
A Framework for Integrating Heterogeneous
Agent Communication Platforms

Andrei Olaru
and Adina Magda Florea

Department of Computer Science
University Politehnica of Bucharest

313 Splaiul Independentei
060042 Bucharest, Romania

Email: cs@andreiolaru.ro

Abstract—1When developing multi-agent systems, the initial
choice of deployment platform has a long-term impact on the
project, as it many times restricts agent architecture, communica-
tion protocols, and available services. The goal of this paper is to
present the architecture of tATAmI-2.5, a framework that is able
to integrate agents deployed using different environments, and
communicating using different communication platforms. This
framework is based on the tATAmI-2 agent development and
deployment framework, which allows agents to be deployed on
various communication platforms without modifying the agent
code. The details of the proposed architecture are presented,
including insights into the bootstrap process and message routing.

I. INTRODUCTION

In the world of multi-agent system applications, the initial
choice of development and / or deployment framework for
agents is crucial. Several popular agent frameworks exist, such
as JADE [1], JIAC [2], Jason [3] (and JaCaMo [4]), Agent
Factory [5], and more. However, the choice of one of these
frameworks for development (we will discuss each in Section
II) has two effects: first, it influences the internal structure of
agents, to match with the specific agent architecture used by
the framework, potentially imposing some agent-oriented pro-
gramming (AOP) language; second, it makes it very difficult
to come back on the decision. Moreover, it is of significant dif-
ficulty to interoperate (i.e. allow the communication between)
agents deployed using different frameworks. The goal of the
presented framework is to reduce the impact of this initial
choice.

In recent years, we have developed, in collaboration with
LIP62 and under the AmIciTy initiative3, the tATAmI agent
framework for developing agent-based Ambient Intelligence
(AmI) applications. In time, tATAmI has progressed from a
PC/Android Jade-based platform for deploying AmI applica-
tions [6], [7], to the tATAmI-2 version [8] that decouples the
agent implementation from the platform offering communica-
tion and mobility services, using a component-based design
that offers a great deal of flexibility in how a developer is
allowed to design the agent.

1The final version of this paper is available on IEEE Xplore at
http://ieeexplore.ieee.org/document/7426110/.

2Laboratoire d’Informatique de Paris 6, University Pierre et Marie Curie.
3http://aimas.cs.pub.ro/amicity

More precisely, tATAmI-24 works with abstractions for the
implementations of platforms, agents, and agent components:
the platform is what offers services such as communication,
directory and mobility; agents are the persistent, autonomous
entities that communicate and move using the services offered
by the platform; agent components (in the case of Composite
Agents – see Section III) isolate various functionalities of the
agent, such as messaging, visual interface or input/output. The
result is that the developer may implement the agent regardless
of how communication will be done (e.g. TCP/IP, WebSockets,
JMS) and the same code can be used for agents while using
different means of communication or directory services. The
component-based design means that existing components can
be added or removed from the agent without modifying any
source code, only configuration files. Of course, a component
offering a particular service can be implemented in various
ways, without changing any other component as a result; for
instance, an agent may switch from a triple-based knowledge
base to a graph-based knowledge base by only changing the
configuration files.

Another goal of tATAmI-2 was ease of deployment. Once
the tATAmI-2 application is started on all machines used in
a system execution, it takes only one click to deploy agents
and initiate the execution, according to the existing XML
configuration file. Monitoring and control of all agents can
be done from a single machine.

One obvious evolution of tATAmI-2, since it can deploy
agents using various communication platforms, but in different
executions, is to be able to deploy agents on various communi-
cation platforms simultaneously, but as part of the same system.
That is, in tATAmI-2.5 we need to be able to have a multi-
agent system in which some agents communicate by means of
TCP/IP in a LAN, some agents (of which one is also in the
LAN) communicate by means of WebSocket connections to
a server, and some agents are deployed on a wireless sensor
network and use OLSR (Optimized Link State Routing) to
connect to a gateway in the LAN.

This framework is motivated by two situations: a developer
may desire to integrate in the same system, with minimal
changes, agents previously designed and deployed using dif-
ferent deployment environments; or a developer may find it

4The code is open source at https://github.com/tATAmI-Project/tATAmI-PC/
tree/tATAmI-2/master .



appropriate to use different types of inter-agent communication
in different parts of the system, e.g. a routing method for a
Wireless Sensor Network and a different method of routing
for agents in a Local Area Network, but in the same larger
system.

This paper details the requirements for an architecture
that integrates heterogeneous agent communication platforms,
presents the design of such an architecture, and presents the
changes that are needed in tATAmI-2 in order to reach the
tATAmI-2.5 version.

A. Framework Requirements

The requirements for an agent framework that supports
agents using different platforms for communication (and other
services, such as directory and mobility) are listed below:

• the user should be able to deploy the system with
ease just by starting the applications on the various
machines (with a minimal number of command line
arguments), and agents should be created and de-
ployed automatically in the required configuration;

◦ a trade-off is allowed for network connection
parameters, that can be either set from the
command line at every execution (quick, but
repetitive) or in a configuration file (slower,
but persistent);

• except for arguments set in the command line, execu-
tions should be easily repeated with the same settings
across the system;

• the user should be able to monitor the state of the
whole system and the logs of all agents in the system
from a single machine; this would be the System
Central machine;

• the implementation of the agents should be ignorant
of the network setup and the communication platforms
in the system. At most, the agent may need to know,
beside the agents it wants to communicate with, the
name (identifier) of the platform on which its corre-
spondent is loaded. If the name of the target agent
is unique across the system, the identifier of its host
platform should be redundant.

• in the particular case of our framework, the architec-
ture and implementation have to be as backwards-
compatible with tATAmI-2 as possible, such that a
node running tATAmI-2 is able to connect in the same
manner to a platform, regardless of the fact that there
are more platforms running in the same system.

B. Framework Summary

In order to fulfill the requirements above, we propose the
tATAmI-2.5 architecture, which draws upon the architecture of
tATAmI-2 [8]. In this architecture, the actual communication
within the multi-agent system is done by platforms, to which
agents have uniform access by means of platform-specific
messaging components. Each agent has a unique name in the
platform and is loaded on at least one platform – for the
purpose of simplicity we consider any normal agent is loaded
on exactly one platform and has a unique identifier across

the platform. Each platform has a unique identifier across the
system, spans across multiple machines, or nodes, and may
have a node which is its center. There may exist, of course,
non-centralized platforms. Any node that is part of at least
two platforms is a frontier machine, on which special Frontier
Agents will execute to help message routing. The system has
a single System Management machine from which the entire
system can be controlled and monitored.

When the execution starts, before agents are created, spe-
cial agents are started on frontier and central machines, and
they communicate in order to establish the topology of the
network and routing and directory data. Subsequently, when
agents from different platforms wish to communicate, the
messages are relayed through frontier agents and are carried
by the platforms that link them.

The next section discusses several popular agent frame-
works and Section III summarizes the features and function-
ality already offered by tATAmI-2. The proposed solution is
detailed in Sections IV to VI. The last section draws the
conclusions.

II. RELATED AGENT FRAMEWORKS

In this section we will present some other popular agent
frameworks [9]. We do not desire to present these platforms in
opposition to our proposed architecture, rather to present how
we could integrate these platforms with tATAmIso that agents
deployed on one platform are able to communicate with agents
deployed on another.

JADE [1] was the base of tATAmI-1 and it was an inspiration
while creating tATAmI-2. It is a powerful and easy to use
agent development and deployment framework that offers
agent management, mobility, and communication for agents
implemented in Java. Jade has already been integrated with
tATAmI-2 by creating an agent wrapper in Jade that contains
a Composite Agent.

JIAC [2] is a production-grade framework for developing
complex agent systems, on both workstations (JIAC-V) and
mobile/embedded devices (microJIAC). It has a focus on indus-
trial applications, by offering features for security, management
and scalability. Like Jade, it is written in Java and agents
are created and managed programmatically. While we have
not attempted this yet, we expect to use techniques similar to
integrated Jade agents in order to integrate JIAC agents.

Jason [3] is based on AgentSpeak and is an AOP language
with its own special syntax to define goals, conditions, and
plans, combining Prolog syntax with its own. Jason does
support multiple deployment environments, one of them being
Jade. It is probably possible to obtain a certain level of
integration without modifying the Jason syntax.

Agent Factory [5], together with its implementation for
mobile devices – Agent Factory Micro Edition [10], includes
flexibility for implementing agents in various programming
languages, but currently contains development kits only for
Jason-based implementations. As with Jason, we expect a
certain level of integration with tATAmIto be possible.

There are not yet many initiatives that deal with inter-
connecting different agent platforms. One very recent project



Figure 1. Representation of the scenario in Section I: three nodes are connected by a LAN communication platform; one of the nodes is also the coordinator
for a mesh wireless sensor network; another node is also the central server for a WebSocket platform.

is Siebog [11] that attempts to connect previous approaches
by the same authors, namely XJAF and Radigost, with a
Jason interpreter and a non-axiomatic logic reasoning system
(DNARS). XJAF (Extensible Java EE-based Agent Frame-
work) [12] is a framework that harnesses the functionality
offered by Java EE enterprise servers for load balancing and
robustness. Radigost [13] is a web-based, HTML5 reliant
solution. While the approach is very interesting the target of
the tATAmI platform is to have as little dependence on systems
that are complex to manage (such as enterprise or application
servers). It is the user’s choice of what method to use to
connect agents.

While this paper does not discuss agent programming
languages, it is worth mentioning that tATAmI also integrates
a parser and execution engine for the S-CLAIM language
[6], a descendant of CLAIM (Computational Language for
Autonomous, Intelligent and Mobile agents) [14].

III. TATAMI-2: FEATURES AND FUNCTIONALITY

There are a few elements that are essential to the tATAmI-2
architecture5. These are the system, the platform, the node, the
agent, and the agent component. It is important to mention
these elements, as the tATAmI-2.5 architecture, which we
present in this paper, uses the same basic elements.

The system is the entire system of platforms which host
agents. In tATAmI-2.5, two agents are part of the same system
if they can communicate between them. The system is respon-
sible for routing messages, potentially across platforms, from
one agent to another. An execution, or run, of the system is
the process that starts with the boostrap, contains the entire
lifecycle of the agents in the system, and ends after all agents
have ended their individual execution.

A platform is an infrastructure that enables various fea-
tures for agents, such as communication or mobility. One
such platform can be Jade. Another may be underpinned by

5Some of these elements have been renamed in the architecture presented
in this paper, so in the description of tATAmI-2 we will use these new names,
for the sake of clarity.

WebSocket communication. And so on. The system manages
the local instance of a platform through an instance of the
PlatformLoader interface. The instance has a name (unique
across the system, and the same for all instances which are
part of the same platform) and has methods to start and
stop the platform, create a node and load an agent. It also
can be queried what implementation it recommends for a
particular component type. For instance, if an agent must
contain a “messaging” component, but does not specify the
exact implementation (via class path), the system loads the
component recommended by, and therefore specific to, the
platform. Abstractly, we can see the platform-specific code
as having two parts – one part that is tied to the node (the
PlatformLoader instance) and one part that is tied to the
agent (the MessagingComponent instance).

A node is a machine that is part of the system. We use
the term both for a machine that is part of the system, and
for the instance of tATAmI that runs on that machine. On one
node there may be one or more platforms running. A node
is characterized by its name. The name of the node must be
unique throughout the system, otherwise platforms containing
it may not be able to join the system.

An agent is characterized by its name. The name of the
agent is unique across the platform on which it is loaded. An
agent resides on a node and on one or multiple platforms. An
agent may move from one node to another executing the same
platform, if the platform supports mobility. Any agent that
is loaded on a platform must implement the AgentManager
interface, which has methods for inquiring the agent’s name,
for starting and stopping the agent, and for passing a link to
the platform to the agent, as an implementation of the marker
interface PlatformLink. The platform link may be used by
platform-specific components to access functionality offered
by the platform.

An agent of a particular type (e.g. composite) is loaded by
an implementation of the AgentLoader interface. An agent
loader is able to pre-load the agent creation data for an agent,
and later, using this creation data, to load the agent and return
an AgentManager instance.



Figure 2. The connection of the various conceptual elements in the tATAmI-2.5 architecture. A tATAmI-2.5 system contains several platforms that span across
multiple nodes (machines). An instance of the PlatformLoader of each platform runs on each node that is part of the platform. Agents run on the nodes
and use messaging components to communicate, via the platform, to which agent has a platform link that the platform-specific messaging component can use.
A Frontier Agent has one messaging component for each of the platforms that contain its node.

A composite agent contains various components that of-
fer specific functionality. Components have access to other
components and to the platform, identifying them by type
or name. For instance, a visualization component is able to
contact the messaging component of the agent, if any, to send
and receive messages. The messaging component, which is
specific to the platform (e.g. agents load a specific class for
using messaging on Jade, according to the recommendations
of the Jade platform loader), is able to contact the platform
in a specific way so as to actually send a message to another
agent. Components are also able to post agent events, which
the agent disseminates to all other components.

IV. SYSTEM ARCHITECTURE

In building an architecture that integrates multiple agent
communication platforms into a single system, we have iden-
tified some essential challenges, for which we will discuss
solutions throughout the paper. These challenges reflect the
ones discussed in previous work discussing tATAmI-2 [8]. The
challenges are as follows:

• a bootstrap process must be designed such that it is
simple to the user to start the system, but all elements
of the system are able to access and gather the infor-
mation they need in order to function normally. This
challenge covers accessing servers (if any), contacting
the other platforms, being able to contact System
Management, and being able to correctly compute
routing data for cross-platform messages.

• routing and addressing methods must be designed such
that messages sent from one agent can reach any other
agent in the system, without the first agent knowing
anything else than the second agent’s identifier (po-
tentially, the host platform of the second agent may
be needed as well).

• means must be designed for the same agent to be
able to send and receive messages using two or

more communication platforms; more precisely, for
the same agent to integrate more than one messaging
component.

A. Elements in the Architecture

The proposed architecture is built upon the tATAmI-2
architecture and therefore includes the elements presented
in Section III, namely system, platform, node, agent and
component (see also Figure 2). While the framework can
work equally well with agents that are not composite, we will
generally consider them to be so. Other implementations may
use only the platform-recommended messaging components,
or may use their own implementation altogether.

As opposed to tATAmI-2, however, the management of
the execution is slightly different. The system is controlled
and monitored by an entity called System Management. It
executes on the System Central node. Although starting up
before any platforms are started, it then loads itself as an agent
on one of the platforms running on the node, as specified by
the execution configuration. System Management displays a
User Interface that allows the user to monitor the system, to
initiate the creation of agents, and to start the system run (or
execution).

Any node on which a single platform is started is a
normal node. Any node on which more platforms are started
is a frontier node and can be used to route messages be-
tween any two of the platforms that execute on the node.
A frontier node will start a Frontier Agent, which has the
particular feature of having one messaging component for
each of the platforms that run on the node. It also features a
FrontierComponent that manages the routing of messages
between platforms. The name of a frontier agent is generated
as Frontier<Platform><ID>, that is, it will contain the
identifier of one of the platforms running on the node (any
of them) and an identifier that is generated by that platform
in such a way that it is unique to the platform, and, as the



identifier of the platform is unique to the system, the result
will be a unique name across the system as well.

Some communication platforms (such as WebSocket, Jade
and many others) use a client-server architecture. In such
platforms, the server must have a public IP address that is
known by all the clients. For such platforms, we will consider
a Central* agent, which runs on the server machine of the
platform. The name of the agent depends on the identifier of
the platform, e.g. for platform LAN-2 the name of the agent
will be CentralLAN-2.

B. The System Graph

The System Graph is a structure that represents how the
nodes (especially frontier and central) of different platforms
are connected. It is used to compute routing information. For
instance, an agent that communicates through WebSockets
must send its message to a Frontier Agent that will use the
LAN to carry the message to another Frontier Agent that is
part of the wireless sensor network.

While routing information (System Graph) could be com-
puted in a completely distributed manner [15], we choose to
do it semi-centralized: the routing information is computed by
System Management, which disseminates it to Central* agents,
which in turn disseminate it to Frontier Agents and smart nodes
in their platforms. We choose the centralized approach for two
reasons: the intention of the tATAmI approach is to benefit from
a centralized manner of controlling and visualizing the system,
therefor there will always exist a central machine for that
purpose; second, a feature of tATAmI is that it boots quickly
– a distributed approach for computing routing information
would converge in a longer time. Only the computation of the
System Graph is centralized, and happens at bootstrap. After
the routing data is disseminated to the platforms, routing is
done in a distributed manner (see also Section VI-A).

We introduce here the notion of “silly” and “smart” nodes.
A “silly” node sends cross-platform messages to its Central
agent, which will route it appropriately. A “smart” node
receives routing information from its platform and uses it
to send cross-platform messages directly to the appropriate
Frontier Agent. The distinction between the two types of nodes
is done by the implementation of the platform, and also by
the implementation running on the node itself. In fact, “silly”
nodes exist for the purpose of compatibility with tATAmI-2
instances.

V. THE BOOTSTRAP PROCESS

The first challenge listed in Section IV relates to the
bootstrap process. The target is that, after the user has started
tATAmI on all nodes, nodes will be ready to route any cross-
platform messages appropriately.

While designing this process (and also the set of command-
line arguments presented in the next section), we have taken
into consideration the following scenarios that may occur:

• a local execution where a communication platform and
all agents run on the same machine;

• a central machine and several nodes run an application
in which all agents use the same communication
platform (the situation in tATAmI-2);

• the central node is the center of two (or more) com-
munication platforms, and nodes in the system use one
of those platforms for communication;

• two (or more) platforms exist in the system, and the
center of each platform is in the network of the other;

• two platforms exist, and there is at least one node that
is part of both platforms;

• several platforms exist, and there are at least two
platforms for which there is no node that is part of
both of them.

The bootstrap process we have designed proceeds as fol-
lows:

1) central machines for all platforms are started, and
Central* agents start as well. The order is not im-
portant;

2) other nodes are started; on nodes that are part of
multiple platforms, Frontier Agents are started; each
Frontier Agent has a list of the platforms it is part
of;

3) Frontier Agents report the elements of the frontier to
the Central* agents for each of the platforms they are
part of; if it is made available by the platform, some
indication of distance to the network center is also
sent, to help compute the System Graph;

4) System Management disseminates the name of the
platform where System Management can be found to
all Frontier Agents in the platform;

5) Frontier Agents disseminate this information to their
other Central* agents, which disseminate the infor-
mation, in turn, to other frontiers, so that all Central*
agents know on which platform runs System Man-
agement;

6) Central* agents send back local network information
(frontier data) to System Management;

7) System Management computes the complete system
graph and sends it to Central* agents;

8) Central* agents send routing data to Frontier Agents
and individual “smart” nodes;

9) as more frontier nodes are started, Central* agents
send updated network information to System Man-
agement, which updates the complete system graph;
updates are only sent at larger intervals (e.g. 500ms,
1s, 2s);

10) the connected platforms are shown in the System
Management UI so that the user can evaluate if
enough of the system is visible.

A special case arises when a Central* agent is in the
network of another platform. In this case, it will present itself
as having the capabilities of Frontier Agents as well, and it
can be contacted directly to route messages to its platform.

In the protocol above an error can arise if two platforms
with the same identifier join the system. The second platform
to do so (and any subsequent one) will receive a message that
it can’t be integrated in the system and all frontier agents that
link it to the system will be informed to drop any connection to
it. This will lead to a notification to the user, but the platform
may continue to run on its own.



Figure 3. The system graph corresponding to the scenario presented in Section I and in Figure 1.

The initial process of computing routing data can be
summarized in 4 phases:

1) on each platform the Central* agent gathers informa-
tion from the Frontier Agents in the platform;

2) System Management disseminates its platform to
everybody else;

3) all Central* agents send information about their plat-
form to System Management;

4) System Management sends the System Graph to all
the platforms, which disseminate it internally.

Phase 1 can happen simultaneously with phases 2-4. In the
entire process, messages must go from the center of the system
to the platforms, then back, and then back again.

A. Booting Quickly

In order to ensure an effortless experience for the user,
starting up the system should be as easy as possible. Since the
application must be started on each of the nodes in the system
(except when some other remote solution exists), the settings
for each instance should be as simple as possible, using simple
commands for simple applications. It is important to note that,
given the variety of possible scenarios (some of which have
been enumerated at the beginning of this section), designing a
minimal set of arguments may be challenging.

To start the application from the command line, space-
separated arguments are used.

The scenario file (see the next Section) must be specified
as the first argument. Beside specifying node and agent data,
it may also specify network connection data.

The rest of the argument list can be split into sub-lists,
such that each list starts with an argument beginning with a
dash. Each sub-list is considered as being a specific setting.
The following settings are supported:

• -iscentral [main-platform-id]
Specifies that the current node is the node where

System Management will run; if followed by an ar-
gument in the same list, the argument specifies the
identifier of the platform that will load the System
Management agent; otherwise, an arbitrary platform
will be used, if more are started on this node;

• -center IP port other...
If the default communication platform is used (or

it is specified in the scenario file), this setting gives
the connection information for the Central machine

of the platform; it is not mandatory that an IP is
used, as the settings will be passed directly to the
PlatformLoader instance;

• -here node IP port other...
If the default communication platform is used

(or it is specified in the scenario file), this setting
indicates connection information related to the current
node. It must start with the name of the current node,
optionally followed by local IP address and port, and
potentially other settings;

• -platformID type settings...
This setting specifies a platform to be started on

the current node. The settings of the platform may
contain the address and port of its central node (all
settings are passed to the PlatformLoader instance).

• -platformType settings...
This form is an alternative to the setting above,

where the user only specifies the type of the platform,
and its identifier will be the same as the type.

• -wh width height
This setting specifies the width and the height of

the surface on the screen to be used for the UI of the
system and the agents. Other local settings may be
created in a similar fashion.

Setting the platform using the arguments described above,
it is very easy for a user to start tATAmI. For example, starting
a (non-central) node by specifying only the local and remote IP
(as may be needed when using Jade) is done with the command

tATAmI scenario.xml -center <IP1> -here <IP2>

Similarly, when working without a local scenario file and
using a platform that does not use the local IP (such as
WebSockets), one may run tATAmI like this:

tATAmI -websockets -center <IP1> -here Node2

B. Booting in a Repeatable Manner

While it is very good to have command line arguments
that enable the user to specify settings for an execution at
a particular moment of time, repeatability of experiments
can only be ensured through persistent files describing the
execution.

We have already discussed and presented the concepts
behind scenario files in the past [8]. A scenario file is an XML



file that completely describes the execution of the local node
and potentially the agents to deploy on other nodes.

In order to adapt scenario files to working with multiple
platforms, it is necessary to be able to insert in the scenario
multiple nodes describing the platforms to start locally. Each
platform-central node will have several parameters which are
key-value pairs. In these pairs the user is able to configure the
platform completely: specify its name, type, central connection
settings, local connection settings, and so on.

VI. PLATFORM SERVICES ACROSS A MULTI-PLATFORM
SYSTEM

While creating the tATAmI-2.5 architecture so as to support
multiple communication platforms deployed simultaneously,
messaging was one of the central issues. More precisely, two
challenges were identified:

• how to be able to deliver a message sent from an agent
using one communication platform to an agent using
a different one?

• how to handle messaging in such a way that agents
can be ignorant of what platform(s) is/are used in the
system, including of the platform that the agent itself
is loaded on.

For the second challenge, part of the problem has already
been solved in tATAmI-2. A component (or some other part, if
the agent is not a Composite Agent) can send a message by
calling a method in the agent’s MessagingComponent (which
may be platform-specific, but always has the same API), and
specifying the source endpoint, the target endpoint, and the
content of the message. Endpoints are formed of the address of
the agent (which is used only inside the messaging component,
and may therefore be platform-specific) and optionally an
’internal path’ that indicates the component or the functionality
of the agent which is addressed. The address of the agent is
ideally the agent’s name.

If the target agent is in a different platform than the sender
agent, there are two possibilities: either there is (or may be)
another agent with the same address somewhere else in the
system, or there is only one agent in the system with that
name. In the first case, the MessagingComponent API must
be modified in order to support specifying the identifier of the
target platform.

In the second case, it is the system that must determine the
platform to send the message to. This can be done by keeping
a list of agents in the System Management agent. This also
ensures that it is clear if an agent name is used just once
or more times across the system. For increased performance,
platform-central nodes my also keep (partial) lists of agent
names (e.g. caches).

A. Message Routing

As presented in Section V, routing information is created
as the system starts, before any user-created agents are started.
Routing data consists of the System Graph (see Section IV-B),
which is the graph of direct links between central nodes and
frontier nodes. If a frontier node is simultaneously a central
node, a single node will be used in the graph that will contain

both these features. System Management is able to process the
graph in order to remove frontier nodes that are not necessary.

Routing data is contained in central, frontier, and “smart”
nodes. According to the routing data, agents are able to pre-
compute which is the frontier agent that is best to contact for
each other platform in the system. When a message must be
routed for that platform, the next hop is already determined.

For backwards compatibility, we will consider three cases
for platforms that join the system:

• “silent” platforms are platforms that are deployed us-
ing tATAmI-2, but contain Frontier Agents, but whose
architecture remains unchanged. Thanks to Frontier
Agents, they will receive messages from the rest of
the system, but they are not adapted to send messages
to other platforms (they don’t understand the concept);

• “silly” platforms use a tATAmI-2-based implementa-
tion, which don’t use the System Graph. All messages
(or just messages to unknown destinations) go to
the Central* agent, which sends them in turn to the
appropriate Frontier Agent. For a minimal number of
modifications, all messages to one platform will go to
the same Frontier Agent (no smart routing);

• “smart” platforms are able to route messages to vari-
ous Frontier Agents, using the System Graph received
from System Management. These platforms may con-
tain “smart” nodes, which are also able to understand
the System Graph and use it to route messages without
the help of the Central* agent.

There is one more issue that must be addressed in mod-
ifying tATAmI-2 to support multiple messaging platforms.
Namely, each frontier agent must be able to communicate
using any of two or more platforms, at any time. While this
is possible to implement in tATAmI-2 using multiple agents
for each frontier node (one agent per platform) and having the
agents communicate between them locally “out of platform”,
this is cumbersome and unnecessary. tATAmI-2 can be modified
to support multiple messaging components in the same agent.
In this case, other components will either need to specify which
messaging component they want to use, or use one of the
available components by default.

VII. CONCLUSION AND FUTURE WORK

Being able to deploy a multi-agent system in which differ-
ent sets of agents communicate using different communication
platforms can be a decisive advantage an agent development
and deployment. With such a framework, the user is able to
choose the most appropriate platform for every part of the
system, or is able to integrate, within the same system, agents
that are deployed using different communication platforms.

This paper presents the architecture and design details for
the tATAmI-2.5 framework, which allows the integration of
different agent communication platforms. Insights are given
into how the system should be started, into the bootstrap
process, and into the routing mechanism.

As future work it is required that this architecture is real-
ized, integrated into the existing implementation, and improved



in order to be deployable for research applications, at the
beginning, and later for production applications.

ACKNOWLEDGMENT

The work has been funded by the Sectoral Operational
Programme Human Resources Development 2007-2013 of the
Ministry of European Funds through the Financial Agreement
POSDRU/159/1.5/S/134398.

REFERENCES

[1] F. Bellifemine, A. Poggi, and G. Rimassa, “Developing multi-agent sys-
tems with JADE,” Intelligent Agents VII Agent Theories Architectures
and Languages, pp. 42–47, 2001.

[2] M. Lützenberger, T. Küster, T. Konnerth, A. Thiele, N. Masuch,
A. Heßler, J. Keiser, M. Burkhardt, S. Kaiser, and S. Albayrak, “JIAC
V: A MAS framework for industrial applications,” in Proceedings of
the 2013 international conference on Autonomous agents and multi-
agent systems. International Foundation for Autonomous Agents and
Multiagent Systems, 2013, pp. 1189–1190.

[3] R. H. Bordini, J. F. Hübner, and M. Wooldridge, Programming multi-
agent systems in AgentSpeak using Jason. John Wiley & Sons, 2007,
vol. 8.

[4] O. Boissier, R. H. Bordini, J. F. Hübner, A. Ricci, and A. Santi, “Multi-
agent oriented programming with JaCaMo,” Science of Computer Pro-
gramming, vol. 78, no. 6, pp. 747–761, 2013.

[5] S. Russell, H. Jordan, G. M. O’Hare, and R. W. Collier, “Agent factory:
a framework for prototyping logic-based AOP languages,” in Multiagent
System Technologies. Springer, 2011, pp. 125–136.

[6] V. Baljak, M. T. Benea, A. El Fallah Seghrouchni, C. Herpson,
S. Honiden, T. T. N. Nguyen, A. Olaru, R. Shimizu, K. Tei,
and S. Toriumi, “S-CLAIM: An agent-based programming language
for AmI, a smart-room case study,” in Proceedings of ANT 2012,
The 3rd International Conference on Ambient Systems, Networks
and Technologies, August 27-29, Niagara Falls, Ontario, Canada,
ser. Procedia Computer Science, vol. 10. Elsevier, 2012, pp. 30–
37. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1877050912003651

[7] A. Olaru, M.-T. Benea, A. El Fallah Seghrouchni, and A. M.
Florea, “tATAmI: A platform for the development and deployment
of agent-based ami applications,” in Proceedings of ANT-2015, the
6th International Conference on Ambient Systems, Networks and
Technologies, June 2-5, London, United Kingdom, ser. Procedia
Computer Science, E. Shakshuki, Ed., vol. 52. Elsevier, June
2015, pp. 476–483. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1877050915008182

[8] A. Olaru, “tATAmI-2 – a flexible framework for modular agents,”
in Proceedings of AgTAmI 2015, the International Workshop on
Agent Technology for Ambient Intelligence, the 20th International
Conference on Control Systems and Computer Science, May 27-
29, Bucharest, Romania, I. Dumitrache, A. M. Florea, F. Pop,
and A. Dumitrascu, Eds., vol. 2. IEEE Computer Society, May
2015, pp. 703–710. [Online]. Available: http://ieeexplore.ieee.org/xpl/
articleDetails.jsp?arnumber=7168503

[9] C. Bădică, Z. Budimac, H.-D. Burkhard, and M. Ivanović, “Software
agents: Languages, tools, platforms,” Computer Science and Informa-
tion Systems, vol. 8, no. 2, pp. 255–298, 2011.

[10] C. Muldoon, G. M. P. O’Hare, R. W. Collier, and M. J. O’Grady, “Agent
factory micro edition: A framework for ambient applications,” in Pro-
ceedings of ICCS 2006, 6th International Conference on Computational
Science, Reading, UK, May 28-31, ser. Lecture Notes in Computer
Science, V. N. Alexandrov, G. D. van Albada, P. M. A. Sloot, and
J. Dongarra, Eds., vol. 3993. Springer, 2006, pp. 727–734.

[11] “Siebog: An enterprise-scale multiagent middleware,” visited august
2015. [Online]. Available: https://github.com/gcvt/siebog

[12] D. Mitrović, M. Ivanović, M. Vidaković, and Z. Budimac, “Extensible
java ee-based agent framework in clustered environments,” in Multia-
gent System Technologies. Springer, 2014, pp. 202–215.

[13] D. Mitrović, M. Ivanović, Z. Budimac, and M. Vidaković, “Radigost:
Interoperable web-based multi-agent platform,” Journal of Systems and
Software, vol. 90, pp. 167–178, 2014.

[14] A. Suna and A. El Fallah-Seghrouchni, “A mobile agents platform:
architecture, mobility and security elements,” in Programming Multi-
Agent Systems. Springer, 2005, pp. 126–146.

[15] G. R. Andrews, Concurrent programming: principles and practice.
Benjamin/Cummings Publishing Company, 1991.


