [sometimes] a specific AOP language.
- \rightarrow Our target: Create a framework in which agents developed and deployed using different platforms and means of communication are able to co-exist and communicate.

Andrei Olaru and Adina Magda Florea

Example usage: Agents communicating through a wireless sensor network, using specific protocols, are able to send messages to mobile devices that use WebSockets to connect to a local server. A device part of the WebSockets platform coordinates a Wireless Body-Area Network.

- \cdot tATAmI: towards Agent Technologies for Ambient Intelligence
- \cdot The tATAmI project was started together with LIP6

Andrei Olaru and Adina Magda Florea cs@andreiolaru.ro

ACSys Workshop | SYNASC 2015, Timisoara, Romania 23.09.2015

3 / 14

An agent is an autonomous entity with various functionality.

Andrei Olaru and Adina Magda Florea

/ 14 🧧

cs@andreiolaru.ro

An agent component runs inside an agent and implements specific functionality (e.g. messaging).

. Andrei Olaru and Adina Magda Florea

′ 14

- cs@andreiolaru.ro
- . ACSys Workshop | SYNASC 2015, Timişoara, Romania 23.09.2015

A Framework for Integrating Heterogeneous Agent Communication Platforms							
Motivation	Architecture		Routing	Bootstrap	Conclusion		
Motivation	Experience	Elements (1)	Requirements	Inti	roduction		

An agent executes on a machine, or node.

Andrei Olaru and Adina Magda Florea

cs@andreiolaru.ro

A platform instance executes locally on a node to offer platform-specific services. The platform link enables platform-specific components to offer these services to agents.

cs@andreiolaru.ro

Andrei Olaru and Adina Magda Florea

A platform spans multiple machines and offers communication, discovery and mobility services to agents, by means of [platform-specific] components.

cs@andreiolaru.ro

AL-MAS Group

The tATAmI-2 system (or framework) connects all platforms and agents, across multiple machines.

Andrei Olaru and Adina Magda Florea

. cs@andreiolaru.ro

Communication between platforms is done through Frontier Agents, that live on Frontier nodes, and are able to communicate through multiple platforms.

Andrei Olaru and Adina Magda Florea

cs@andreiolaru.ro

- \cdot Nodes:
 - System Central (runs System Management)
 - Platform-Central (run Central* agents)

Al-MAS Group

Frontier (run Frontier agents)

	A Fra	amework fo	or Integrating Heterogeneo	ous Agent Communica	tion Platforms
Motivation	Architecture		Routing	Bootstrap	Conclusion
Motivation	Experience	Elements	Requirements	Int	roduction

press one button to deploy all agents.

- specify the minimal set of parameters in an XML file or at the command line. Configure everything on the system-central node.
- only use the command line and a minimal set of parameters on every node that is not the system center.

ACSys Workshop | SYNASC 2015, Timisoara, Romania 23.09.2015

visualizable

deploy with ease

- flexible platform services
- backwards-compatibility

cs@andreiolaru.ro

deploy with ease

- flexible platform services
- backwards-compatibility

Al-MAS Group

Andrei Olaru and Adina Magda Florea

	A Framework for Integrating Heterogeneous Agent Communication Platform					tion Platforms
	Motivation	Ar	rchitecture	Routing	Bootstrap	Conclusion
-	Motivation	Experience	Elements	Requirements	Intr	oduction
	deploy with ease			· agent code* \perp messaging/mobility platform; *all components except for the messaging component		
				0 0	tion \perp platform use proponent of the agent h n itself)	
► fle>	kible platfor	m services	s ←	imiting the requ	c component that li	·
				•	lementation ⊥ of other componen ndependent of"	ts.
b bar	skwards cor	nnatibility				

backwards-compatibility

AL-MAS Group

cs@andreiolaru.ro

A Framework for Integrating Heterogeneous Agent Communication Platforms							
Motivation	Architecture	Routing	Bootstrap	Conclusion			
Motivation	Experience Elements	Requirements	Inti	roduction			

- deploy with ease
- visualizable
- flexible platform services

Al-MAS Group

backwards-compatibility

full compatibility with tATAmI-2 and partial compatibility with tATAmI-1.

Andrei Olaru and Adina Magda Florea

 in order to use (or to implement) a functionality, an agent uses an agent component (that may be already implemented). Components can be used for communication, mobility, user interface, etc.

Andrei Olaru and Adina Magda Florea

cs@andreiolaru.ro

- in order to use (or to implement) a functionality, an agent uses an agent component (that may be already implemented). Components can be used for communication, mobility, user interface, etc.
- ▶ all components offering similar services implement the same interface. E.g.:

A Framework for Integrating Heterogeneous Agent Communication Platforms Motivation Architecture Routing Bootstrap Conclusion Components Providing Services Architectural Principle

- in order to use (or to implement) a functionality, an agent uses an agent component (that may be already implemented). Components can be used for communication, mobility, user interface, etc.
- ► all components offering similar services implement the same interface. E.g.:
 - for messaging, components implement the methods to send messages and add handlers for incoming messages;

A Framework for Integrating Heterogeneous Agent Communication Platforms Architecture

Components Providing Services

Architectural Principle

- ▶ in order to use (or to implement) a functionality, an agent uses an agent component (that may be already implemented). Components can be used for communication, mobility, user interface, etc.
- all components offering similar services implement the same interface. E.g.:
 - · for messaging, components implement the methods to send messages and add handlers for incoming messages;
 - · for mobility, components implement a method to move the agent to a node with a specified identifier;

ACSys Workshop | SYNASC 2015, Timisoara, Romania 23.09.2015

Components Providing Services

Architectural Principle

- ▶ in order to use (or to implement) a functionality, an agent uses an agent component (that may be already implemented). Components can be used for communication, mobility, user interface, etc.
- all components offering similar services implement the same interface. E.g.:
 - · for messaging, components implement the methods to send messages and add handlers for incoming messages;
 - · for mobility, components implement a method to move the agent to a node with a specified identifier;
 - · for UI, components implement methods for input and output.

Architecture

Architectural Principle

- in order to use (or to implement) a functionality, an agent uses an agent component (that may be already implemented). Components can be used for communication, mobility, user interface, etc.
- ▶ all components offering similar services implement the same interface. E.g.:
 - \cdot for messaging, components implement the methods to send messages and add handlers for incoming messages;
 - \cdot for mobility, components implement a method to move the agent to a node with a specified identifier;
 - $\cdot\,$ for UI, components implement methods for input and output.
- when an agent is loaded on a platform, the platform gives to the agent a reference – the platform link – that components can use.

ACSys Workshop | SYNASC 2015, Timisoara, Romania 23.09.2015

cs@andreiolaru.ro

Architecture

Architectural Principle

- in order to use (or to implement) a functionality, an agent uses an agent component (that may be already implemented). Components can be used for communication, mobility, user interface, etc.
- ▶ all components offering similar services implement the same interface. E.g.:
 - \cdot for messaging, components implement the methods to send messages and add handlers for incoming messages;
 - \cdot for mobility, components implement a method to move the agent to a node with a specified identifier;
 - $\cdot\,$ for UI, components implement methods for input and output.
- when an agent is loaded on a platform, the platform gives to the agent a reference – the platform link – that components can use.
- a platform may also recommend a specific implementation for a certain type of component.

ACSys Workshop | SYNASC 2015, Timisoara, Romania 23.09.2015

cs@andreiolaru.ro

Components Providing Services

Architecture

Architectural Principle

- in order to use (or to implement) a functionality, an agent uses an agent component (that may be already implemented). Components can be used for communication, mobility, user interface, etc.
- ▶ all components offering similar services implement the same interface. E.g.:
 - \cdot for messaging, components implement the methods to send messages and add handlers for incoming messages;
 - \cdot for mobility, components implement a method to move the agent to a node with a specified identifier;
 - $\cdot\,$ for UI, components implement methods for input and output.
- when an agent is loaded on a platform, the platform gives to the agent a reference – the platform link – that components can use.
- a platform may also recommend a specific implementation for a certain type of component.
- such a platform-specific component will use the platform link to communicate with the local platform instance in a specific way.

MAS Group

Andrei Olaru and Adina Magda Florea

<mark>cs@andreiolaru.ro</mark> ACSys Workshop | SYNASC 2015, Timisoara, Romania 23.09.2015

 \cdot Challenge: enable all agents in the system to communicate, even across platforms, based on name only (or on platform name and agent name).

 \cdot Solution: use a System Graph as a structure that contains information about the relations between nodes.

- the System Graph contains Platform-Central nodes, the System Central node, and Frontier Nodes;
- it is built during the bootstrap process, by System Management;
- it is disseminated to all platform-central nodes, by means of frontier nodes, which disseminate it to other frontier nodes or to "smart" nodes.
 updates will be disseminated when frontier agents are added or removed from

cs@andreiolaru.ro

the network.

MAS Group

Andrei Olaru and Adina Magda Florea

· Example:

Andrei Olaru and Adina Magda Florea

cs@andreiolaru.ro

. ACSys Workshop | SYNASC 2015, Timişoara, Romania 23.09.2015

9 / 14

- · From a messaging perspective, a platform can be:
 - "silent" (for backwards compatibility) deployed using tATAmI-2, but contain Frontier Agents; the implementation of the platform remains unchanged. Thanks to Frontier Agents, they will receive messages from the rest of the system, but they are not adapted to send messages to other platforms (they don't understand the concept);
 - "silly" tATAml-2-based implementation, which doesn't use the System Graph. Messages to unknown destinations go to the Central* agent, which sends them in turn to a Frontier Agent on the path to the central node of the other platform;
 - "smart" the platform is able to route messages to various Frontier Agents, using the System Graph received from System Management. These platforms may contain "smart" nodes, which are also able to understand the System Graph and use it to route messages without the help of the Central* agent.

Andrei Olaru and Adina Magda Florea

ACSys Workshop | SYNASC 2015, Timisoara, Romania 23.09.2015

cs@andreiolaru.ro

 \cdot The bootstrap process must ensure that all agents are connected to their platforms and that all platforms are connected in the system.

- · There are 4 phases:
 - 1. on each platform the Platform-Central agent gathers information from the Frontier Agents in the platform;
 - 2. System Management disseminates its platform identifier to everybody else;
 - 3. all Central* agents send information about their platform to System Management;
 - 4. System Management sends the System Graph to all the platforms, which disseminate it internally.
- * Phase 1 can happen simultaneously with phases 2-4.

Al-MAS Group

- scenario file is always the first argument (if any)
- ► -iscentral [main-platform-id] ← is this the System Central node
- ▶ -center IP port other... \leftarrow central node to connect to
- ▶ -here node IP port other... \leftarrow local node info
- ▶ -platformID type settings... \leftarrow name & settings for the platform
- ▶ -platformType settings... \leftarrow settings for the platform
- ▶ -wh width height \leftarrow other local parameters

Al-MAS Group

ACSys Workshop | SYNASC 2015, Timisoara, Romania 23.09.2015

cs@andreiolaru.ro

- scenario file is always the first argument (if any)
- ▶ -iscentral [main-platform-id] \leftarrow is this the System Central node
- ▶ -center IP port other... \leftarrow central node to connect to
- ▶ -here node IP port other... \leftarrow local node info
- ▶ -platformID type settings... \leftarrow name & settings for the platform
- ▶ -platformType settings... ← settings for the platform
- ▶ -wh width height \leftarrow other local parameters

Al-MAS Group

Examples:

tATAmI scenario.xml -center <IP1> -here <IP2>

cs@andreiolaru.ro

- scenario file is always the first argument (if any)
- ▶ -iscentral [main-platform-id] \leftarrow is this the System Central node
- ▶ -center IP port other... \leftarrow central node to connect to
- ▶ -here node IP port other... \leftarrow local node info
- ▶ -platformID type settings... \leftarrow name & settings for the platform
- ▶ -platformType settings... ← settings for the platform
- ► -wh width height ← other local parameters

Al-MAS Group

Examples:

tATAmI scenario.xml -center <IP1> -here <IP2> tATAmI -websockets -center <IP1> -here Node2

cs@andreiolaru.ro

- scenario file is always the first argument (if any)
- ▶ -iscentral [main-platform-id] \leftarrow is this the System Central node
- ▶ -center IP port other... \leftarrow central node to connect to
- ▶ -here node IP port other... \leftarrow local node info
- ▶ -platformID type settings... \leftarrow name & settings for the platform
- ▶ -platformType settings... ← settings for the platform
- ► -wh width height ← other local parameters

AL-MAS Group

Examples:

tATAmI scenario.xml -center <IP1> -here <IP2> tATAmI -websockets -center <IP1> -here Node2 tATAmI -jade1 jade showGUI -here centralNode <IP>

> . <u>Andrei Olaru</u> and Adina Magda Florea . **cs@andreiolaru.ro** . ACSys Workshop | SYNASC 2015, Timisoara, Romania 23.09.2015

 \cdot Scenario XML file – configures platforms, agents and execution:

```
<scen:platform>
<scen:parameter name="name" value="jade1" />
<scen:parameter name="type" value="jade1" />
<scen:parameter name="GUI" value="true" />
<scen:parameter name="localIP" value="centralNode" />
<scen:parameter name="mainContainer" value="centralNode" />
<scen:platform>
<scen:initial><scen:container name="centralNode">
<scen:agent>
<scen:component name="visualizable" />
<scen:parameter name="localer" value="centralNode">
<scen:agent>
<scen:component name="visualizable" />
<scen:component name="nessaging" />
<scen:parameter name="localer" value="composite" />
<scen:parameter name="nessaging" />
<scen:parameter name="nessaging" />
<scen:parameter name="neame" value="composite" />
</scen:parameter name="neame" value="comp
```

AL-MAS Group

- is equivalent to tATAmI -jade1 jade showGUI -here centralNode <IP>

cs@andreiolaru.ro

- In order to avoid the long-term effects of an initial choice of agent framework and messaging platform, it is useful to have a method of deploying agents over multiple platforms in the same system.
- ► The tATAmI-2.5 architecture was presented that supports this, in which agents are able to be deployed on various platforms with no changes. The main features of this architecture are a routing method and a bootstrap process.

- Some changes must be introduced in tATAmI-2 in order to support multiple messaging components per agent, and the improved bootstrap process.
- Testing must be performed to evaluate performance in a strongly heterogeneous setup.

Andrei Olaru and Adina Magda Florea

cs@andreiolaru.ro ACSys Workshop | SYNASC 2015, Timișoara, Romania 23.09.2015

Thank You!

Any Questions?

cs@andreiolaru.ro

Andrei Olaru and Adina Magda Florea

cs@andreiolaru.ro

A Framework for Integrating Heterogeneous Agent Communication Platforms

Baljak, V., Benea, M. T., El Fallah Seghrouchni, A., Herpson, C., Honiden, S., Nguyen, T. T. N., Olaru, A., Shimizu, R., Tei, K., and Toriumi, S. (2012).

S-CLAIM: An agent-based programming language for AmI, a smart-room case study.

In Proceedings of ANT 2012, The 3rd International Conference on Ambient Systems, Networks and Technologies, August 27-29, Niagara Falls, Ontario, Canada, volume 10 of Procedia Computer Science, pages 30–37. Elsevier.

Bellifemine, F., Poggi, A., and Rimassa, G. (2001).

Developing multi-agent systems with JADE. Intelligent Agents VII Agent Theories Architectures and Languages, pages 42–47.

Bordini, R. H., Hübner, J. F., and Wooldridge, M. (2007).

Programming multi-agent systems in AgentSpeak using Jason, volume 8. John Wiley & Sons.

Lützenberger, M., Küster, T., Konnerth, T., Thiele, A., Masuch, N., Heßler, A., Keiser, J., Burkhardt, M., Kaiser, S., and Albayrak, S. (2013).

JIAC V: A MAS framework for industrial applications.

In Proceedings of the 2013 international conference on Autonomous agents and multi-agent systems, pages 1189–1190. International Foundation for Autonomous Agents and Multiagent Systems.

Mitrović, D., Ivanović, M., Vidaković, M., and Budimac, Z. (2014).

Extensible java ee-based agent framework in clustered environments.

In Multiagent System Technologies, pages 202-215. Springer.

Olaru, A. (2015).

tATAmI-2 - a flexible framework for modular agents.

In Dumitrache, I., Florea, A. M., Pop, F., and Dumitrascu, A., editors, <u>Proceedings of AgTAml 2015</u>, the International Workshop on Agent Technology for Ambient Intelligence, the 20th International Conference on Control Systems and Computer Science, May 27-29, Bucharest, Romania, volume 2, pages 703-710. IEEE Computer Society.

Andrei Olaru and Adina Magda Florea

cs@andreiolaru.ro

Olaru, A., Benea, M.-T., El Fallah Seghrouchni, A., and Florea, A. M. (2015).

tATAmI: A platform for the development and deployment of agent-based ami applications. In Shakshuki, E., editor, Proceedings of ANT-2015, the 6th International Conference on Ambient Systems, Networks and Technologies, June 2-5

London, United Kingdom, volume 52 of Procedia Computer Science, pages 476-483, Elsevier,

Russell, S., Jordan, H., O'Hare, G. M., and Collier, R. W. (2011).

Agent factory: a framework for prototyping logic-based AOP languages. In Multiagent System Technologies, pages 125-136, Springer,

AL-MAS Group

Suna, A. and El Fallah Seghrouchni, A. (2004).

Programming mobile intelligent agents: An operational semantics. Web Intelligence and Agent Systems, 5(1):47-67.

cs@andreiolaru.ro

Thank You!

Any Questions?

cs@andreiolaru.ro

Andrei Olaru and Adina Magda Florea

cs@andreiolaru.ro

