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Abstract. The paper presents a visual language that can help users of
a context-aware application represent the current situation, or situations
they wish detected, in a language that is both formally defined, and
readable and understandable by humans and machines alike. Inspired
from Regular Expressions, the concept of Extended Concept Pattern
provides both conciseness and expressive power, allowing for specifying
negation, and for indicating repeating or alternative structures.
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1 Introduction

Context-aware applications [11] are gaining a great deal of traction today, as the
use of context data enables an application to appear to the user as smart and
useful, its actions making sense in the current situation [5,1]. Currently, however,
context-awareness is (a) programmed and, more than that, (b) pre-programmed
in the applications. Let us explain.

First, context-aware actions or rules are usually embedded in the code of
the application, and when they are not, they are represented in a language
that is machine-oriented and understandable only by programmers, rather than
readable by the user of the application. Second, the user is unable to change
the behavior of the context-aware application, such that in some situations the
application reacts differently than pre-programmed, but closer to the desires of
the user. In part, this is because the user is generally unable to easily understand
and modify the context-aware behavior of the application.

This paper introduces a visual language for the representation of context-
based behavior. It allows the user to work with the representation of context
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and to express situations that should be detected and actions that should be
taken. The constructs offered by the language offer features of increasing com-
plexity, which correspond to an increasing formal preparation that is required
to understand how they work. However, usage at lower level should be available
to the great majority of users.

The language that we present in this paper is that of Extended Context Pat-
terns. It uses as background the formal representations of Context Graphs and
Context Patterns, which have been introduced in previous work to represent the
current situation of the user and situations that are desired to be detected [10].
An Extended Context Pattern allows a developer or a user to better understand,
use and modify the representation of a situation.

The formalism of Extended Context Patterns is related to the textual linear
graph representation that we have previously developed, and improves Context
Patterns by giving them more expressive power and making them easier to use.
Taking inspiration from Regular Expressions, Extended Context Patterns in-
clude operators such as transitive closure, alternation, and negation, increasing
their power of representation.

Throughout the paper, we will use the following running example: Joe has
an elderly mother, Emily, who lives alone. Emily is part of an Ambient Assisted
Living (AAL) program. She wears a bracelet that can detect falls and report
Emily’s location. Emily is also assisted by Nurse Jane, a professional carer who
cares for several other people. Joe is somewhat familiar with computers, so he
is able to set up some action patterns which are specific to Emily’s case. These
are used by the AAL system to help Jane in her activity. One of the main issues
in this scenario is to know who is the emergency contact in the case in which a
fall is detected.

The next section presents some research related to ours. Existing definitions
and previously developed concepts are presented in Section 3, helping the def-
inition of Extended Context Patterns in Section 4. The paper ends with the
conclusion and future perspectives.

2 Related Work

There are currently several proposals that intend to deal with the representation
of context and situations in a formal manner. Generally they rely on graph
theory, and enhance the representation with various types of tags and special
kinds of relations.

Bearing a high degree of relation with the formalism of Context Graphs and
Patterns, semantic networks [15], concept maps [8] and Sowa’s conceptual graphs
[14] are directed graphs representing concepts and relations between concepts.
One of their main advantages is their property of being graphically displayed,
helping understanding of what they express. Conceptual Graphs, in particular,
allow expressing any logical formula as a hypergraph. While semantic networks
lack some power of expression, which conceptual graphs have, both lack an intu-
itive mechanism of expressing partially-defined situations. Moreover, these for-



malisms are not particularly focused on, or appropriate for, the representation
of a user’s focus and context.

Triples and RDF graphs [7] are easier to use for machines, especially from
the point of view of internal representation and disambiguation. However, RDF
is difficult to read and write for a user directly, due to the need to use URLs and
to repeat the reference to concepts for every relation. Situations recognition can
be done by means of SPARQL rules, which however would be difficult to work
with by humans. [13]

Some context-focused representations, such as CML (see [12]), use a graphical
representation together with a machine-readable XML file which is not adequate
for use by humans without assistance from an advanced editor or IDE.

Related to this work are also several methods and tools that have been devel-
oped by the authors in previous research. The representation of Context Graphs
and Patterns benefits from a visual representation, and also from a basic text
representation [9]. More importantly, a matching algorithm has been devised
that allows matching context patterns against graphs with very good results
for the problem at hand. A platform has also been designed that improves the
performance of matching, in the case where the graph evolves over time, and a
library of patterns is matched against the same graph.

3 Prerequisites

While there are many definitions of context, we look at two of them in partic-
ular. The original definition given by Dey et al was that the context contains
any element that is relevant to the interaction between the user and the appli-
cation [4]. Practically, it may extend to the entire current situation of the user.
Context elements could in theory be categorized into several categories, such
as elements of spatial, temporal, social, or computational context [3], without
ignoring activity context [6]. Another definition that is relevant to our approach
is the one given by Brézillion et al, comparing context to the dressing of a focus
– the context is everything that is related to the current focus of the user [2]. A
context-aware application is one that has access to all these elements and uses
them in order to provide an improved and more intelligent response to the user.

All the elements that are part of the context need a representation. Context-
aware behavior is defined by reactions to particular features in the context of
the user. Therefore a representation is also needed for the situations that need
action to be taken. Such an action may be a notification, a rational inference,
or provision of certain information to the user (as does, for instance, the Google
Now1 service). Such representations could be offered by Context Graphs and
Context Patterns, respectively.



(a) (b)

Fig. 1. (a) A Context Pattern showing who should the carer contact in case of an emer-
gency: the administrator of the building where the user is located. The administers
edge is required for a match to be considered (the edge is characteristic). (b) A more
complex pattern, containing both characteristic (in bold) and actionable (marked with
a circle) edges. The pattern states that when the bracelet is worn by the user and it de-
tects a fall, the carer who attends the user must be prompted to contact the emergency
contact for the user.

3.1 Context Graphs and Patterns

We have introduced Context Graphs and a basic version of Context Patterns in
previous work [9]. A Context Graph is a representation for the current context of
the user. It contains a large number of elements, some of which can be categorized
as part of the spatial, temporal, computational, social, or activity context. We
mainly consider context as a set of elements that are in some relation with the
user and the user’s current situation, therefore any association can be integrated,
not only the categories mentioned before.

Formally, the Context Graph of an agent A is a graph CGA. Considering a
global set of Concepts (strings or URIs) and a global set of Relations (strings,
URIs or the empty string λ, for unnamed relations), the graph is defined as:

CGA = (V,E), where V ⊆ Concepts and

E = { (from, to, value, persistence) | from, to ∈ V, value ∈ Relations}
The persistence feature of edges allows for them to expire after a certain

time, set when they are created.

In order to detect relevant information, or to find potential problems, an
agent has a set of Context Patterns that it matches against graph CGA. These
patterns describe situations that are relevant to its activity. A pattern with the
identifier s is defined by a graph2 GP

s :

GP
s = (V P

s , E
P
s ), where V P

s ⊆ Concepts ∪ {?} and

EP
s = { (from, to, value, c, a) | from, to ∈ V P

s , value ∈ Relations ∪ {λ}}
We call nodes labeled with a question mark generic nodes. An example of a

context pattern is shown in Figure 1(a). It shows that the emergency contact for
a user that is in a building is the administrator of that building. Each edge has

1 https://www.google.com/landing/now/#whatisit
2 We will use the “ P ” superscript to mark structures that support generic elements,

such as generic nodes.



two features – characteristic and actionable – showing if a particular edge is ab-
solutely necessary for considering a partial match; and if an edge can be inferred
(or actioned upon) in case of a partial match3. For instance, the administers
relation is required to exist for the pattern in Figure 1(a) to be considered.

A more complex example of a Context Pattern is shown in Figure 1(b). It
contains 2 characteristic edges, that could not be inferred even if the rest of the
pattern matches. It also contains an actionable edge: if the rest of the pattern
matches with the Context Graph, the Carer will be prompted to contact the
person or organization that is resolved to be the emergency contact. How this
can be done is shown in the subsequent examples.

By matching a pattern from the agent’s set of patterns against the agent’s
context graph, an agent is able to detect interesting information and is able to
decide on appropriate action to take. We have previously developed an efficient
algorithm for such matching [9].

The pattern GP
s matches the subgraph G′A = (V ′, E′), iff there exists an

injective function fv : V P
s −→ V ′, so that the following conditions are met simul-

taneously:

(1) ∀vP ∈ V P
s , v

P =? or vP = f(vP ) (same value)

(2a) ∀(vPi , vPj , rel) ∈ EP
s , (f(vPi ), f(vPj ), value) ∈ E′, value ∈ {rel, λ}

(2b) ∀(vPi , vPj , λ) ∈ EP
s ,∃value ∈ Relations, (f(vPi ), (vPj ), value) ∈ E′

That is, every non-generic vertex in the pattern has the same label as a
different vertex from G′A (fv is injective), and every edge in the pattern matches
(same label for the edge and vertices) an edge from G′A. The subgraph G′ should
be minimal (no edges that are not matched by edges in the pattern). One pattern
may match various subgraphs of the context graph. A pattern GP

s partially
matches with k missing edges (k-matches) a subgraph G′ of G, if conditions
(2) above are fulfilled for ms − k edges in EP

s , k ∈ {1..ms − 1}, ms = ||EP
s ||

and G′ remains connected and minimal. Partial matches are useful because,
depending on a set threshold for k, they indicate cases where action may be
taken automatically, to create the missing edges, or notifications may be sent
[10].

4 Extended Context Patterns

In order to improve the power of expression held by Context Patterns, the origi-
nal concept needed to be amended, in order to accommodate the specification of
subgraphs with negative character, as well as the operations of alternation and
repetition. The result is the Extended Context Pattern.

An Extended Context Pattern with the name s is defined as

PE
s = (HPE

s , E¬s , E
(∗)
s , E

|
s),

3 Both the characteristic and the actionable features can be numeric instead of
boolean, in the interval [0, 1]. For simplicity, we will consider them boolean in this
work.



Fig. 2. Example of a hyperedge, represented as an enclosure of a part of the graph.
The inbound arity and the outbound arity of the hyperedge are both equal to 1.

where HPE
s = (V P

s , E
PE
s ) is the hypergraph underpinning the extended pat-

tern, and E¬s , E
(∗)
s and E

|
s are three sets4 containing information on negative,

repetition and alternation hyperedges, respectively. We will use the notation
“PE” for structures that include hypergraph elements used for extended pattern.

In fact, we only allow HPE
s some limited structural differences from a normal

graph pattern GP
s . Any edge in the hypergraph is either part of one of the three

hyperedge sets, or is a binary, directed edge in the graph pattern.

All three types of hyperedges contained in HPE
s indicate, in fact, subgraphs

of HPE
s with particular properties. A hyperedge ePE

i ∈ EPE
s covers an induced

subgraph HPE
si = (V P

si , E
PE
si ), with

V P
si = ePE

i ⊆ V P
s and

EP
si = {ePE | ePE ⊆ ePE

i }
It is mandatory that any hyperedge ePE

i that intersects another hyperedge

ePE
j is either completely included in ePE

j or completely includes ePE
j , and that

no two hyperedges cover the same subgraph. That is,

∀ ePE
i , ePE

j ∈ EPE
s . ePE

i ∩ ePE
j 6= ∅ ⇒ ePE

i ⊂ ePE
j ∨ ePE

j ⊂ ePE
i .

There may exist, however, some binary, directed edges that have one end
inside the graph covered by ePE

i and one end outside it. We call these edges

arity edges, and they can be inbound or outbound. For a hyperedge ePE
i of the

extended graph pattern, the set of arity edges is defined as H̄si, with:

H̄si = H-insi ∪H-outsi
H-insi = {e | e = (vPk , v

P
l ) ∈ EPE

s , vPk /∈ ePE
i , vPl ∈ e

PE
i }

H-outsi = {e | e = (vPk , v
P
l ) ∈ EPE

s , vPk ∈ e
PE
i , vPl /∈ ePE

i }
The pattern-arity of a hyperedge ePE

i is the number of arity edges that it has,
that is ||H̄si||. We can define the inbound pattern-arity of the hyperedge and its
outbound pattern-arity.

For instance, Figure 2 shows a graph pattern that contains a hyperedge. The
hyperedge covers a graph formed of a single node (Building) and no edges, and
having one inbound arity edge and one outbound arity edge, amounting to a
pattern-arity of 2.

4 the names of the tree sets are read as “E-neg”, “E-star”, and “E-or”.



(a) (b)

Fig. 3. (a) An example of a negative hyperedge in a graph pattern specifying a place
which is not a building. (b) An example of a pattern containing a repetition hyperedge
which may match a longer path of spatial inclusion.

Hyperedges in an extended context pattern do not directly take part in the
matching process (i.e. no matching hyperedges are searched for in the context
graph), but rather influence how the matching is done.

A negation hyperedge e¬ ∈ E¬s ⊂ EPE
s , e¬ ⊆ V P

s covers a subgraph of the
context pattern that should not be matched in the context graph, in order to
obtain a match of the pattern. Opposite from other edges in the pattern, any
edges that are contained in the graph covered by the negation hyperedge and
that are matched with edges in the context graph, increase the k number of the
match.

For example, Figure 3(a) shows an example of a negative hyperedge in a graph
pattern. The pattern matches a node which is a place but is not a building.

A repetition hyperedge e
(∗)
i ∈ EPE

s is part of a tuple

(e
(∗)
i , vPin, v

P
out, ein, eout) ∈ E

(∗)
s ,

with vPin, v
P
out ∈ e

(∗)
i , with ein an arity edge of e

(∗)
i that is incident to vPin and

eout an arity edge of e
(∗)
i that is outgoing from vPout.

The last element of the tuple – eout – is optional. If an out edge is specified,
the repetition is binary, otherwise it is unary. A unary repetition hyperedge must
have an inbound pattern-arity of at least 1; a binary repetition hyperedge must
also have an outbound pattern-arity of at least 1.

In the matching process, the repetition hyperedge acts as a Kleene-star oper-
ation on its subgraph. Consider that ein = (vPa , v

P
in) and, if any, eout = (vPout, v

P
b ).

The subgraph covered by a unary repetition hyperedge will match the context
graph if:

(1) the context graph contains no subgraph matching Hsi, or
(2) the context graph (V,E) contains a sequence of n matches of Hsi, n ≥ 1,

in which vPa is matched to va ∈ V , vPin is matched to vertices v
(k)
in ∈ V and vPout is

matched to vertices v
(k)
out ∈ V , with k = 0, n− 1. Then, there must exist an edge

(va, v
(0)
in ) matching ein, and a series of n − 1 edges (v

(k)
out, v

(k+1)
in ), k = 0, n− 2,

also matching ein.
The subgraph covered by a binary repetition hyperedge will match the con-

text graph if:



Fig. 4. An example of a pattern containing, among others, an alternation hyperedge.

(1) the context graph contains no subgraph matching Hsi, but contains an
edge (va, vb) matching eout, with va matching vPa and vb matching vPb ; or,

(2) the context graph contains a sequence of n matches of Hsi, n ≥ 1, in
which vPa is matched to va ∈ V , vPb is matched to vb ∈ V , vPin is matched to

vertices v
(k)
in ∈ V and vPout is matched to vertices v

(k)
out ∈ V , with k = 0, n− 1.

Then, there must exist an edge (va, v
(0)
in ) matching ein, a series of n − 1 edges

(v
(k)
out, v

(k+1)
in ), k = 0, n− 2, also matching ein, and an edge (v

(n−1)
out , vb) matching

eout.

For example, Figure 3(b) shows a pattern that serves to determine the emer-
gency contact in the case in which the assisted user is inside a building. The
building may have a hierarchy of places (floors, areas, rooms, etc), but only the
top node of the hierarchy is a building and has an administrator. This pattern
matches any such case.

The formalism may be extended to support the case in which edges between
the matches may be different (have a different label) from the edge entering the
first match.

An alternation operation is characterized by a set of hyperedges with sets
of arity edges that are identical from the point of view of direction, label, and
adjacent vertex outside of the hyperedge:

alternation ∈ E|s with alternation ⊆ EPE
s , each alternation characterized by

two sets:

– in-set = {(vPa , label) | vPa ∈ V P
s \

⋃
ei∈alternation

V P
si }, the set of sources and

labels for arity edges going towards the hyperedge, such that

∀e|i ∈ alternation . ∀(v, u, label) ∈ H-insi . (v, label) ∈ in-set; and

– out-set = {(label, vPb ) | vPb ∈ V P
s \

⋃
ei∈alternation

V P
si }, the set of destinations

and labels for arity edges going towards the hyperedge, such that ∀e|i ∈
alternation . ∀(v, u, label) ∈ H-outsi . (u, label) ∈ out-set.



(a) (b) (c)

Fig. 5. (a) A simple statement. (b) A simple user-configured pattern. (c) A pattern
specific to Emily’s case: if Emily does not wear the bracelet, Joe should contact her
neighbor Lily.

The alternation set matches a subgraph of the context graph if the subgraph
covered by one of the hyperedges in the alternation correctly matches, as part
of the pattern.

The example in Figure 4 builds upon previous examples to show a pattern
that helps determine the emergency contact in the case when the assisted user
is in an exterior area (not in a building). In this case, the emergency contact is
the police or fire department that covers an area which includes the area where
the user is located.

5 Discussion

Let us look again at the example of Joe and his mother Emily, who is part of
an AAL program. Some of the patterns that could be used by a context-aware
AAL application have been presented above. They are patterns that show what
should happen if a fall is detected, and who is the emergency contact, depending
on the context of the user. Such patterns are complex and we cannot expect
them to be implemented by normal users. But they are general enough to be
already created by developers. Joe can, however, understand what the patterns
mean, as the graphical representation is much easier to cope with than other
types of representations. Being able to understand why the system chooses to
perform an action makes it more acceptable and more dependable.

While a normal user would be unable to create complex patterns, one would
surely be able to create simpler ones. For instance, Joe may want to write down
that it is Nurse Jane that attends Emily. This can be done by means of a simple
graph edge such as the one in Figure 5(a). When Joe understands the system
better, he may event insert some patterns, such as the one in Figure 5(b), stating
that any of Emily’s neighbors can be considered an emergency contact. A more
complex user-configured pattern is presented in Figure 5(c). Joe may wish to
be prompted to contact Emily’s neighbor, Lily, in the case when Emily is not
wearing her bracelet (and therefore the AAL system would not have information
about Emily’s state or whereabouts).



6 Conclusion and Perspectives

This paper presents the visual language of Extended Context Patterns, which
builds on the previously developed formalisms for Context Graphs and Context
Patterns. Extended Context Patterns allow for the specification of negation, on
the one hand, and of variable structures such as repetition and alternatives.

As future work, the matching algorithm must be extended in order to account
for the new features of extended context patterns, however the nature of the
matching algorithm makes it easy to be adapted to these changes.

Further, the language will be integrated with the tATAmI-2 multi-agent sys-
tems for ambient intelligent applications.
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