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Thèse dirigée par
Amal El Fallah Seghrouchni et

Adina Magda Florea
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Abstract

Ambient Intelligence is the vision of a ubiquitous electronic environment that
is non-intrusive, but also pro-active, and that helps people in a personalized
and context-aware manner, in their day-to-day tasks. Most implementations
of Ambient Intelligence systems realized over the last decade have focused
on implementing complete systems that serve specific purposes. In our work
we focus on that layer of an AmI system that handles the semantic-aware
exchange of information in order to deliver the relevant information to the
interested user.

This thesis presents the research towards the realization of a multi-agent sys-
tem for Ambient Intelligence, that assures the context-aware flow of informa-
tion, and in which context-awareness is integrated so that agents naturally
manage and share context information, in a generic manner. Our approach
to building a context-aware multi-agent system for Ambient Intelligence relies
on three aspects: a graph-based representation of context information, that
is coupled with the definition of context patterns for situation recognition; a
context-related topology of the system, in which neighborhood relations reflect
the existence of shared context between agents; and a local agent behavior that
is based on mechanisms of self-organization in order to provide coherent global
results.

The theoretical research that is presented in this work has been validated by
means of three projects: AmIciTy:Mi deals with the spread of information
in a system formed of a large number agents; the Ao Dai prototype demon-
strates the mapping of context structure to agent hierarchies; and the Ao
Dai platform, which is a multi-agent system for the implementation of AmI
applications.
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Introduction

The term of Ambient Intelligence has been coined at the dawn of the 21st
century, in 2001, with the report of the ISTAG group [Ducatel et al., 2001],
when it became one of the priorities in the ICT domain in the European Union
and worldwide. Ambient Intelligence – or AmI, for short – was envisaged as a
ubiquitous, unitary, electronic environment that would assist people in many
or all of their life’s aspects and in a considerably varied number of manners.

Ambient intelligence should represent the third wave in computing. After
the mainframe and the personal computer, in the age of Ambient Intelligence
the devices become invisible, by being integrated in all objects and materials.
This makes everything become ”smart” and, by means of communication,
everything around us will collaborate in order to offer more complex functions
and more relevant results. AmI also represents an evolution of what is now
the Internet: web-based, collaborative and social services that assist the user
in daily activities.

Ambient Intelligence is a vast domain, which gave way to many directions
research and development. We could consider an AmI system as containing
several layers: the hardware layer, the network / interconnectivity layer, an
interoperability layer, the application / smart services layer, and the intelli-
gent user interfaces. This work focuses on building solutions for the applica-
tion layer of Ambient Intelligence, more precisely on designing and building a
multi-agent system for AmI that integrates context-awareness, so that agents
naturally manage and share context information.

This Thesis takes place in the context of a long collaboration between Prof.
Amal El Fallah Seghrouchni and Prof. Adina Magda Florea, that has already
yielded the PhD Thesis of Alexandru Suna, several exchanges concerning Mas-
ter students and the FP7 project ERRIC.

This Thesis is in cotutelle between University Pierre et Marie Curie and Uni-
versity Politehnica of Bucharest. It is being funded by the Sectoral Operational
Programme Human Resources Development 2007-2013 of the Romanian Min-
istry of Labour, Family and Social Protection through the Financial Agree-
ment POSDRU/6/1.5/S/16, by Laboratoire d’Informatique de Paris 6 (LIP6),
and by Agence Universitaire de la Francophonie.
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Motivation

Many implementations of Ambient Intelligence systems so far have tried to
realize complete AmI systems, containing elements from all layers, especially
hardware, application and interface. But trying to build the hardware, the
middleware, the interfaces and the applications resulted in the implementation
losing either generality, or representation power, or flexibility and scalability.

This is why we chose to focus on only one layer of an AmI system: the layer
that works with information at a semantic level, and that is central to the
context-awareness of the whole system.

As many other researchers, we have chosen the agent-oriented paradigm for the
modeling and implementation, because agents offer features that are important
to AmI, notably autonomy and pro-activity.

In order to make this multi-agent system act as a middleware for a wider range
of future AmI systems, one priority of this work was to keep the system generic
(as opposed to domain- or application-specific). Requirements of availability
and dependability also demand for system distribution, and the possibility for
agents to work alone or in organizations of various sizes. Moreover, deploying
agents on devices with a wide range of capabilities – from small sensors to
powerful workstations – meant that agents needed to use flexible and adaptable
representations and algorithms.

Objectives

The research question that this work will attempt to answer is ”How to
build a multi-agent system for the application layer of Ambient In-
telligence?”.

As a result of the requirements presented in the previous section, several main
goals have been defined for this research:
• to develop a multi-agent system model for Ambient Intelligence that

features self-organization, context-awareness and anticipation;
• to develop several scenarios that emphasize the requirements of real-scale

Ambient Intelligence environments;
• to develop a simulation testbed that implements the elements of the said

scenarios, to serve for experiments with AmI platforms;
• to implement and experiment with the developed model, using the sim-

ulation testbed, in order to prove the model’s validity as a component
of an Ambient Intelligence environment.

As research went on toward these goals, some secondary goals also emerged.
Among others, we can cite:
• realization of a state of the art in scenarios for Ambient Intelligence,

identification of the features presented and classification on layers;
• a state of the art in implementations for Ambient Intelligence, notably

implementations using multi-agent systems;

4



• evaluation of approaches to context-awareness in Ambient Intelligence;
• realization of a survey of self-organizing multi-agent systems, particu-

larly in the case of cognitive agents;
• identification of algorithms and approaches for graph matching, focused

on labeled graphs;
• development of a platform for the simulation and testing of complex

systems formed of a large number of agents;
• development of tools for the evaluation, visualization and logging of the

behavior of multi-agent systems formed of a large number of agents;
• development of algorithms and paradigms for cognitive agents that use

mechanisms of self-organization to form systems with emergent behavior;
• development of measures of context-awareness and of an improved rep-

resentation for context information;
• development of context-aware features for the agent system relying on

more aspects of context (specifically, relying not only on spatial context);
• development of agent and relation types for the description of a system

topology that reflects the context of agents;
• improvement of the CLAIM agent-oriented programming language and

adaptation of CLAIM agents to execute on the JADE agent development
framework;
• development of a textual and a graphical representation for directed and

attributed graphs, based on the extraction of their linear components.

The realization of these objectives is presented throughout this work. A de-
tailed view on the different parts and chapters of this work is presented in the
next section.

Structure of the Thesis

The purpose of the first chapter – Chapter 1 ”Defining the problem”
– is to state the research problem that we are trying to solve in the rest of
this work. In the first section of the chapter we will examine in detail the
concept of Ambient Intelligence, by looking at the most relevant scenarios in
the literature, at the applications of the concept, and at the features that are
expected to be provided by AmI. These features will be further classified and
discussed individually in Section 1.2.

Based on the better understanding of the features of AmI, we propose some
new scenarios, that are directed less on how AmI will be viewed by the user,
and more on hinting how an AmI system should work on the inside and what
requirements it should fulfill (Section 1.3).

After a brief look into some paradigms that are good candidates for the im-
plementation of AmI, like, context-awareness, and the use of self-organization
(Sections 1.4.1, 1.4.2 and 1.4.3), we will state the goals of this research in the
last section (1.5), leaving to the other chapters of this work the detailing of
how these goals have been fulfilled.

After the goals of this research are clear, the next chapter – Chapter 2 ”A
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State of the Art in Related Fields of Study” – examines work that
is related to our research: the integration of software agents and multi agent
systems in the implementation of Ambient Intelligence; context-awareness and
the representation of context; and finally self-organization in cognitive agent
systems.

The review of agent-based AmI environments (Section 2.1) looks into how
agents can be used for AmI, what features they provide and what AmI layer(s)
they compose, and whether they are used more like individual, autonomous,
reasoning entities or more like connected parts of a distributed whole.

Since context-awareness is a defining feature of AmI, in Section 2.2 we review
the current representations of context information, as well as how context
information is retrieved and exchanged among agents. We emphasize the works
on the representation of context as associations and on the use of ontologies.

The last section of the chapter (2.3) discusses self-organization and mech-
anisms that can be used to coordinate distributed entities without central
control, especially in the context of using cognitive agents.

In building a Multi-Agent System for Ambient Intelligence, the first aspect
that we have focused on was agent behavior – Chapter 3 ”Agent Behav-
ior: Relying on Self-Organization”. That is, how should agents exchange
information so that interesting information reaches interested agents, without
centralized control.

After discussing the motivation for the approach, we present in Section 3.2
the AmIciTy:Mi middleware for AmI applications, a proof-of-concept that
demonstrates how agents can rely only on local knowledge and interaction for
the sharing of information, but obtain a global, emergent result at the level of
the system, where the spread of information can be easily controlled by means
of some simple context measures. The platform has underwent considerable
testing and yielded favorable results, clearly defining a valid agent behavior.
The results of the evaluation, as well as additional tools for the definition of
scenarios and visualization of the system, are presented in Section 3.3.

The focus moves away from agent behavior, and toward the topology of the
system in Chapter 4 ”Structuring the Agent System”, in which re-
search deals with mapping the hierarchical structure of some context aspects
to a logical hierarchy of agents. The Ao Dai project (see Section 4.2) is im-
plemented in the CLAIM agent-oriented programming language and assigns
an agent to each element of context. Dynamic context is supported by means
of mobile agent hierarchies – an agent can move seamlessly together with its
entire context.

Context-awareness is the focus of what is probably the most important chapter
of this work – Chapter 5 ”Improving Context-Awareness”. The chapter
contains the formal model for a holistic approach to context-awareness. The
elements for which AmIciTy:Mi used simplified approaches – namely system
topology and context representation – are improved for a realistic and more
powerful model.
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Inside the agent – Section 5.2 – context information is represented by the
graph of concepts which are relevant to the current state of the agent. The
interests of agents are defined as a set of context patterns, which are graphs
with generic elements that match a wider range of situations.

Outside the agent – Section 5.3 – the topology is reflecting the context of the
agent, that is, the neighborhood relations with the other agents reflect the
shared context between them. This approach is based on the Ao Dai project
(see Chapter 4) but deals with a wider range of context aspects.

The connection of the two sides – the inside and the outside of the agent – is
done through the behavior of agents, which is very similar to the behavior of
AmIciTy agents, but this time uses context graphs and patterns and the new
agent topology. This behavior, together with an extended example based on
the reference scenario (see Section 1.3.4), is presented in Section 5.4.

The practical outcome of this research, and the implementation of the concepts
presented in the previous chapters, have lead to the development of an original
platform – Chapter 6 ”A New Platform for AmI Applications”. The
motivation for this platform is the need for an appropriate testing suite for
the application layer of Ambient Intelligence. The platform is underpinned
by the JADE agent developing framework, uses the S-CLAIM agent-oriented
programming language – a simplified and improved version of CLAIM – and
features tools for the centralized visualization and tracing of the agent system.
The architecture of the platform and implementation details are presented in
Section 6.2. Section 6.3 gives an insight on how the platform was tested.

The last Chapter of this thesis – Chapter 7 ”Conclusions” – summarizes
the achievements of this work. What has been accomplished is, more than any-
thing, research on how to build a multi-agent system to serve as a middleware
for Ambient Intelligence, at the application layer. Details on the individual
contributions of this work are given in Section 7.1.2.

This work is only a phase, a beginning. Many paths for the development of the
concepts that we have introduced remain open and only too little explored.
The implementations that were realized deserve to be improved and extended,
and many concepts need further testing in applications and scenarios always
closer to real life. Some of these potential targets for the future are presented
in the last Section of this work, Section 7.2.
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Chapter 1

Defining the Problem

The purpose of this chapter is to state the research problem that we are trying
to solve in the rest of this work. In the first section of this chapter we will
examine in detail the concept of Ambient Intelligence, by looking at the most
relevant scenarios in the literature, at the applications of the concept, and at
the features that are expected to be provided by AmI. These features will be
further classified and discussed individually in Section 1.2.

Based on the better understanding of the features of AmI, we propose some
new scenarios, that are directed less on how AmI will be viewed by the user,
and more on hinting how an AmI system should work on the inside and what
requirements it should fulfill (Section 1.3).

After a brief look into some paradigms that are good candidates for the im-
plementation of AmI, like Multi-Agent Systems, context-awareness, and the
use of self-organization (Sections 1.4.1, 1.4.2 and 1.4.3), we will state the goals
of this research in the last section (1.5), leaving to the other chapters of this
work the detailing of how these goals have been fulfilled.

1.1 The Vision of Ambient Intelligence, or AmI1

Ever since the first computers came into existence, people hoped that one
day the computers would get from being used by governmental or corporate
actors to helping the common individual in his day-to-day tasks, in an intuitive
way, and that computers would interact with humans naturally, just like other
humans2. Several steps forward toward this goal have been taken: the personal
computer in the late 1970s and the 1980s; the rise of the Internet in the
1990s; and the spread of handheld ”smart” devices in the decade after the
year 2000. However, even with the wide range of services and features that are
now available to the user by means of Internet-connected devices, the system

1Some parts of this work have been published in our paper for IDC 2010
[Olaru et al., 2010a].

2This is shown to us in the science-fiction movies across the decades, from The Forbidden
Planet and 2001: A Space Odyssey, to Minority Report.
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formed by these services fails on two important aspects: it does not appear
as intelligent to the user (despite actually considerable advances in technology
and performance) and it still requires a certain degree of tech savviness in
order to be used, as the interaction between the system and the user does not
occur in the same natural manner as between two humans.

Ambient Intelligence is a concept that was introduced in the late 1990s and
that primarily addresses the two issues mentioned before. Ambient Intelli-
gence is a ubiquitous electronic environment that is non-intrusive, but also
pro-active, and that helps people, in a personalized and context-aware man-
ner, in their day-to-day tasks. While the notion of Ambient Intelligence was
introduced in 2001 by the ISTAG report [Ducatel et al., 2001], it is based on
the older concept of Ubiquitous Computing introduced by Weiser a decade
earlier [Weiser, 1993, Weiser, 1995].

Ambient Intelligence should represent the third wave in computing, after the
mainframe and the personal computer, by integrating the computing power
into the environment, and, instead of using dedicated interfaces to interact
with the user, should use AmI-enabled everyday objects. This will make the
computers ”invisible” and, by using everyday objects as interface, more intu-
itive and natural to use.

But beyond these vague statements, when it comes to the implementation of
the actual AmI environments, it is necessary to understand what should AmI
actually mean and to clearly set the features that AmI should provide. In
the past decade a considerable volume of research was carried out in the do-
main of Ambient Intelligence (see section 2.1 for details). However, it is hard
to find the balance between the implementation of a complete system with a
specific coverage (in terms of space or function) and the research of a specific
layer of Ambient Intelligence with general applications. Moreover, there are
many applications of AmI that are focused on interface or on interconnectiv-
ity issues (which is of course very useful for AmI as a domain) and less on
the ”intelligent” aspect that will give a clear advantage for the use of AmI
[Ramos et al., 2008, Böhlen, 2009, Aarts and Grotenhuis, 2011].

In our work, we argue that an essential aspect in a true Ambient Intelligence
system is information, and how information moves through the system, be-
tween devices, and between users – Weiser calls this ”a world of information
conveyers” [Weiser, 1993]. This work will propose mechanisms and represen-
tations that assure that information will be exchanged and delivered in a way
that is relevant, context-aware, and intelligent.

Throughout the rest of this section, we will present some scenarios and appli-
cations from the AmI literature (Sections 1.1.1 - 1.1.3), the expected features
of an AmI system (Section 1.1.2), as well as a classification of these features
on five layers (Section 1.1.4).
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1.1.1 Scenarios

First of all, Ambient Intelligence is a vision. A dream about the future. A
future when people will be able to use the Internet and computing capabilities
without being confined to a chair and a desk, or even to the small and cluttered
screen of an attention-grabbing mobile device. When computing will be free
and all around us. When the environment will understand what we want (and
need) without us having to explicitly specify that in an interface with its own
rules and language. When the artificial intelligence will become ambient and
will interact with us much like a human would, in a natural way.

This vision has been described in the field of Ambient Intelligence (AmI) pri-
marily by means of scenarios. These are stories in which the main character(s)
use and interact with the Ambient Intelligence. From the scenarios we can ex-
tract the features of AmI and insights into how AmI should work, and how it
should be organized.

In this section we will examine some relevant scenarios for Ambient Intelligence
and Ubiquitous Computing, and then we will extract and classify the features
that are described in these scenarios.

One of the first and, without doubt, most important scenarios for Ambient
Intelligence is the scenario devised by Weiser in 1995. He called it Ubiquitous
Computing, but it referred to a very similar concept. It was the ISTAG
advisory group that was among the first to use the term of Ambient Intelligence
and that devised 4 scenarios and analyzed them in detail.

Weiser’s ”Sal” Scenario

We will begin with Weiser’s scenario featuring Sal [Weiser, 1995], one of the
first scenarios for Ambient Intelligence. The first thing that one should notice
in the scenario is that when the alarm clock – an intelligent appliance – asks
”coffee” and Sal answers, the only responses that the clock can interpret are
”yes” and ”no”. That is, the appliance can only understand events (in this
case, the utterance of a positive or negative response) that are relevant to its
function.

Intelligent windows that can display traces of neighbours that passed on the
street (as well as public information like weather). Their function may be
the output of a centralized service, but it may be completely local: when the
neighbours pass, the window senses their presence.

While having breakfast, Sal marks some news (from a printed paper) with a
smart pen, having the associated text sent to her office. The text comes from
a service related to the paper (perhaps a website), that may be contacted by
the pen itself or by an unspecified intermediary agent. If the paper sends
the data directly to Sal’s office, that may be a privacy concern (why should
the paper know Sal’s contact data?). A solution would be that the request is
anonymous and the response comes back to the agent, which in turn sends it
to the office.

Other services are mentioned, relating to the most common points in AmI
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scenarios: localization and information on points of interest. Then, Weiser
presents more advanced uses for tabs – small displays with two buttons and
wireless connectivity: gestures, storage of small pieces of information, and
information-related layout. What is relevant here is that each tab relates to
one piece of information, and that individual tabs can be used to point out
various events. In the end, a context-aware application: finding a person
(Mary) that shared a certain context, in terms of space, time, and event, and,
by this association, finding the person’s contact details. Finding Mary may not
be special if the meeting exists in an online calendar’s events and invitations
(like the Google Calendar today), but it may be particular if the search is done
by associations between context data related to the time of the meeting, the
place, the number of people, and also to the fact that Sal did not previously
know Mary.

The ISTAG Scenarios for Ambient Intelligence in 2010

The scenarios created by the ISTAG group envision Ambient Intelligence in
2010 [Ducatel et al., 2001]. While now, in 2010, most interfaces presented
have not yet been developed, it is surprising how many of the services exist
in one way or another. In the scenarios and in the annexed analysis, the
authors emphasize the hardware and human interface features. In the following
paragraphs, we will also make observations on possibilities for the internal
functionality of the system.

The ”Maria” scenario emphasizes two directions: first the movement of the
user’s electronic identity (keys), preferences and data with her, seamlessly,
as well as the capacity to easily use the local resources: vehicles, utilities,
computing and communication capabilities; second, the easy interaction with
payment services and with the trusted storage for her presentation. We will
observe that, apart for some details, almost all technologies and many of the
services already exist at the present time. What lacks is the facility in their
use and, although the scenario does not necessarily imply that, their interop-
erability and unification under a common framework.

The ”Dimitrios” scenario is based on two elements: first, the very advanced
digital avatars (D-Me) that can speak multiple languages and, more impor-
tantly, that can take decisions and interact naturally with other persons; sec-
ond, the ease with which information transits the system: the senior person’s
D-Me contacts Dimitrios because he has the same heart condition, and Dim-
itrios’s D-Me finds a child of the same age and situation with his own, for
socializing and educational purposes. It is relevant here the way in which in-
formation is available to users that are interested in it, or that may take action
as a response. The information is made available based on common context:
similar heart condition, similar age and educational/financial situations. It is
not specified how these services work internally, but, like in a sort of social
networking, a distributed model may be applied.

The ”Carmen” scenario includes a range of services that already exist to a cer-
tain extent: car pooling, internet shopping, smart fridges, traffic information,
vehicle-to-vehicle communication. Again, it is the element of uniformity and
facility that lacks in the present. There is no unified system that does all that.
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Moreover, all systems that she uses seem to be centralized. It is worth noting
that, in order for all people to use such a great number of centralized services,
a powerful infrastructure is needed; or, a smart way to bring decentralized
services closer to the users, and more related to their context.

Finally, the ”Anette and Solomon” scenario is placed again in a farther future,
as AmI features natural communication and advanced semantic processing ca-
pabilities, being able to ”converse”, ”suggest”, and even help the users with
decisions and with a part of their work. More interesting features for a present
implementation of AmI are identity checking, scheduling, and selecting infor-
mation that is appropriate for the current context to make public for other
users.

What we find interesting in the ISTAG scenarios, apart from the advanced
human-machine interfaces, is the capability of the system to provide infor-
mation and services just in time; also, a range of services that already exist
now on the Internet, but that should be easier to access, in a more uniform
way. The design of such an AmI system is not detailed and leaves us with
many questions: how will the system support offering just-in-time services, in
a very continuous and frequent manner, to the great majority of people on
the planet, as the quantity of data will greatly surpass the requirements of to-
day’s Internet?; the services presented do not seem to have much in common –
aggregating information coming from different services may lead to more and
better capabilities; dependability of the system is also important: how can one
assure a dependable service, that it is unlikely to fail and that will be truly
ubiquitous, using all possibilities to offer the services to the user.

Other Relevant Scenarios

Satyanarayanan mentions two short scenarios [Satyanarayanan, 2001] that are
more locality-oriented: in the first one, the AmI system (named Aura) notifies
the user, while surfing the web at the airport, that the quality of the wireless
network is much better at another gate, as at her current location there are
many users accessing the Internet. One could argue that, if AmI is available for
everyone, all will receive such a notification, so the system should consider the
event in which all users will start moving toward the other gate. In the second
scenario, the files of a user move with him, automatically, from his computer
to his PDA, and from the PDA to the projection computer. It also allows voice
editing of the user’s slide presentation. During the presentation, information
related to the attendees’ emotional states is sensed and the system suggests
the presenter to not present a certain ”sensitive” slide. In these scenarios,
context is important: the proximity between the user and available resources,
the user’s current activity that involves certain files and certain devices, the
relationship between the user, his / her activity and the states of nearby
people.

Banavar and Bernstein present a scenario [Banavar and Bernstein, 2002] that
is focused on the seamless transfer of network connection and use of local
peripheral devices (keyboard, screen) in order to assure a continuous video
conversation across several situations, as well as comfortably working with
personal files, using an interface in the car, on a PDA, or in a plane. This is

13



made possible by intelligent usage of available computing and communication
resources and by just-in-time decisions.

Kindberg et al [Kindberg et al., 2002] emphasize the necessity for web-present
objects, places and devices and the need to establish relations between these,
according to the current context, usually in function of the user’s activity.
When the user Veronica arrives in a new city, her PDA automatically proposes
links to interesting places to see. When she desires to communicate with
her friend Harry, depending on his availability, a telephone call or an e-mail
message are proposed. In an office building, she can easily connect to an
available printer by pointing her PDA at it, and her PDA can also retrieve
information about objects nearby that are tagged and have web-presence (i.e.
feature a page on the web).

Vallée et al also describe a scenario [Vallée et al., 2005] in which screens and
support for video-calling are located automatically. Here, some more about
the internal functioning of the system is described: intelligent agents sense the
context and decide on how to announce the phone call when there are people
around, what to tell to the caller, and how the video-call is redirected to the
room in which the receiver of the call moves to.

A somewhat similar scenario – but directed toward conflicting context infor-
mation – is described by Bikakis and Antoniou [Bikakis and Antoniou, 2010]:
a teacher that has finished the class earlier than scheduled remains in the class-
room to check his email; his phone must decide if to ring or not: although the
schedule indicates that the class is ongoing, the camera in the room can con-
firm that there is but one person in the room, therefore the class has actually
ended.

Tracking users and providing them with useful information is also discussed
in the scenario of Viterbo et al [Viterbo et al., 2008], as well as setting prefer-
ences in function of the current activity. One interesting aspect that is rarely
discussed by other authors is the need for devices to be able, in the context
of heterogeneous software and a distributed system, to align their ontologies
– the semantic meaning that they assign for various terms that are used in
communication.

There is another class of scenarios, that we will not discuss in detail, that
concerns isolated environments: the smart home and the smart conference
room are the most common examples. In the smart home projects (see for
instance [Augusto and McCullagh, 2007, Bauchet et al., 2009]), various appli-
ances, sensors and devices must be able to track the user, to assure a certain
degree of automation, and, especially in the case of elderly and/or disabled
people, to detect health disorder or other situations in which assistance may
be needed. In the smart conference room [Johanson et al., 2002], challenges
are related to the facilitation of file, control and image transfer between per-
sonal and public devices and screens. The difference between this type of local
scenarios and the scenarios discussed earlier is that in these cases we are talk-
ing about a trusted environment and in which distribution is not absolutely
necessary. One challenge here is the necessity to make heterogeneous devices
interoperable [Hellenschmidt, 2005, Johanson et al., 2002].
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Finally, we will refer the work of Bohn et al [Bohn et al., 2005] on Ambi-
ent Intelligence, that offers a complete perspective on the implications and
concerns related to AmI, from several points of view: economy, privacy, relia-
bility, ethics, social compatibility and acceptance. The authors also describe
several interesting (albeit questionably ethical) scenarios: real-time shopping,
information collection and shopping done automatically by smart products
(silent commerce), perfect price discrimination and more advanced personal-
ized schemes of payment, cross-marketing products – all in function of the
user’s context.

1.1.2 Features

The scenarios for Ambient Intelligence are primarily a source for what the
features of AmI should be. But in the scenarios we can only see facets of these
features, i.e. we see them only through the perspective of the user in its one
interaction that is presented in the story. Let us look at some features of AmI
more closely.

As Weiser puts it, ”there is more information available at our fingertips during
a walk in the woods than in any computer system, yet people find a walk in the
woods relaxing and computers frustrating”. For the user, Ambient intelligence
must be like a familiar corner in nature: pervasive, natural, predictable. But in
order to assist people, it must also be pro-active and intelligent. The features
of AmI are also its greatest challenges. The most important feature of AmI is
that it should be uniform, integrated, intuitive and familiar.

In the scenarios we see a lot of features that are related to interface (be-
cause that is what the user sees and feels): Weiser’s intelligent windows, the
intelligent refrigerator, speech recognition, even weather control. But while
interfaces are very important, one must not forget that the information that
they display and / or acquire are managed by a system that, even if is not
(and should not be) visible, is very complex. We will focus in this section on
looking into the features that are more interesting from this point of view.

AmI must be ubiquitous, pervasive. Its architecture must support a large
number of mobile devices that incessantly share large quantities of information,
without the user’s knowledge (but not against the user’s preferences). More
than that, its model must be reliable: people will get used to it and will not be
able to live normally without it; in order to be invisible, people must not notice
it is there, but also they must not notice when it is not. These requirements
call for a distributed, redundant system, like the Internet is today. Moreover,
decentralization and locality are required by the fact that most of the generated
information is not needed and does not make sense outside a certain domain of
space, time and social relations (acquaintances). So AmI should be distributed
and work at a local level.

AmI must be natural, by using advanced multi-modal, intuitive interfaces.
That requires AmI to be adaptive and flexible: as any advanced technology,
some users will choose to not use it at all, some will use it only for specific
tasks, and for some it will mean an essential component of their lives. AmI
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must adapt to all and only require the attention that the user is willing to
invest. AmI must be predictable and transparent, being able to make the user
understand why that information and services are there and how the system
works in principle. This means that the basic principles that make AmI work
should be simple and easy to understand by anyone and also make AmI generic
and adaptive.

But AmI must also be pro-active and smart. It must take adequate action,
without intruding. The action must be taken only if the user would understand
the causality, and only if the user would approve the action. This is where
context-awareness has a leading role. If the user has communicated many
times with a friend, and both will be attending the same event, it is normal
to automatically provide the friend with information that the user has on
the event, because there is enough common context. But there is no sense
in sending sensible user information to strangers on the street, except when
this may be necessary in case of an emergency, when immediate action is
imperative and privacy is not prevalent.

Related to the last to paragraphs is also the traceability of AmI reason-
ing. Traceability significantly improves user acceptance, as users are more
tolerant of incorrect actions taken by context-aware applications if they are
able to understand that they have a rational basis [Paymans et al., 2004,
Henricksen and Indulska, 2006]. Of course that few users will actually be able
to understand the complexity of a true AmI system, but the user should be
offered with incrementally complex (and incrementally complete) explanations
for the actions pro-actively taken by the system.

AmI must provide a predictable, natural flow of information. Like in social
networks and shopping sites, one can assume that the user will be interested
in things that are related to what he already knows, to what he does, and to
the people that he is acquainted with. It is unlikely that someone is normally
interested in something that bears no relation whatsoever with any part of his
or her life. Useful information is information that is related to the context that
the user is in. Relevance of information may be defined as proximity or com-
patibility between the context of the user and the context of the information
(or the information itself).

As context is based on this sort of locality, this also solves the problem of
information overload. The user can only do one thing at a time, be in only
one place, only a number of past actions are still relevant and only a limited
number of actions can be planned. So the context space of the user is limited
and will only be related with a limited amount of information, that itself can
be sorted according to its degree of relevance toward the current context.

There is one more very important issue related to context-awareness and AmI:
the same AmI system will have to support more than one user at a time (as
we usually see in the scenarios). In public spaces there are a great number of
users that AmI has to be able to notify and to assist without them losing pri-
vacy (or important information) to other users. We will discuss these features
in Section 1.3.3.
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1.1.3 Applications

After presenting the scenarios and features, we should also take a quick look
at the applications that have so far been developed for Ambient Intelligence.

Research in this domain is vast and varied. And that is normal, considering
the complexity of what Ambient Intelligence should be. AmI literature and
surveys [Cook et al., 2009, Augusto et al., 2010] show that there are several
directions of development that are related to AmI: sensing, reasoning, acting,
human-computer interaction, and privacy and security.

However, the same surveys show us that there is something missing. Authors
notice that very little has been done in the field of reasoning [Cook et al., 2009,
Augusto and McCullagh, 2007]. Although ”intelligence” is a word that is part
of the name of the domain, the smartness of the applications is very specific in
most of the implementations, and cannot be used in a generic way in all AmI
scenarios. Much more time goes into the development of attractive features
and interfaces than in making those features be used in an intelligent manner.

Most leading applications try to cover all the essential aspects of AmI: sens-
ing, recognition, human-computer interaction, in projects that address certain
aspects of everyday life.

HP Cooltown is a framework that allows the association of web pages to
physical objects, smart spaces, and people, thus making them web-present
[Kindberg et al., 2002]. Whenever the user is in a certain place, a web page
with information about that place will be available; whenever the user is near
a web-present object, a simple scan with the mobile phone will bring the user
to the object’s URL.

Many AmI applications relate to Smart Homes. Building a Smart Home /
Smart Apartment is relatively easier, as it has a low number of individu-
als that occupy it, which are known and whose habits are easier to learn;
it occupies a clearly defined space. Features usually relate to the intelli-
gent (i.e. balancing lower energy consumption with comfort) control of lights,
heating, etc [Augusto and McCullagh, 2007]. Here we can refer projects like
iDorm [Hagras et al., 2004], the SpacialAgent architecture [Satoh, 2004], the
SodaPop model for home appliances [Hellenschmidt, 2005], the ACHE Adap-
tive Home Architecture [Mozer, 2005], and the projects CASAS and MUSE
([Crandall and Cook, 2009] and [Lyons et al., 2010], respectively).

Some applications – also relating to Smart Homes – are directed towards
people with psychical disabilities (like dementia) and are suppose to assist
them in leading a normal life and carry out their usual activities without
the non-stop presence of a nurse [Bauchet et al., 2009, Perakis et al., 2009,
Soler et al., 2010].

Other applications that use clearly-defined spaces are Smart Rooms, in which
the features that prevail are related to the management of devices, display
inputs, lights, and room configurations. Among these are the iRoom project
[Johanson et al., 2002] and the SodaPop model featuring self-organizing de-
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vices [Hellenschmidt and Kirste, 2004].

Finally, especially in the field of applications that use more generic represen-
tations for context information, there are some projects deployed in larger
physical spaces: the Gaia project [Ranganathan and Campbell, 2003], Am-
bieAgents [Lech and Wienhofen, 2005] – deployed at the Oslo airport, and
the MyCampus project, deployed on an actual campus [Sadeh et al., 2005].

In the projects that we have cited we can see that artificial intelligence is used
(when it is used at all) for the recognition of images and of activity – therefore
for the extraction of information. However, this information is not used in an
intelligent manner afterwords, but it is fed to reactive systems that associate
an action to an input.

It is this particular aspect that we are dealing with in this work. In order
to discuss about a better application of AI in AmI, we have to create scenar-
ios that rely more on AI (Section 1.3), and finally use more heavyweight AI
components to enable true Ambient Intelligence (Sections 1.4.1 to 1.4.3).

1.1.4 Layers

Ambient Intelligence should be the third wave in computing. It can also be
viewed as an evolution of what the Internet is today. Therefore it is expectable
that it will be a very complex system, with components spanning many areas
in software and hardware development. As the Internet is today, it is easy to
organize the components of AmI into several layers (based on a presentation
by El Fallah Seghrouchni [El Fallah Seghrouchni, 2008]).

• the hardware layer is composed of all the devices that are part of the
AmI environment: sensors, actuators, controls (e.g. light switches), mo-
bile phones, displays, laptops, computers, etc. The devices in the hard-
ware layer are extremely heterogeneous from the point of view of com-
putational and storage capacities, but all of them must feature some sort
of connectivity.
• the interconnectivity layer allows connections between the devices in

the hardware layer. It may use wired or wireless networks, and it may
use a wide range of protocols: WiFi, Bluetooth, Infrared, GSM, etc.
While a device may feature various types of network interfaces, con-
nections may be unstable, so this layer should support seamless switch-
ing between connections (see the scenario by Banavar and Bernstein
[Banavar and Bernstein, 2002]). This corresponds to the lower layers of
the Internet: physical to transport.
• the interoperability layer is vital to AmI, in order for devices to be

able to communicate freely, using uniform protocols above this level.
There is little research in this area, as most projects use specific pro-
tocols and representations, however there are many issues that relate
to interoperability, from compatibility of protocols to uniform repre-
sentations for context [Perttunen et al., 2009] and ontology alignment
[Viterbo et al., 2008].
• the application layer is the layer that most relates to AmI’s ”intel-
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ligence”. It offers services that have semantic awareness and that are
adapted to the user’s context. This is where different devices and appli-
cations collaborate in order to solve problems more efficiently. This layer
itself may be divided into two sublayers: a lower one that is related to
the generic exchange of information between entities, and one that
performs application-specific processing to the information, feeding
it either to the interface layer (and the user) or back to the sublayer
below, so that it can be exchanged and delivered to other interested
entities. It is this layer that our work focuses on.
• the interface is what the users ”see” (i.e. perceive), and is an impor-

tant part of all AmI scenarios. Gestures, speech, voice recognition, facial
recognition, smart materials, glass interfaces and many other means of
human-machine communication make AmI compatible with people that
are not previously trained to use a computer and also make AmI environ-
ments more comfortable and intuitive to use. While there are important
technological challenges in the hardware and HCI mechanisms related
to the intuitiveness and the uniformity of interfaces, these interfaces can
only appear as part of something intelligent if they offer relevant infor-
mation, that is offered by the layer below.

We can group the features of Ambient Intelligence systems depending on their
respective layers. This has been done in Table 1.1.

1.2 What Does Ambient Intelligence Really Mean?

Many scenarios for Ambient Intelligence are a mix of elements from several
layers of Ambient Intelligence. Most times, they are focused on two of the
layers: intelligent interfaces and context-aware services. Sometimes, issues of
interoperability and connectivity are also mentioned, but much more rarely
(though the challenges of these layers are not yet solved).

Mixing these elements may be confusing to the designer of an AmI system
that needs to be implemented by a research team: as Ambient Intelligence is
a vast domain, it is hard for the same team to develop connectivity features,
context-awareness, the interoperability layer and new interfaces at the same
time. That is why most implementations, while trying to tackle all these
problems, result in a system that is not flexible or scalable, or that is specific
to a certain application domain, and is by far not as impressive as the initial
scenarios described.

The specific features that the scenarios introduce, as said in Section 1.1.2,
mostly relate to two topics: intelligent interfaces and context-aware services.
The interfaces are suppose to be more natural, and more intuitive for people to
use. However, these interfaces are not fully specified, and it is hard to realize
exactly how they would work: for instance, in Weiser’s scenario, Sal uses a
smart pen to circle a quote from the newspaper and the paragraph is sent to
her computer at work – there is no mention how does the system know where
to send the text: is there a particular pen for each destination? Does the pen
have buttons for favorite destinations? How easy would it be for the user to
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Layer Features

hardware
• integration of sensors and actuators in everyday objects
• a large number of devices of various shapes and sizes that

allow easy touch-, voice- or gesture-based input, as well
as large displays (see today’s smartphones and tablets as
Weiser’s tabs and pads)

• smart energy management and wireless battery charging

network
• pervasive wireless networks
• pervasive (both indoor and outdoor) positioning systems

(using satellite- or ground- based reference)
• easy transition of connections from one access point to

another
• transparent transition between different protocols (GSM

/ WiFi / Bluetooth) and network infrastructures (central-
ized vs peer-to-peer)

interoperability
• uniform services working with interoperable representa-

tions
• ontology alignment

application &
intelligent ser-
vices

• semantic- and context-aware exchange of information
• detection of relevant information
• recognition of current and anticipation of future situation

and context

interface
• flexible interfaces usable with tiny, medium or large

screens
• visually rich and intuitive representations
• support for multiple input methods for the same opera-

tions: gestures, voice, touch, etc.
• support for hearing / visually impaired or otherwise dis-

abled people

Table 1.1: Features extracted from the scenarios in Section 1.1.1 and the applica-
tions presented in Section 1.1.3. See also Section 1.1.2.

send the quote to a new destination? The same questions linked to the system
specification can also be asked for some other scenarios as well. These are not
necessarily questions related to the interface, but also to the semantic level of
AmI.

Other questions that may arise are related to the flexibility and the scalability
of the scenarios: in a scenario we see how the central character is using one
specific feature in a way that seems intuitive enough. But how will the user be
able to use a large number of services – as computers and the Internet allow
him today – that may not be able to offer non-overlapping interfaces by means
of the same, well known, devices. Also, it is very important to think about
how will the services be offered to a large number of users, in a dependable
and reliable way. These are questions that we discuss in the current section.
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1.2.1 Scale

In an ideal future deployment, Ambient Intelligence would be a unified system
that interconnects devices that are present in every object, in every material,
in the whole world. It should capture information from at least tens of sen-
sors for every cubic meter. The system should assist several billions of users
continuously, in any situation, provide them with the appropriate information
and actions with no delay, and even with a certain degree of anticipation. Its
actions would be the result of aggregating and reasoning upon large quantities
of information. The issue of scale is prevalent.

What AmI can take inspiration from is today’s Internet, that interconnects
billions of computers in a network that although unified, is neither centralized
nor governed by a unique entity. The Internet uses simple, layered protocols
that work over a distributed environment, that has only local central servers.

1.2.2 Preferences

As opposed to most mass-produced goods, IT has accustomed people to the
possibility of customization of the interface and behavior of software, Internet
pages, and their computer-related environment in general.

In an AmI environment, the computer is embedded in the environment, and
therefore the user is able to customize the whole of his environment (among
others, by means of actuators which are embedded in everything) – see the
”Maria” scenario [Ducatel et al., 2001].

Respecting the preferences of a user is simple (in the limits of technical capa-
bilities). However, the challenge with regard to respecting preferences arises
when multiple users use the same environment: what if two users share the
same room and one of them likes the air to be warm and the other likes it
chilly? What if they like the room lit in different shades of color? What if two
users that control a large display simultaneously (for instance because they
are collaborating on a project) have different and conflicting sets of preferred
representations?

1.2.3 Flow and the Disappearing Technology

Weiser [Weiser, 1995] gives several examples of ”disappearing technologies”,
but probably the most compelling is writing: in present times, knowing how
to read and write (still) is for most people a natural thing. AmI should make
computer-enabled things natural presences in our environment.

There is also the question of ”flow” (see Chapter 5 in [Riva et al., 2005]) and
focus of attention. Handwriting does not require (for most people) an effort
to do the actual writing – our focus is on the meaning of what we write. Com-
puters make people focus their attention on the computer and the software,
rather than on the task. By making the computer more natural and by em-
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bedding it into the environment, people will be able to focus on their tasks
again.

But making a technology ”disappear” is difficult. Because it must never ”ap-
pear” again. When we write, the handwriting never issues errors, and as long
as one has the pen and paper one can do it. Computers show errors. Mobile
phones run out of battery. Pro-active software can be annoying. These sort
of events break the flow and change the focus of attention. For it to remain
”invisible” the computer must never err, it must always have a backup solu-
tion, it must be redundant. The user must not notice the technology is there
(or at least not think about it), but must not notice when it is not, either.

What AmI must also assure is minimal distraction. With so much information
available, it is very easy to get distracted by potentially relevant news and
notifications. A great challenge for AmI is that it must correctly manage the
information provided to the user so that the user will always be able to remain
focused on the ongoing task.

1.2.4 Anticipation

Being intelligent means being proactive. It means being able to recognize the
situation and act on it before the user points out that action is needed. The
opposite of proactive behavior is reactive behavior, which is characteristic of
the current ”stupid” technology: the software executes actions at the initiative
of the user – like when the user issues a command, or pushes a button.

But proactive behavior needs anticipation (since the system must act before
the user asks for it) of the user’s needs. Coupled with flow, in order not to
disrupt the user’s attention the anticipated behavior must also be adequate,
and, in a way, predictable.

Let us have an example: the user works at a desk, reading some documents; at
some point the user notices something and needs to write something; the user
reaches for the pen which is beyond the user’s visual focus, but the user knows
it is there; now, if anybody would have taken the pen out of a drawer and put
the pen there, even if it would be more comfortable for the user, it would be
unexpected and awkward, breaking the user’s focus. The environment has to
work in predictable, natural ways. And so must the Ambient Intelligence.

Predictability does not come immediately. Being natural is a property that is
build in time and through tradition. For instance, that makes that computers
will be much more natural for our children than for ourselves, not necessarily
because the interface has changed (although it will), but because they were
born in a world where computers were already everywhere.

1.2.5 A Word About Security, Privacy, and Interest

In a world where there are sensors in everything, that gather large quantities
of information from the environment, that recognize our activity and trace our
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history, it is easy to become worried with information being put to malevolent
uses and in the hands of the wrong people.

The challenges related to the security and privacy of AmI have been raised by
several authors [Bohn et al., 2005, Wright et al., 2008]. To our work, this is
relevant from the point of view of questions related to interest and relevance:
while a piece of information may be interesting for a certain party, is it that
the said party should have access to that information?; also, if an entity (like
a commercial store for instance) deems an announcement (an advertisement)
as interesting for a certain individual (according to the user’s profile), is it
that the individual will indeed find that receiving that information is useful
and not annoying?

Other issues relate to the social changes that will be brought by Ambient
Intelligence. We can see today that without access to the Internet people’s
common-sense knowledge greatly decreases compared to what it was 50 years
ago, and that people are so used to GPS navigation systems that most would
certainly be lost without one. Considering the amount of useful information
that can be brough by Ambient Intelligence to everyday life, how will this
change our life and our behavior?

While these questions are not directly related to this work, it is important
to keep them in mind when building any infrastructure dedicated to Ambient
Intelligence.

1.3 Some New Scenarios

This section will present several new scenarios, that give an insight on how
an Ambient Intelligence system may work internally. Details are focused on
the application layer of the system, on how information is managed and how
decisions are taken depending on context. Having this focus, we will consider
that users are using today’s hardware and connectivity, but devices will be
enriched with AmI agents, that will form the application layer of the system.

1.3.1 Adaptability and Scalability

As we have seen in Section 1.1.2, AmI must be adaptive and scalable. In order
to remain ”invisible”, it must be able to assist the user no matter what the
conditions; also, it must be able to assist simultaneously a very large number
of users, exchanging large quantity of information. These three scenarios have
been presented in our IDC 2010 article [Olaru et al., 2010a].

Scenario 1. A senior person walks on the street towards her
house. In the pocket she has a mobile phone with an AmI soft-
ware agent installed, featuring Bluetooth and GSM connectivity
and in communication with a multipurpose sensor that monitors
vital signs. As she does not like technology very much, the AmI
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agent has been configured to communicate the least possible, so it
normally does not connect with any other agents in the surround-
ings. The person lives in a small basement apartment. She climbs
down the stairs, she misses one of the last steps and falls. She loses
consciousness for a few moments.

In this short time, by means of the vital signs sensor, the AmI
agent detects that the situation is not life threatening and no major
injury occurred. However, care may be needed. There is no need
for an ambulance, but there is a personal medical assistant that
cares for this particular person and that should be called right
away. This reasoning is done by a dedicated module of the AmI
agent, that is especially designed for senior or disabled people. The
medical nurse is reachable by phone, but there is no GSM signal
at this location. The AmI agent searches for another resource that
can offer communication services. It activates Bluetooth and finds
a device that also runs an AmI agent. It provides to the other agent
some information about the context: there is someone that needs
urgent communication by phone. No personal details are provided.
The other agent detects that this context fits its activity history: it
has helped with this kind of actions before and it is even configured
to do that without confirmation from the owner. It accepts the
task. The agent of the senior person then gives to the other agent
a number and a message to be sent.

While the senior becomes conscious again, the AmI agent receives,
by means of another Bluetooth phone in the area, the confirmation
from the nurse. She will arrive in just a few minutes.

Scenario 2. On the largest stadium of an European capital, a con-
cert is going to be held, by one of the most popular rock groups
of the time. Hundreds of thousands of people are participating.
Most of them have mobile phones or smartphones which run AmI
agents. Young people are more permeable to new technologies, and
the agents are configured to communicate with other agents that
share the same context, while keeping personal data private. At
the concert, all participants share space-time coordinates, as well
as the event that they are participating in. AmI agents form a tem-
porary, anonymous social network, communicating not by means
of the Internet or by GSM, but by local connectivity like Blue-
tooth or WiFi ad-hoc networking. They exchange, anonymously,
interesting news or links that are related to the event and to the
band. The users made that information public and are not neces-
sarily aware of these exchanges, and will view the new data after
the concert. Sometimes they exchange data intentionally, sending
each other interesting links.

As the concerting band will be an hour late, the organizers send this
information to the agents that manage the WiFi access points in
the area. In turn, these agents disseminate the information to the
devices connected to WiFi. The information is of great relevance to
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the participants, so it spreads fast among the devices of the people
on the stadium. In case other users that are not participating to
the event received the information, their AmI agents will discard
it because their users are not participating in the event, so the
information is not relevant.

Finally, the concert begins. Towards the end, a pyrotechnic event
causes a fire on the stage. For security reasons, the public must
be evacuated. Panic breaks out. The GSM network soon becomes
unavailable and the WiFi hotspots are overloaded. Special emer-
gency devices connect to Bluetooth phones that are located near
the exists and send them directions towards the exit. From device
to device, the urgent information quickly reaches all participants.
AmI agents are capable of calculating the relevance of received in-
formation according to the number of links it went through, and
choose which exit would be closer.

A few days after the concert, a group of participants that shared,
intentionally, a lot of images and links, but not any personal details
or contact information, want to find each other again. By using
the concert site and the fact that they shared so much, their AmI
agents are capable of communicating again and the group can meet
again.

Scenario 3. Marc is a researcher from France is on the trip to-
wards the venue of a conference he is attending, currently during
an intermediate 3-hour stop on the Athens airport. At the gate,
he opens his laptop, on which several AmI agents are running. He
marked on his schedule several activities connected to the confer-
ence and to this trip. One AmI agent, searching possible interesting
data on the Internet, finds the following associations: from the at-
tendants at the conference, one is from the same country – France.
He has a public calendar on his website (and also a photo), that
specifies a flight to the conference venue, in exactly the same time
interval. There are no details on how to contact an AmI agent in
relation with the other participant so no further details can be re-
trieved. Still the considerable amount of context awareness makes
the AmI agent inform Marc of the findings including the name and
the photo. Marc takes a look around and, indeed, spots the other
researcher nearby. He goes to him and, politely, makes contact.
The two researchers can now talk to pass the time to the flight
and will be able to share a taxi ride from the destination airport
to the conference venue.

1.3.2 Problem Solving

In many scenarios for AmI, the features that are presented are mostly about
offering people the same kind of services that they are offered today, but in a
manner that makes them easier to access. There are however some scenarios
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that suggest that AmI could be more than that: that Artificial Intelligence may
be integrated in AmI in such a way that assistance will go beyond accessibility,
and will include solving of problems [Ducatel et al., 2001, Ramos et al., 2008].
Take the following scenario [Olaru et al., 2011]:

Albert is a researcher in the field of Artificial Intelligence. His
professional agenda contains, among other activities, attending the
AI Conference, which is held in Paris, at the CNAM. Albert has
already booked a flight from Heathrow airport to Charles de Gaulle
airport, but has not yet thought about how to get from the airport
to CNAM. Celia, another researcher in the same field, will also
attend the conference. Besides booking a flight, she has also noted
in her agenda that she will be taking a taxi from the airport to
the venue of the conference (this reminder will help her later be
prepared with money to pay for the taxi). Albert and Celia know
each other, and the communication between their respective agents
will help solve Albert’s problem.

Albert and Celia are both users of the AmIciTy Ambient Intelli-
gence system. First, the system will detect the need for a means
of transportation for Albert. Then, based on communication with
Celia’s agent and exchange of information with Celia’s agenda, Al-
bert’s agent can suggest that a taxi may be an appropriate solution
for Albert as well.

In this scenario we hardly make any reference to the hardware that is used, or
to the interface. What is important is that the users are offered an intelligent
service, that solves a problem for them. And this is indeed the purpose of
AmI: to assist users in they daily lives, in a pro-active – but non-intrusive –
manner.

A problem of the same type (not necessarily a scenario) is the following:

A researcher is on the last day before the deadline for an impor-
tant conference. As usual, writing the article has been left for the
last moment, so it is critical for the researcher to finish the article
before midnight. A colleague sends him a message regarding an
interesting link that he found that relates to their research field.
However, the AmI system decides that, although the link is rel-
evant to the field in general, but not to the article, it will show
a notification for the message only on the following day, knowing
that it is very common that any disturbance on the last day before
the deadline is badly received.

The scenario above is, again, not related in any way to hardware or interfaces.
It is about the decisions that the system has to make, based on context and
on previous experience.
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1.3.3 Multiple Users and Collaboration

The great majority of scenarios for AmI have a central character that we
follow through a series of instances in which he or she uses the features of
the AmI system. But the users are not alone. In public spaces, all or most
of the people around will also be users of the AmI system, and, for instance,
a vocal advertisement that says the name of the user passing by (like in the
movie Minority Report) may be heard by other users as well, producing a
potential lose of privacy. However, users that know each other may be happy
to be notified if they happen to be in the same shopping mall, at the same
time. Context is everything. In our work (including working together with a
team from the NII institute), we have developed some potentially interesting
scenarios that deal with the existence of multiple users. The scenarios also
include some more classic AmI features, that use existing devices from the
environment, controlled intelligently, in order to assist the users.

Scenario 1. On the floor of the laboratory two researchers Alice
and Bob arrive almost simultaneously, with two different elevators
situated at some walking distance one from the other. Alice and
Bob are going to attend a research meeting for the Panda project,
in room 42, which is somewhere between the two elevators. Both
researchers have the meeting in their PDAs’ agendas. They are
at the laboratory for the first time and feel lost in the maze of
corridors.

When Alice goes out of the elevator she waits a little time and the
lights near her dim, except from one light which is further down
the hall, which burns more intensely it means that is the right
direction. While approaching the intense light, the light dims and
a light which is further indicates now the right direction. Alice
then meets a group of students that pass on the hall in the other
direction and all the lights return to normal. However, it happens
that to her right, on the wall, there is a small display – she hears
a short sound that grabs her attention and she reads on the screen
”Turn right”, together with an image of what she sees around her
and an arrow indicating the way.

When getting close to room 42, she sees Bob, who she doesn’t
previously know. But near them a screen on the wall lights up
and displays ”Panda meeting in room 42”, and the light next to
the door to room 42 blinks discreetly. At the same time, Trudy
reaches the same area. She is a professor that works in a different
department and has just opened a document on her PDA and tries
to read the small writing – promptly she hears a sound that is
specific to her notifications and sees a screen, different from the one
Alice and Bob are using, displaying her document at an acceptable
size.

In the mean time, Alice and Bob enter the room, where, even if
there was no one inside, the lights are already on and the room’s
projector displays the welcome message.
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Scenario 2. Al, a member of the Panda team, working on the
Panda 3 project3, enters office EF301 that has been assigned to
the team for the time this project is taking place. The EF301
office is one of the intelligent rooms of the university. The AmI
system detects the movement and, based on previous observations,
determines that there is on more person in the room. As it is
customary, the lights grow a little brighter (the team usually works
in semi-obscurity – it is their preference, so they can focus better
on their work) so that other members of the team can see who
has joined them and they are able to greet each other. Al gets
seated at his computer and places his phone on the desk. By
identifying the phone, and also the face of the user (the computer
features a webcam) the system identifies Al and shows him his
desktop (synchronized from the cloud), but only some windows
are initially selected for display – those related to his work with
the Panda team, and those he usually needs when he is in this
office.

As the team works intensely, some feel warmer (although the tem-
perature in the room remains constant) and they notify that to
the system using gadgets on their screens. The system aggregates
their preference and also considers the hierarchy in the team in
order to calculate the new appropriate room temperature.

At a certain point, a notification tells them it is time to have a
meeting. They all gather around the interactive table display, the
lights go brighter, and audio recording of the discussion begins.
Relevant information for the discussion are taken from the mem-
bers’ files and loaded into the interface of the table display. After
the meeting, the members go home and all notes and modifica-
tions that were made during the meeting will be available in their
personal workspaces when they will take on work again.

In the scenarios above we see two things: first, the use of devices that exist in
the present day, used (many times working together) as intelligent, intuitive
interfaces; second, the scenarios consider the existence of multiple users, and
the changes that the AmI system needs to perform in order to adapt to that.
Preference aggregation is one of the central features to this approach. Also
the use of multiple means of notification, that are changed when the presence
of other users requires it.

One issue that has been little discussed in the scenarios of this section is
anticipation. Let us give an example of simple anticipative behavior that can
make a huge difference in the life of users:

It is dark outside, and Celia is coming through the hall toward
her office. She enters the office and the lights are already on. She
knows that the lights are not on when she is not there: it is the
AmI system that turns them on, anticipatively, before she enters

3”Panda” and ”Panda 3” are fictitious names.
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the office. When she will leave, the lights will go out right after
she closes the door, but nobody will see that. People are already
used to finding the lights on in all rooms they enter.

1.3.4 Reference Scenario

Finally, let us present the scenario that we will use for the examples and case
studies in this work:

Scenario. Alice is a student in Computer Science. In the after-
noon, she has a lecture on project management. Usually it is held
in a classical amphitheater, but today she receives a message on
her PDA that it will be held in a new laboratory in her university,
called the SmartRoom. The message also contains indications on
how to get there.

Alice is arriving to the campus by train. Due to traffic problems,
the train will be 15 minutes late. Since the train is AmI-enabled,
a notification pops up on Alice’s PDA to tell her the train will be
late.

In the mean time, the Professor that teaches the Computer Science
course arrives in the SmartRoom. An application on his PDA
allows him to see how many students are currently missing, and
also what is their estimated time of arrival. Today it is only Alice
that is missing, but the Professor is informed by the application
that she is not expected to be more than 15 minutes late. Since
she is one of the best students in the course, he decides to wait.

Since she is late, she is the last one of the 15 students to arrive.
When she gets sited, all lights go down automatically, the presen-
tation screen turns on showing the first slide of today’s lecture,
and the Professor starts the presentation. There are microphones
for each student in the room, as well as for the teacher, but only
the teacher’s microphone is on for the time of the presentation.
Later, during the time for questions, the students’ microphone get
activated as well.

The second part of the lecture is dedicated to some hands-on ac-
tivity. The students are invited to choose among three activities
in which to participate. Using their PDAs or their laptops, they
can see their friends’ preference for the activities, as well as choose
the one they prefer. In the end, some groups are formed.

One activity is to read some descriptions of projects and try to
present their strong and weak points. This activity only requires
one or two large screens, so the SmartRoom allocates the screens
for this activity, and the students move closer to them.

Another activity implies only a discussion between students, so
they can sit at a table. The light above the table stays fully lit,
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as the lights that are closer to the screens get dimmed so that the
screens are more visible.

Alice participates in the third activity, which is to design a man-
agement strategy for a project. This activity is allocated to the
two large touchscreens in the room. They get activated as the
students assigned to the activity come close to the screens. As
they work together, adding ideas to the content on the screens, Al-
ice starts referring concepts from some previous work of hers, for
another course. The SmartRoom, in collaboration with her per-
sonal agent, detects the compatibility and asks Alice if the whole
file should be made visible for the other students. Alice agrees
and the file is displayed on a third screen. A notification sound is
played near the screen to draw the attention of the students.

At the end of the activities, the teacher passes by each group of stu-
dents and evaluates their work, using an application on his PDA.
Because the teacher has poor vision, the content on the screen
is automatically magnified by the application when the teacher is
viewing it. After evaluation and comments, the students’ work is
saved, and as they go back to their seats the screens turn off auto-
matically. Before leaving, a message on the students’ PDAs asks
them to give anonymous feedback on the lecture. After everybody
leaves the room, the lights go out all by themselves.

This scenario has been developed together with colleagues from Honiden-Lab
in the NII Institute in Tokyo in order to be implemented in the Smart Room
that has been built at the Honiden Lab.

The scenario is a balance between purely information-driven features and AmI
features perceived as more common: we have detection and recognition of
people, as well as large touch-based displays; we also have context recognition,
collaborative work and usage of patterns.

1.4 Elements of the Research Approach

1.4.1 Multi-Agent Systems and the Agent-Oriented Paradigm

When dealing with AmI at its real future scale, it is clear that it must be
distributed. The Internet that we know today is fully distributed in terms
of domain-name services and routing, and for years Grid services and cloud
computing are on the rise. All heavy-load web pages and services (search en-
gines and the likes) are also distributed, sometimes using data centers around
the world. As the future of what is now the Internet, Ambient Intelligence
will reach a much higher number of devices and users. It is clear that for
scalability (see Section 1.2.1) a more distributed architecture is necessary, and
one that will also inherently support anticipation and context-awareness as a
building-block function.
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This is where the agent-oriented development paradigm comes in, and where
the research in Multi-Agent Systems [Ferber, 1999] can contribute to the re-
alization of AmI, because agents are the natural solution to the requirements
of AmI.

Agents offer features that are very much needed by AmI, like reactivity, au-
tonomy, pro-activity, reasoning or anticipation [Ramos et al., 2008]. In fact,
agents offer the possibility of moving from the distributed computing paradigm
– where the designer specifies the protocol and processing as seen from the
global level – to a paradigm based on local reasoning and interaction, where
agents are designed from the local point of view and the global behavior is
emergent.

By being autonomous, the agents may function even if other components of
the system fail or are unreachable, helping make the system invisible, and not
disrupting the user’s activity.

By being anticipative and pro-active, agents are able to recognize the con-
ditions for certain situations, and are able to take action by their own decision,
before the user requires it.

By forming an open system, new agents can join the system or be created
and present agents can leave or be absorbed by other agents without radically
affecting the system.

By using local behavior, agents can focus on the current context of the user
and also depend less on the existence of centralized control.

The idea of using agents for the implementation of Ambient Intelligence is not
new. However, there have been many approaches to doing that. Considering
the layered perspective presented in Section 1.1.4, most of these approaches
use agents, indeed, at the level of the ”intelligent” layer. One of the approaches
uses a small number of agents that retain user preferences and query context
information, but this approach is not very generic or scalable. The other
approach is focused on the coordination and self-organization of agents, but the
individual agents do not have a flexible knowledge and context representation.

In this work, we are trying to develop a system that will both scale but also
be able to work with more advanced (but nevertheless flexible) knowledge
representation. However, we will not try to develop components for all of
AmI’s layers. Instead, we will focus on the application layer, and on the
exchange of information between agents.

1.4.2 Context-Awareness

It is difficult to talk about Ambient Intelligence without mentioning context-
awareness. Many systems with applications in Ambient Intelligence implement
context-awareness as one of their core features (see Table 2.1). In previous
work in the field of context-awareness there are usually two points of focus:
one is the architecture for capturing context information; the other is the
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modeling of context information and how to reason about it.

Context is any information about entities that are relevant to the interaction
between the user and the system [Dey, 2001]. Context-awareness is the ability
of a system to autonomously adapt to the current context, in order to provide
a better response and experience for the user [Viterbo et al., 2008].

Context information may be categorized in several groups. For instance, de-
pending on the nature of the context, there are four types of context infor-
mation [Chen and Kotz, 2000]: computational context – available resources,
network quality and related information; user context – profile of the user, peo-
ple nearby, social situation; physical context – lighting, temperature, traffic
conditions; time context – time of day, date of the year. Modeling of context
information uses representations that range from tuples to logical, case-based
and ontological representations (see the surveys of [Perttunen et al., 2009,
Strang and Linnhoff-Popien, 2004]).

But beside this type of information that is ”exterior” to the system, context
may also be characterized by the user’s activity [Henricksen and Indulska, 2006],
and information about current focus [Brézillon and Brézillon, 2007].

In our work we have used an approach to context-awareness that involves
two aspects: first, the implicit modeling of context by using a hierarchical
structure for agents, that is mapped against the different types of contexts
that are considered by the system (see Chapter 4 and Section 5.3); second,
a graph-based representation of context information that, by means of graph
matching, allows identifying the relevant information, detecting the situation
and solving problems related to missing information (see Section 5.2).

1.4.3 Adding an Aspect of Self-Organization

Considering the amount of communicating devices in a real-scale AmI sce-
nario, one may be tempted to look in the domain of self-organization for
solutions on how such a system may achieve a certain goal. Emergence and
self-organization [Heylighen, 1989, Heylighen, 2002] provide the means to ob-
tain complex properties out of a large number of interacting simple individuals.
The possibility to obtain novel, non-additive effects of causal interactions made
flourish research in both natural and artificial systems with emergent behavior.
In order to model and design artificial systems, inspiration was taken either
from self-organizing inanimate complex systems, or from complex systems of
simple living beings (like ants, wasps, spiders, etc). This is because these types
of individuals are easier to understand and model.

A self-organizing system is a system that, as a form of adaptation to external
conditions, achieves a state of dynamical equilibrium that is characterized by
a certain level of organization; organization is achieved without any external
or centralized control. The advantages offered by self-organizing systems are
many, relating to adaptability and flexibility on the one hand, and to robust-
ness, fault tolerance and self-healing, on the other. These properties result
from the fact that organization is not imposed to the individuals from above,
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but it is the behavior of the individuals that contains a natural tendency to-
wards the organized state – the organization emerges from the level below
[Shalizi, 2001].

In our work we have used self-organization mechanisms to provide the system
with emergent behavior. This way, although agents have a local behavior
in which they only communicate with their neighbors and only have local
knowledge, the information that they exchange can reach agents that are much
farther, but can still be controlled in a context-aware manner (see Chapter 3
and Section 5.4).

1.5 Setting the Goals for This Research4

In the framework of this layered perspective, as the state of the art presented
before suggests, many challenges in AmI lie at the level of the fourth layer –
ambient applications and services. These challenges relate to the fact that, in a
real-scale AmI environment, huge quantities of information will be generated
throughout the system. Part of this information is private or meant only
for certain users; part of it is relevant and / or interesting only in certain
context, or to certain people. Moreover, AmI is mainly formed of devices that
are not reliable from the point of view of the system: they may go in and
out of the network coverage, they may shutdown or wake up without notice,
and they may use heterogeneous hardware and different (in type, quality and
cost) ways to connect to the network. Considering these conditions, the way
that information should move through the system and how it should used and
modified by the individual devices is particularly challenging, and it is a central
concern of any AmI environment that aspires to be reliable and trustworthy.

This research tries to answer some of these challenges, by developing a
multi-agent system for an AmI system’s application layer. The pro-
posed solution relies on several key features: system distribution – a reliable
AmI environment must feature distributed control, so that its functioning will
not be vitally affected by the disappearance or temporary unavailability of any
device in the environment; the use of cognitive software agents that have
a flexible behavior depending on the capabilities of the device they are exe-
cuting on; the use of self-organization mechanisms to offer the means to
coordinate a large number of agents and obtain, by means of local interaction
and without the need for centralized control, global properties at the level of
the system; context-awareness as core feature of the multi-agent system,
affecting both the structure of the agent system and the behavior of agents in
order to offer an optimal experience.

The research goals fulfilled by this research are the following:

• to develop a multi-agent system model for Ambient Intelligence that
features self-organization, context-awareness and anticipation;
• to develop several scenarios that emphasize the requirements of real-scale

4As specified by the PhD Thesis proposal [Olaru, 2010].
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Ambient Intelligence environments;
• to develop a simulation testbed that implements the elements of the said

scenarios, to serve for experiments with AmI platforms;
• to implement and experiment with the developed model, using the sim-

ulation testbed, in order to prove the model’s validity as a component
of an Ambient Intelligence environment.

The result of the second goal is presented in Section 1.3. We will see in
Chapters 3-6 how the other goals have been fulfilled.
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Chapter 2

A State of the Art in Related
Fields of Study

Now that the goals of this research are clear, this chapter examines work that
is related to our research: the application of software agents and multi agent
systems in the implementation of Ambient Intelligence; context-awareness and
the representation of context; and finally self-organization in cognitive agent
systems.

The review of agent-based AmI environments (Section 2.1) looks into how
agents can be used for AmI, what features they provide and what AmI layer(s)
they compose, and whether they are used more like individual, autonomous,
reasoning entities or more like connected parts of a distributed whole.

Since context-awareness is a defining feature of AmI, in Section 2.2 we review
the current representations of context information, as well as how context
information is retrieved and exchanged among agents. We emphasize the works
on the representation of context as associations and on the use of ontologies.

The last section of this chapter (2.3) discusses self-organization and mecha-
nisms that can be used to coordinate distributed entities without centralized
control, especially in the context of using cognitive agents.

2.1 Agent-Based AmI Environments

In the field of agent-based Ambient Intelligence platforms there are two main
directions of development: one concerning agents oriented towards assisting
the user, featuring learning and complex reasoning, and using centralized com-
ponents (knowledge repositories, ontologies, etc); and one concerning the co-
ordination of agents associated to devices, and potentially their mobility, in a
context of more simple functionality, also considering distributed control and
fault tolerance.
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2.1.1 Using Few, Complex Agents

The first approach of using MAS for AmI is closer to Intelligent User Interfaces
and local anticipation of user intentions, coming from the field of intelligent
personal assistants. In this approach, agents are complex, use learning algo-
rithms, and use centralized components to retrieve external data. Inter-agent
communication is scarce, except for when the central components are desig-
nated as one or more agents.

For instance, embedded agents form an AmI environment in the iDorm imple-
mentation [Hagras et al., 2004]. Agents are used here to manage the diverse
equipment in a dormitory, resulting in the control of light, temperature, etc.
They learn the habits of the user and rules by which to manage those param-
eters. The system does not require the attention of the user, except for those
moments where the user is unhappy with the system’s decision and overrides
the controls. This way the system learns and, in time, becomes invisible to the
user. The organization of the system is fairly simple, and its main component
is a central agent associated with the building.

EasyMeeting [Chen et al., 2004] is an agent-based system for the management
of a ”smart” meeting room. It is centralized, and it manages all devices in the
room by means of reasoning on appropriate action. It is based on the Context
Broker Architecture (CoBrA) and uses the SOUPA ontology.

MyCampus [Sadeh et al., 2005] is a much more complex system, in which
agents retain bases of various knowledge about their users, in what the authors
call an e-Wallet. There are also agents associated to public or semi-public ser-
vices (e.g. printers). The e-Wallet manages issues related to security and
privacy. It represents knowledge using OWL and accesses resources as Web
Services. The e-Wallet provides context-aware services to the user and learns
the user’s preferences. Other components of the system are the Platform Man-
ager and the User Interaction Manager, that offer directory and authentication
services in a semi-centralized way.

The ASK-IT project [Spanoudakis and Moraitis, 2006] uses agents for the as-
sistance of elderly and impaired persons. It uses the FIPA PTA (Personal
Travel Assistance) architecture. There are several types of agents that have
different specialization: information retrieval, environment configuration, user
monitoring, service provision, etc. The structure and functions are however
quite rigid, and there is little adaptation or flexibility of the system’s features.

DALICA [Costantini et al., 2008] is a multi-agent system that uses location
data for the dissemination of information about cultural assets. It can monitor
visitors and also monitor the transportation of said assets. It features an
interesting architecture that combines continuous Galileo positioning with the
use of ontologies and user profiles.

Tapia et al present [Tapia et al., 2010] a few projects related to healthcare and
support for elderly / mentally disabled people. All projects use multi-agent
systems: ALZ-MAS [Corchado et al., 2008] is a centralized system that fol-
lows the person throughout daily activities using RFID tags and the ZigBee
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protocol; Telemonitoring homecare [Alonso et al., 2009] is an experimental ar-
chitecture that interconnects heterogeneous wireless sensor networks and sends
monitoring information to a central monitoring central through an RSS feed;
finally, Fusion@ [Tapia et al., 2009, Tapia et al., 2010] relies on a decentral-
ized architecture in which agents search for services to provide to the users (it
is SOA-based), and a special kind of low footprint agents – Interface agents –
reside on the users’ mobile devices.

2.1.2 Using Many, Simple Agents

The second approach to agent-based AmI platforms concerns solving differ-
ent issues like user mobility, distributed control, self-organization and fault
tolerance, having a more global perspective on how an AmI platform should
function.

The SpacialAgents platform [Satoh, 2004] is a very interesting architecture
that employs mobile agents to offer functionality on the user’s devices. Basi-
cally, whenever a device (supposedly held and used by a user), which is also
an agent host, enters a place that offers certain capabilities, a Location Infor-
mation Server (LIS) sends a mobile agent to execute on the device and offer
the respective services. When the agent host moves away, the agent returns to
the server. Sensing the movement of agent hosts in relation with LISs is done
by use of RFID tags. The architecture is scalable, but there is no orientation
towards more advanced knowledge representation or context-awareness, how-
ever it remains very interesting from the point of view of mobile agents that
offer new capabilities.

The LAICA project [Cabri et al., 2005] brings good arguments for relying on
agents in the implementation of AmI. It considers various types of agents, some
that may be very simple, but still act in an agent-like fashion. The authors,
also having experience in the field of self-organization, state a very impor-
tant idea: there is no need for the individual components to be ”intelligent”,
but it is the whole environment that, by means of coordination, collaboration
and organization, must be perceived by the user as intelligent. The work is
very interesting as it brings into discussion important issues like scalability,
throughput, delegation of tasks and a middleware that only facilitates inter-
action, in order to enable subsequent peer-to-peer contact. The application
is directed towards generic processing of data, which is done many times in
a fairly centralized manner. The structure and behavior of agents is not well
explained, as their role in the system is quite reduced – the middleware it-
self is not an agent. However, the architecture of the system remains very
interesting.

The AmbieAgents infrastructure [Lech and Wienhofen, 2005] is proposed as
a scalable solution for mobile, context-ware information services. There are
three types of agents: Context Agents manages context information, consid-
ering privacy issues; Content Agents receive anonymized context information
and execute queries in order to receive information that is relevant in the given
context; Recommender Agents use more advanced reasoning and ontologies in
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order to perform more specific queries. The structure of the agents is fixed
and their roles are set. Although it may prove effective in pre-programmed
scenarios, the system is not very flexible.

The CAMPUS framework [El Fallah Seghrouchni et al., 2008] considers issues
like different types of contexts [Chen and Kotz, 2000] and decentralized con-
trol. It uses separate layers for different parts of an AmI system: context pro-
visioning is close to the hardware, providing information on device resources
and location, as well as handling service discovery for services available at
the current location; communication and coordination manages loading and
unloading agents, directory services, ACL messaging and semantic mediation,
by using the Campus ontology; ambient services form the upper layer, that
agents can use in order to offer other services in turn. The architecture is
distributed, having only few centralized components, like the directory service
and the ontology.

There are other resembling proposals for AmI middleware that do not ex-
plicitly employ agents. Hellenschmidt et al [Hellenschmidt and Kirste, 2004,
Hellenschmidt, 2005] propose a generic topology and a self-organising middle-
ware for ambient intelligence (called SodaPop), aimed at coordinating appli-
ances. The devices are not controlled by agents, but by SodaPop Daemons
that share many features with agents, like reactivity, negotiation capabilities,
and a certain degree of autonomy. Each appliance is modelled as having a
user interface, an interpreter, a control application and several actuators. Be-
tween these units there are three channels, respectively: the events channel,
the goals channel and the action channel. The middleware puts these channels
in common and introduces negotiation and conflict resolution, so that, for in-
stance, as a result of user input on a device, the controller on another device
can action the first device together with a third device. The architecture is
very interesting, however scalability is not brought into discussion.

A framework that deals with low-footprint agents for Ambient Intelligence is
Agent Factory Micro Edition (AFME) [Muldoon et al., 2006]. It uses Java for
mobile devices and LEAP and is FIPA-compliant. The work is focused on an
architecture for agents, which are cognitive and have a modular structure that
allows interchangeability of perception, affect and reasoning components.

2.1.3 A Survey of Existing Applications and Projects

We have summarized some features that are relevant to our work, as they
are manifested by the systems that we have reviewed above, in Table 2.1.
It easy to observe that different agent system consider different aspects of
Ambient Intelligence and adopt different approaches to their implementation
– for instance regarding centralization of the system. It is also worth noting
that few of the system address only the problem of the middleware, and many
of them are trying to propose a complete architecture, from the sensing level
to the user interface.

In our work, we are trying to focus on only one layer of an Ambient Intelligence
environment, and use agents only for what they are good at: reasoning, au-
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iDorm
- - - Yes - - ? - Yes -

Spatial
Agents

- - - Yes Yes Yes ? - Yes -

EasyMeeting
Ont. SOUPA Yes - Yes - ? Yes Yes Yes

SodaPop
- - - - - - Yes Yes No -

LAICA
- - - - - - Yes Yes partial -

MyCampus
CBR Yes Yes Yes Yes - Yes Yes Yes some

AmbieAgents
CBR Yes Yes - Yes - Yes - partial Yes

ASK-IT
- some Yes some - - - No Yes Yes

CAMPUS
Ont. Yes Yes some - - Yes Yes No Yes

Dalica
tuples Yes - - - - - - partial -

ALZ-MAS
- - some - Yes - ? some Yes -

Fusion@
- - some - - - Yes Yes No -

AFME
- - - - Yes ? Yes Yes - Yes

Table 2.1: Features of the agent-based systems described in Sections 2.1.1 to 2.1.3:
manner of knowledge representation; use of ontologies; implementation
of context-awareness; learning capabilities; consideration of security and
privacy-awareness; use of mobile agents; support for scalability; flexibility
of the architecture; centralized vs decentralized system; compliance with
FIPA protocols.

tonomy, proactivity. We assume that the information can be provided by the
layers below, and that interfacing with the user can be done in the layer above –
we believe that applying a layered structure (which is done by some of the men-
tioned architectures [El Fallah Seghrouchni et al., 2008, Sadeh et al., 2005]) is
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a better way to deal with the design of such a complex system as a flexible,
generic Ambient Intelligence environment.

There are many other projects of Ambient Intelligence, that do not use agent-
oriented implementations. These are usually more directed towards specific
applications, and the communication between entities, as well as the elements
of reasoning, follow fixed, specific protocols. Among projects like these we can
primarily cite projects related to the Smart Home – the ACHE Adaptive Home
Architecture [Mozer, 2005], and the projects CASAS [Crandall and Cook, 2009]
and MUSE [Lyons et al., 2010] – or to the care of elderly / mentally dis-
abled people – for instance the Archipel, ALADDIN and PERSONA projects
[Bauchet et al., 2009, Perakis et al., 2009, Soler et al., 2010].

2.2 Context-Awareness

Context-awareness is a central issue in the field of Ambient Intelligence. Pro-
active, but non-intrusive behavior would not be possible without a proper
understanding from the side of the AmI system of the user’s context. Actions
of the system must appear to be natural and well integrated in the current
situation.

Context has been defined as ”any information that can be used to characterize
the situation of entities (i.e. a person, a place or an object) that are consid-
ered relevant to the interaction between a user and an application, including
the user and the application themselves”1 [Dey, 2001]. Therefore, context-
awareness is not only the ability to adapt the system’s reaction to the current
situation, but also to decide the action to be taken by looking at the user’s
context.

Many authors consider context as relating almost exclusively to location, time,
and other instantaneous properties of the physical environment. But there is
more to context than that. First, there are more types of context – e.g. com-
putational, temporal, user-related [Chen and Kotz, 2000]. Second, context
is not only formed by the properties of said context types – like where the
user is located, what time it is, what is the temperature outside and what
capabilities the current network connection has – context is also defined by
associations between various facts that relate to the user, facts which are not
necessarily contextual information of the said types. For instance, it would
probably be unwise to disturb a researcher with unimportant messages on the
last day before a conference’s deadline. While this decision is context-aware,
it is something that does not relate almost at all to any properties of the
physical, computational or social environment of the user, nor to its profile or
personalization options. In our work, it is this type of context-awareness that
we are trying to implement, that is based on the detection of associations and
similarity between various pieces of knowledge.

In the following section we will look at how context-awareness is implemented

1This is just one of the existing definitions for context, but it is most likely the most
popular.

40



in various AmI-related projects. Next, we will give details about how context
is represented in the literature, with a focus on AmI applications (Section
2.2.2). As for the context-aware behavior of agents we use the matching of
context graphs and patterns, in the final section we will briefly introduce some
algorithms for graph matching, with a focus on the matching of labeled graphs.

2.2.1 Context-Awareness in AmI

Research discussing context-awareness for Ambient Intelligence applications
generally revolves around two issues: on the one hand, the infrastructure for
capturing and processing context information (where context information is
of physical nature); on the other hand, the modeling of and the reasoning on
context information.

The proposed infrastructures for processing context information usually con-
tain several layers [Baldauf et al., 2007]: sensors capture information from the
environment; there is a layer for the preprocessing of that information; a layer
for its storage and management; and finally the layer of the application that
uses the context information.

One of the early infrastructures of this type is the Aware Home project
[Dey et al., 1999]. It uses Context Widgets as an abstraction for the sensors
that capture context information of various types. There are cases when data
needs to be reinterpreted, and that is done by Context Interpreters. Data from
multiple widgets can be aggregated by Context Servers. An application can
get its context information from Widgets or from Servers, and it can also use
Interpreters.

Harter et al [Harter et al., 2002] present a very interesting context-awareness
infrastructure that uses Bat units to detect the position and orientation of
people and objects, used for Follow-me applications. However, it only deals
with spatial elements.

Other architectures for the provisioning of context information use middle-
ware for the processing of the data (e.g. the LAICA or MUSIC projects
[Cabri et al., 2005, Kirsch-Pinheiro et al., 2008]) or context servers, that store
the context information and make it available by means of queries (for instance
projects like MyCampus [Sadeh et al., 2005] or AmbieAgents
[Lech and Wienhofen, 2005]).

This type of infrastructures is useful when the context information comes
from the environment and refers to environmental conditions like location and
weather, or to health-care related sensed information. Indeed, several sur-
veys of context-aware applications [Chen and Kotz, 2000, Baldauf et al., 2007,
Perttunen et al., 2009] show that location is the most used type of context.

However, physical context is only one aspect of context [Chen and Kotz, 2000].
There are projects that consider other types of context – e.g. the MIMOSA
middleware [Malandrino et al., 2010] or the CML model for context informa-
tion [Henricksen and Indulska, 2006] – but they are relatively few and quite
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specific.

Moreover, the infrastructures are usually centralized, using context servers
that are queried to obtain relevant or useful context information. In our ap-
proach we attempt to build an agent-based infrastructure that is decentralized,
in which each agent has knowledge about the context of its user, and the main
aspect of context-awareness is based on associations between different pieces
of context information. All agents should have a more or less equal role in the
transfer of context information.

There is also a strong directionality that characterizes these infrastructures:
context information flows from the sensors toward the application level, with
various intermediary components that allow for additional processing. But
more often than not, the applications themselves are unable to create context
information themselves, and insert it into the system. In an AmI environment
where devices interact with the user, they use context information, but also
obtain information that can be used in turn by other users.

2.2.2 Context Representation

Context can be modeled in various manners, leading to a great range of
representations for context information, that have been surveyed repeatedly
[Bolchini et al., 2007, Perttunen et al., 2009].

Most simple representations use key-value pairs or tuples to retain the mea-
sures for various aspects of context, like, for instance, the position of the user.
For example Feng et al [Feng et al., 2004] propose that context should be rep-
resented as an n-dimensional vector of values from different domains (scalars,
strings, sets).

Ontology-based representations

Logic-based formalisms use mechanisms that come from Artificial Intelligence
/ Knowledge Representation. Prominently used among these are description
logics and ontologies [Bettini et al., 2010]. Although ontologies allow for the
representations of complex concepts and constraints, they are not adequate
for the representation of dynamic context.

Moreover, ontological representations are not appropriate for resource con-
strained devices. One solution is to keep ontologies in centralized servers and
query the servers to obtain the information. Another solution that has been
studied [Preuveneers and Berbers, 2008] is to efficiently encode ontological in-
formation for less powerful systems.

On a related note, there has been a significant body of work in the domain
of ontology alignment, which is vital for a viable implementation of Ambient
Intelligence systems [Viterbo et al., 2008, Laera et al., 2007]. However, this is
not the subject of this work. We assume that all agents in the system work
with terms from the same ontology (where it is the case), or that ontologies
have already been aligned.
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Associations

The situation is the physical, social and cultural space (context) in which
the activity is carried out (see Chapter 2 in [Riva et al., 2005]). In case of
pseudo-simultaneous activities, the situation is characterized also by the other
activities that are being carried out at the same time. We can consider the
situation as being defined by what concepts are related to the user at the
present time, and how they are related.

Henricksen et al use several types of associations as well as rule-based rea-
soning to take appropriate decisions depending on [Henricksen et al., 2002,
Henricksen and Indulska, 2006, Bettini et al., 2010]. A graphical graph-like
representation is presented, that can also be serialized into XML-based files
[Robinson et al., 2007]. The model – called CML, or Context Modeling Lan-
guage – is based on the Object-Role Model. The associations are of types like
engaged in – between a person and an activity; located at – between a person
or a device and a Location; permitted to use – between a person and a device;
etc. What is important is that relations are also annotated with their origin
(e.g. sensed, profiled, derived, etc) and an indication of quality.

In associative context representations we can also include the Awareness Marks
model [Hervás et al., 2011], in which the traces of interaction between the user
and the application remain in the system, in order to provide the user with
improved, adapted services in the future. The awareness mark created in
the interaction between a user and an application or a device can be used in
the future to improve the interaction between the same user and application,
or between another user and the same application (cross-user interaction),
the same user and another application (cross-object interaction), or even a
different user and application (cross-element interaction).

These two models are very close to our own work, because they use associations
and even graph-like representations. However, the two models are not very
flexible, or not very powerful, respectively: in CML, the types of relations
/ associations are predefined, and reasoning is based on rules; in Awareness
Marks, it is not mentioned how uniform the mark representation is. In our
work we define a more flexible (albeit more loose) model, that uses the same
representation across the system and that is more adapted to the dynamic
aspect of context.

Uncertainty

Several surveys focus on dealing with the uncertainty and inaccuracy of sensed
or otherwise obtained context information [Strang and Linnhoff-Popien, 2004,
Schmidt, 2006, Bettini et al., 2010]. These conditions occur because the infor-
mation may have become obsolete (or stale) – for fast-changing context, be-
cause the sensor is not accurate – like with GPS positioning data, because the
methods to indirectly obtain context information may not be accurate, or be-
cause different methods are used to obtain aggregated / processed information
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– making the results inconsistent.

Conflicting context information – i.e. different components of the system re-
porting conditions that may lead to opposed actions – is discussed by Bikakis
and Antoniou [Bikakis and Antoniou, 2010], that propose the use of defeasible
logic [Nute, 2001], that allows conflicting rules and exceptions.

2.2.3 Context and Situation Recognition

In AmI, the vital features of pro-activity and anticipation are based on the
ability of the system to recognize the user’s context – or situation – and to act
accordingly. There are two aspects of recognition: on the one hand, recogni-
tion of patterns and action, without a formal model for context, done directly
by the sensing entities; on the other hand, recognition of situation based on a
representation of context information, where producing the context informa-
tion and recognizing the situation can be done by separate entities.

In the first case, we are talking about some clear kinds of situation recognition,
involving patterns in the user’s perceivable actions: driving behavior, move-
ment patterns, medication patterns, patterns in the use of resources, body
stance, facial recognition. These patterns are recognized by entities that are
close to the perceiving end of the system, and the information about the rec-
ognized events is then passed forward, or acted upon directly (also see Section
4 in the survey by Cook et al [Cook et al., 2009]). These types of recognition
refer to fairly basic notions (albeit not easy to recognize), from which primary
context information is obtained.

In the second case, the recognition is done at a higher, more abstract level,
and is based on recognizing patterns in the context information already ex-
tracted by other elements of the system. In the great majority of cases, the
link between situation and action is made by means of rules. Condition of the
rules specify certain value for tuple components; or a logical relation between
propositions defining the context; or the existence of certain predefined rela-
tions, with high certainty, between elements of the context; or a certain result
of reasoning upon the context information, for ontology-based representations
[Bettini et al., 2010]. What is to be noted as prevalent in these approaches
to recognition is that most times the result of the recognition is not fed back
into the system – it therefore cannot be used directly by other entities in the
system.

In our approach, an important part of the recognition happens midway be-
tween sensing and application-specific behavior, the representation for context
is uniform, and the results of the recognition are disseminated and can be used
by other entities in the system in the same way (and represented in the same
way) as primary context information.
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2.2.4 Graph Matching for Context-Awareness

The representation for context information that we propose in this work (see
Chapter 5) is based on graphs and on the matching of graphs representing the
user’s context with graphs representing possible situations, a match meaning
the user is in that situation.

Our approach to context representation is rooted in existing knowledge rep-
resentation methods like semantic networks, concept maps and conceptual
graphs [Novak and Cañas, 2006, Sowa, 2000]. These structures can be used
to describe situations (and context) in a more flexible manner and using less
memory than ontological representations.

This approach is related to the CML model in the sense that it too uses a
graph-like structure [Henricksen and Indulska, 2006], but in our approach the
relations and concepts to not have relevance by themselves, but because they
match a preexisting pattern.

As new information – represented by a graph – is assembled with existing
information, our approach also relates to the K-MORPH framework, that
works with aggregating different pieces of information – called knowledge ar-
tifacts – in order to solve problems, discarding artifacts that are not useful
[Hussain and Abidi, 2009]. This approach is particularly interesting with re-
spect to our work, although the authors do not use it in relation to Ambient
Intelligence or to any distributed environment.

Graph matching is also used by the MUSIC project to compute context sim-
ilarity [Kirsch-Pinheiro et al., 2008]. However, the MUSIC project computes
similarity based on the properties of concepts that compose the graph; our ap-
proach is based on the structural similarity of the graph, not on the properties
of concepts.

Algorithms for Graph Matching

Since we use context similarity, i.e. graph matching, for the recognition of sit-
uation, we will also briefly mention some works in the field of graph matching.

There are two main fields of research in which graph matching and similarity
are used [Conte et al., 2004]. One is the detection of the elements in an image,
or the similarity of images. The other is ontology (or schema) alignment.

In image recognition, graphs are used to represent the vicinity between various
elements obtained as a result of image segmentation. The purpose is to detect
features in an image, like for instance human faces [Leung et al., 1995]. Edges
and nodes are not attributed / labeled. Nodes represent the elements of the
image, and an edge between two nodes means that, in the image, the two ele-
ments are neighbors. Matching can be exact or inexact. Among the most im-
portant algorithms for matching of unlabeled graphs are tree-search algorithms
[Ullmann, 1976, Cordella et al., 1998, Cordella et al., 2004] and algorithms for
the matching of a graph against a library of graphs [Messmer and Bunke, 1999,
Messmer and Bunke, 2000]. Some algorithms, especially those for inexact
matching [Bengoetxea et al., 2002], are based on powerful mathematical in-
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struments – like expectation maximization [Luo and Hancock, 2001], gradu-
ated assignment [Gold and Rangarajan, 1996], and learning of assignment co-
efficients [Caetano et al., 2009].

Ontology / schema alignment or mapping, on the other hand, use labeled
graphs in which nodes represent the elements of the schema and edges rep-
resent the relations. Most times it is nodes – i.e. concepts – that must be
matched, in order to find the equivalence between concepts from different
vocabularies or ontologies [Gašević and Hatala, 2005, Hu et al., 2005]. While
the fact that nodes and edges are attributed brings this type of matching closer
to our work, the purpose of these algorithms is to match different vocabular-
ies; our purpose is to match graph patterns against graphs using the same
vocabulary, which in a way is closer to the purpose of image recognition.

2.3 Emergence and Self-Organizing Agents

Whenever a large number of entities interact intensively and form feedback
loops, they form a complex system. Certainly, an ideal deployment of Am-
bient Intelligence could be considered as one such system, containing a large
number of devices continuously exchanging information and adapting to the
environment.

Complex systems are difficult to control, because it is hard to predict the
outcomes of actions, as they are shaped by the intricate feedback loops in the
system. Complex systems are also characterized by emergent properties and
phenomena, which are unexpected with respect to the design of the individual
elements.

However, appropriate design of the entities and tweaking of their properties
may actually lead to intended results at the level of the whole system, and
may be used to control the system not by means of centralized or hierarchical
components, but by means of the very feedback loops that produce emergence.
The resulting complex systems also feature fault-tolerance and robustness in
the face of system-level damage, as well as adaptation features.

The notion of distributed control is what makes emergence and self-organizing
systems interesting with respect to our work, as using self-organization mech-
anisms may help in obtaining a distributed and robust deployment of AmI.

2.3.1 Definitions

What we know is that emergence appears in the context of complex systems –
composed of a large number of interacting entities [Amaral and Ottino, 2004].
Emergence needs two levels of perspective: the inferior, or micro level of the
individual entities and the superior, or macro level of the whole system. A
simple definition is that ”emergence is the concept of some new phenomenon
arising in a system that wasn’t in the system’s specification to start with”
[Standish, 2001]. A more elaborated definition is that ”a system exhibits
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emergence when there are coherent emergents at the macro-level that dy-
namically arise from the interactions between the parts at the micro-level.
Such emergents are novel with respect to the individual parts of the system”
[De Wolf and Holvoet, 2005]. An ”emergent” is a notion that can represent a
property, a structure or a behavior that results from emergence.

The essence of emergence is not actually the novelty or the unexpectedness
of the emergent – as these will fade at later experiments although the emer-
gents will stay the same – but the difference between the description of the
individual and the description of the emergent, from the point of view of an
observer [Standish, 2001, Randles et al., 2006]. If the minimal description of
the individual is taken, it cannot be used to describe the emergents resulting
from the system, therefore the emergent is considered as novel and, potentially,
unexpected.

Some features of emergence can be particularly emphasized [Goldstein, 1999,
Heylighen, 2002, De Wolf and Holvoet, 2005]:

• emergence occurs out of the interactions between the parts of a complex
system;
• emergence is defined in relation with two levels – it is manifested at the

higher level, arising from interactions at the lower level;
• the representation of the emergents cannot be reduced to the specifica-

tion of the individuals;
• emergents only arise after a certain time in which the system has evolved;
• once they occurred, emergents will maintain identity over time;
• emergents arise without any centralized or exterior control;
• the emergent phenomenon is robust and flexible, i.e. it is not influ-

enced by damage on the system (even if the emergent is temporarily not
observable, it will arise again as the system evolves).

2.3.2 Using Reactive Agents

In the field of multi-agents systems, most examples that demonstrate emer-
gent properties use reactive agents [Serugendo et al., 2006]. This is because
they are easier to implement and control, and they are suitable for small de-
vices with low computational power. But, more than anything, systems of
reactive agents are easier to predict and to design so that they will manifest
self-organization or other emergent properties. Notable examples of emergents
in reactive agent systems relate to the formation of a certain geometrical or
geometry-related structure or behavior. Self-organization is reached by mech-
anisms that are usually inspired by nature and the behavior of animal societies
(generally insects) [Mano et al., 2006].

For example, ”smart dust” uses forces of attraction and repulsion and in
some cases simple leader election algorithms to dispose individuals in a multi-
level circular layout [Beurier et al., 2002], or in a ring or lobed shape, that
is resilient to structural damage [Mamei et al., 2004, Zambonelli et al., 2004];
”spider” agents roam through the pixels of an image and use stigmergy to
mark the different areas of the image [Bourjot et al., 2003]; local behavior can
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be used for the gathering of resources in a single area [Randles et al., 2007],
for the foraging of food or the transportation of loads [Unsal and Bay, 1994];
in a very interesting example of dynamic self-organized behavior, agents es-
tablish, by means of emergent coordination, traffic directions through narrow
corridors for the transportation of resources between two areas [Picard, 2005].

2.3.3 The Advantages of Cognitive Features

Although reactive agent systems may be very useful, there are many advan-
tages that a cognitive agent has over a reactive agent. First, it is proactive.
Even if there are no signals, perceptions or stimuli from the environment, a
cognitive agent may act by itself, taking action according to its objectives.
Second, a cognitive agent is aware of its situation and may reason about it. It
is aware of what it is supposed to fulfill as final goal and is capable of making
plans and taking action towards the realization of its goal. The cognitive agent
can use its experience and information about the environment and the conse-
quences of past actions to develop a better plan every time a similar situation
occurs.

Ricci et al. support the concept of cognitive stigmergy [Ricci et al., 2007],
that is inspired from natural, reactive, self-organization (stigmergy, introduced
by Grassé [Grasse, 1959]) but is using cognitive agents and a more complex
environment. The environment is composed of artifacts that agents are using
and in relation to which they make annotations. The usage of shared resources
in the environment by one agent driven by local goals influences the other
agents that have access to the resource, leading to feedback and eventually to
organization. The research shows encouraging results in applying the concepts
from self-organizing reactive architectures to cognitive agent systems.

Other studies of emergent behavior in cognitive agents exist. Emergence of
norms in a social game is possible through social learning (learning of society-
imposed norms) [Hales and Edmonds, 2003, Sen and Airiau, 2007]. Gleizes et
al. show that local cooperative behavior of cognitive agents can lead, by
means of emergence, to better system-wide results [Gleizes et al., 1999]. The
study is continued, using the AMAS (adaptive multi-agent system) technol-
ogy as a framework that facilitates emergent functions based on cooperation
[Capera et al., 2003].

However, the use of cognitive agents in self-organizing systems is still very re-
duced. While, in the present, numerous real-life applications of self-organization
exist (see the book of Prokopenko [Prokopenko, 2008]), they are based on reac-
tive behavior of the individual entities. It is true that these systems are easier
to verify and control, and it is also true that even in reactive agent systems
it is hard to find a good balance between explicitly designed behavior and
implicit, emergent behavior [Prokopenko, 2007], but the features of reactive
systems are limited by the absence of reasoning in agents.
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2.3.4 Design Guidelines and Methodologies

Besides taking inspiration from biological systems, there is also another ap-
proach to the design of self-organization, that is used mostly in wireless sensor
networks. WSNs use simple individual units and, more importantly, need
to consume little power. This approach is also many times validated for-
mally, not only by simulation. It consists of different algorithms used for
routing, resource allocation, structure formation, synchronization, power con-
servation and resilience [Dolev and Tzachar, 2009, Mills, 2007]. Bernadas et
al. demonstrate communication services based on this type of self-organizing
algorithms, with individual agents having a more complex internal behavior
and manifesting features like pro-activity and a certain amount of reason-
ing [Bernadas et al., 2008]. A model for a self-organizing system for com-
munication systems is proposed by Marinescu et al., using cognitive agents
that have local goals and specific available actions. The model is verified
formally and relevant results are shown [Marinescu et al., 2008]. However,
these models address particular concerns in the functionality of a system
and are not very flexible. It is a considerable problem to build a model
that will address more than one concern at a time, and in a generic man-
ner [Marinescu et al., 2008, Mills, 2007].

In this work, it is not our intent to obtain a self-organizing system per se.
Instead, we want to use mechanisms that are used in self-organizing systems
to obtain distributed control and fault tolerance. These mechanisms are based
on feedback loops, and on behavior of the individual entities that generates
a positive reaction for actions that are likely to help the system move toward
a desired state. They are also based on intense communication, and on an
element of randomness to assure variation and to get the system out of a local
optimum state [Olaru and Florea, 2009, Olaru et al., 2009b].
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Chapter 3

Agent Behavior: Relying on
Self-Organization1

In building a Multi-Agent System for Ambient Intelligence, the first aspect
that we have focused on was agent behavior. That is, how should agents
exchange information so that interesting information reaches interested agents,
without centralized control?

We see an Ambient Intelligence environment as a large number of devices
that serve the needs of their respective users. The devices are mostly going
to deal with information: delivering relevant information to interested users,
aggregating, filtering and reasoning about information – being ”information
conveyors” [Weiser, 1993]. The problem that we asked is: given a certain piece
of information, how to deliver that piece of information to the interested agents
– the agents that can use that information to help the users? This is a problem
that is addressed to the intelligent services layer of an AmI environment.

3.1 Approach

The design of the MAS that is presented in this chapter started from the fol-
lowing idea: at realistic scale, an AmI system will have to deal with a very
large number of users and an even greater number of devices that commu-
nicate between each other. The system was conceived bearing in mind the
goals presented in Chapter 1 (especially Section 1.5): use of cognitive software
agents and context-awareness, decentralization, local behavior, possibility of
deployment on devices with different capabilities. Obtaining a coherent global
result (at the level of the whole agent system) is done by using mechanisms of
self-organization.

Why agents? Ambient Intelligence environments need to be distributed
as much as possible in order to be able to deal with the loads imposed by

1The results of the work presented in this chapter have been published in several papers
between 2009 and 2011 [Olaru and Florea, 2009, Olaru et al., 2010c, Olaru et al., 2010b,
Olaru and Gratie, 2010].
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the quantity of information that will be exchanged. Agents are one of the
paradigms that can be used for the implementation of distributed computing.
Moreover, their qualities – such as autonomy and pro-activity – make them
especially appropriate for the implementation of AmI [Ramos et al., 2008].

Why self-organization? A large portion of the devices in AmI environments
will be smart sensors and actuators, which will have a minimal processing
power and storage capacity. But that doesn’t mean that they must necessarily
be controlled by a centralized entity. In order for AmI to be ”intelligent”,
there is no need for the individual entities that it consists of to be intelligent
[Cabri et al., 2005]. Moreover, self-organization allows a system to be robust
and fault-tolerant [Heylighen, 2002], which are features very much needed by
AmI, which will have to be dependable and adaptive to changing conditions.
By means of techniques that are used in self-organizing systems, we have
obtained properties at the global level of the system by using local interaction
and knowledge.

Why cognitive agents? Because cognitive does not necessarily mean very
complex. Agents working with small knowledge bases can be much more useful
than purely reactive agents [Marinescu et al., 2008]. This project was also an
experiment to see what kind of emergent properties can be obtained in a
system formed of cognitive agents (as opposed to the more popular reactive
agents) [Olaru and Florea, 2009, Olaru et al., 2010c].

Why local behavior? First, it will be very difficult to manage all infor-
mation in an AmI environment in a centralized way, or even in a hierarchical
structure. Second, there will be no need too. It is very likely that users will
only be interested in information that is related to something close to them –
close in location, time, activity or social relations. We are not supporting lo-
cality in terms of only location, but also of time, acquaintances and computing
resources.

Context-awareness? Context-awareness is an essential component of any
AmI environment. We see context as vicinity in a domain that considers space,
time, social relationships, computing resources and actions / intentions.

Following the results of may experiments and the study of previous work in the
field of self-organization, we have devised the following principle for obtaining
coherent information sharing at the level of the system, by using only local
agent interaction and knowledge: An agent should send the pieces of
information it is interested in to neighbors that the agent believes
may be interested in those pieces of information.

Determining if a piece of information is interesting (or relevant) to an agent
should be done based on context information. Neighborhood relations between
agents – i.e. the topology of the system – should also be defined according to
context. We will discuss these issues in Chapters 4 and 5.

In this chapter we will discuss details on the implementation of the agent be-
havior, according to the principle above, in the experimental platform called
AmIciTy:Mi , in which we have focused on tweaking agent behavior, and in
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which the topology of the system and the context representation have been
simplified: the topology of the system is based only on spatial relations (prox-
imity between the positions of agents); context is represented by four simple
numerical measures that are meant to control the flow of information through
the system.

3.2 AmIciTy:Mi

The application layer of AmI can also be seen as a middleware: assuring
the context-aware exchange of information, using the hardware and network
to transmit the information, and delivering the relevant information to the
application-specific components and the to the interface. We have named this
middleware AmIciTy:Mi , as a part of the AmIciTy Ambient Intelligence envi-
ronment that we are in the process of building. AmIciTy:Mi was implemented
together Cristian Gratie2.

The AmIciTy middleware is being developed keeping in mind the scale of a
real Ambient Intelligence scenario. In such a situation, there is a very large
number of users and (possibly ”intelligent”) devices: sensors, actuators and
more advanced human-machine interfaces. These devices communicate per-
manently and exchange a very large quantity of information, coming from all
the sensor perceptions, the users themselves, and from information aggrega-
tion. To complicate the problem even more, most of the devices that are used
have limited storage and processing capacity.

This is why the middleware is completely distributed. Each agent in the
middleware is assigned to and is executed on a device. There might be more
agents that are connected to the same device, especially if they handle different
functions. Agents will communicate directly only with the agents assigned
to devices in a certain vicinity. Communication may be done by means of a
wired network but most communication between personal devices will be done
wirelessly.

From the perspective of the devices, the middleware is only accessible by means
of the agents that run on the device. The general view of the system from this
perspective is shown in Figure 3.1. The device’s interface communicates with
the software agent(s) on the device, by means of a uniform data structure,
packing the sent data into such a structure, and unpacking received data from
the structure. When the agent receives new information from the exterior or
from the device, it reasons about this information and, if it considers that
adequate or necessary, it sends the information to other agents in its vicinity.

It is important to point out that AmIciTy:Mi does not exist as a separate
entity, but is an entity that is formed by the totality of the agents composing
it.

2Cristian Gratie is a colleague and fellow PhD student at University Politehnica of
Bucharest. His work was especially directed towards (but not limited to) the development
of the format and processing of scenario files, and towards the implementation of some of
the visualization and logging tools.
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Figure 3.1: The structure of the middleware, as seen from the perspective of the
devices. The ”system”, i.e. the middleware, is actually formed of the
agents that compose it. There is a packing / unpacking step in the inter-
face - agent communication so that the communication will be uniform
over all the middleware.

3.2.1 Context Measures

By context we understand the conditions in which an event occurs and that are
related to the event [Dey and Abowd, 2000, Chen and Kotz, 2000]. Context-
awareness is the feature of a system (here, an AmI system) that makes the
system behave differently depending on these conditions.

Since AmIciTy:Mi was focused on agent behavior and controlling information
sharing across the system, context representation was kept simple. The ob-
jective was to be able to control different aspects of the flow of information
through the system by means of some simple and generic numerical context
measures.

Four context measures were used, one of them being handled implicitly and
the other three being represented by means of simple numeric values. First,
space is inherently considered, because of the structure of the system, that
relies on local behavior and communication. Second, temporal context is im-
plemented as a period of validity for each piece of information. Third, each
piece of information is related to certain domains of interest. Last, each piece
of information carries a direct indication of its relevance.

A more detailed description of these aspects of context-awareness, together
with their influence on how information is shared and spread through the
system is presented below:

Local behavior and interaction – leads to inherent location awareness.
New information will first reach the agents in the area where the information
was created (e.g. where the event took place). Depending on the other aspects
of context-awareness, the information will only stay in the area or will spread
further. Also, when all other measures are equal, agents will give less relevance
to information related to a farther location.

Time persistence – shows for how long the information is relevant. When
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its validity expires, the agents start discarding the piece of information.

Specialty – shows how the information relates to some domains of interest. In
time, agents form their own notion of specialty depending on the information
that they have. New information is considered more relevant if it is more
similar to the agent’s specialty, and agents share relevant information first,
and they share it with agents that are more likely to consider it relevant. This
influences the direction in which information is spread.

Pressure – shows how important it is for the information to spread quickly.
Pressure translates into higher relevance and the agent will treat the informa-
tion with higher priority. Also, the higher the pressure, the more neighbors the
agent will send the information to. This way, pressure controls how quickly
the information spreads.

Context compatibility, or relevance of new information is computed as a func-
tion of the measures of context associated with the new information and of
the context of the agent, comprised of an indication of specialty. In order to
be able to aggregate and compare the different measures, all are quantified
and bounded, and their ranges are all scaled to the interval [0, 1]:

• locality has an explicit quantification as the distance to the source of
the event: Dist ∈ [0, 1], with 0 meaning it refers to this agent and
asymptotically growing to 1 for longer distances;
• persistence: Pers ∈ [0, 1], with 1 meaning the information is valid for-

ever, and 0 meaning it has expired;
• specialty is a vector Spec ∈ [0, 1]× · · · × [0, 1] in which each component

shows the degree of relatedness to a certain domain of interest, and
||Spec|| ≤ 1;
• pressure is also a value Pres ∈ [0, 1].

When computing the relevance of new information, distance, persistence and
pressure are introduced directly in the computation of relevance. Specialty
is compared against the specialty of the agent. Similarity between the two is
computed as follows:

Similarity = 1−
√ ∑

(S1i−S2i)2

n domains of interestsinα, α = arccos( S1·S2
|S1||S2|)

where S1 and S2 are the two specialty vectors, and the sum is for all domains
of interest. The formula has been chosen in order to give lower similarity to
vectors that are at greater angle (different specialties) but also to give higher
similarity when one vector is less specialized than the other.

Relevance is computed as

Rel = Dist+Pers+Pres+Similarity
4 , Rel ∈ [0, 1]

This allows for different types of important facts – a fact can be equally im-
portant if it has high pressure, or if it is of great interest to the agent (similar
to its specialty).

Pressure, specialty and persistence are associated with the pieces of informa-
tion by the source of the information – which is outside the system. The goal
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Figure 3.2: The basic execution cycle of an agent.

of this research was to see how the spread of information can be controlled by
means of this measures.

These measures are associated with pieces of information present in the system,
but agents themselves also feature indications of the context that they are in,
namely their specialty and their pressure. The agent’s pressure is computed as
a weighted mean of the pressure of the facts that it knows, giving more weight
to the facts with higher pressure. The specialty of an agent is initially a null
vector, and it is updated with a certain factor depending on the specialties
of facts that the agent knows. This way, the specialty of an agent ”adapts”
to the information that is currently being shared in the surroundings of the
agent.

3.2.2 Agent Design

Agents in AmIciTy:Mi have been designed so that they are simple, flexible, and
so that an agent with the same structure can run both on the simple processor
of a sensor and on a powerful computer. The agents are cognitive, and their
model is inspired by the BDI model of agency [Rao and Georgeff, 1995]. In
our experiments, particular attention has been given to agents that hold very
small knowledge bases and that would be suited for very small devices like
sensors.

In the design of the agents, inspiration was also taken from the human behav-
ior and thinking. As the quantity of information that will pass through an
agent’s knowledge base over time is quite large and the agent will be unable
to (and it would probably be useless to) store it all, the agent must be able to
sort its knowledge according to its relevance, and it must be able to ”forget”
information that is of no more use or of insufficient relevance.

The general structure and behavior of the agent is presented in Figure 3.2.
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Each agent has a message inbox, a knowledge base (KB), a list of available
goals and a list of current plans.

The information in the agent’s knowledge base is stored in Facts, where Facts
are tuples of the form

〈Agent, knows, Fact〉

Note that the definition is recursive. In prototype phase, the system did not
study a real-life application. Therefore, facts that would normally represent
useful information coming from the environment are replaced with Facts con-
taining a DataContent placeholder, that has an identifier for tracing Facts
relating to that information.

This structure allows the agent to hold information about what it knows but
also about what other agents know. This is how an agent can compute the
specialty of neighbor agents.

In the presented experiments we have used very limited maximum sizes for
the knowledge bases of agents, to show that the agents need very little storage
capacity in order to manifest context-aware behavior. In applications where
different types of devices are involved, agents may have knowledge bases of
different sizes.

3.2.3 Agent Behavior

The behavior of the agent has been designed so that it would be flexible
and adaptive to context. It must be able to work on a very limited machine
and also be able to process more information if working on a more powerful
computer. The general behavior of the agents is quite common for cognitive
agents: in its execution cycle, the agent processes messages that arrived in its
inbox, integrates the new knowledge, then chooses a goal to make plans for, it
makes a plan, and then executes one or more actions from the current ongoing
plan. This cycle is presented in Figure 3.2. More details on the behavior are
presented below.

At the beginning of each cycle the agent checks the messages in the inbox, by
integrating facts in the knowledge base, if they are new. The agent also infers
that the sender knows the fact, which contributes to the agent’s knowledge
about its neighbors.

In the next phase the agent forms a list of potential goals. There are two types
of goals that an agent can have: Inform other agents of some information or
Free some storage capacity. Each goal is assigned an importance, and the
most important goal will be chosen as an intention. The reason for which
we consider Free as a goal of the agent is to have a uniform representation
of all actions that an agent can perform, that are related to its knowledge or
to its communication with other agents. The importance of Inform goals is
computed according to the context measures of the corresponding fact:

• pressure is in the interval [0, 1] and is used directly;
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• similarity between the fact’s specialty and the agent’s specialty is com-
puted based on the distance between the two specialty vectors and on the
angle between them – the calculus has two effects: a larger angle means
less similarity; however, if one of the vectors is significantly smaller in
module (much less specialized), similarity will be higher. The result is a
number in the interval [0, 1];
• recursive depth of the fact (facts that refer to farther agents are less

important), normed in the interval [0, 1].

Importance is computed as the mean value of the three components, allowing
for different types of important facts – a fact can be equally important if it has
high pressure, or if it is of great interest to the agent (similar to its specialty).

Importance for the Free goal is calculated depending on how full the agent’s
storage capacity is, reaching a value of 1 (highest importance) when the knowl-
edge base consumes all available capacity. The agent must always have some
capacity free for new facts that come from other agents.

After choosing a goal, the agent makes a plan for it. For Free goals, the
agent decides what facts to discard. For Inform goals, the agent decides
what neighbors to inform of the corresponding fact. The number of neighbors
to inform is directly related to the pressure of the fact. Agents are chosen
according to their estimated specialty, calculated as a mean specialty of the
facts that the agent knows the neighbor has. After creating the plan, the agent
places it in a queue of ongoing plans. At each cycle the agent will execute
one action in its current plan. Once a plan is completed the agent moves to
execute the next plan. It is possible however to promote plans corresponding
to more important goals to the top of the queue, so that urgent actions will
be performed first.

Formally, we can consider that an agent A is defined as a tuple

A = 〈KB,SA, PA, Goals, P lans〉

An agent can receive and send messages m ∈ M and has the following func-
tions:
learn : M × SA × PA ×KB → KB – the agent integrates the information

from a message in the knowledge base;
update specialty : KB × SA → SA
update pressure : KB × PA → PA

deliberate : KB ×Goals→ Goals – update goals;
plan : Goals× Plans→ Plans – creating a new plan does not modify the

other plans, but may change the order of the queue of plans;
act : Plans×KB →M ×KB – the result of a plan may be an update to

the KB or a message that is sent.

The behavior of the agent changes depending on its context measures. Spe-
cialty directly affects the relevance that is associated with various facts. Higher
relevance associated to facts makes them better candidates for inform mes-
sages sent to other agents, and lower relevance makes facts better candidates
for removal (or ”forgetting”).
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3.3 Evaluation

The AmIciTy:Mi proof-of-concept implementation focused on obtaining an
emergent, coherent, distribution of information across the agent system, while
keeping a very low quantity of knowledge in individual agents.

3.3.1 Platform Details

The proof-of-concept prototype was implemented in Java, with support for
placing the agents in a grid structure or at random positions, with direct
communication only among adjacent agents – in the grid – or between agents
within a certain range – for agents at random positions.

Experiments with 950 to 1000 agents were run, focused on observing charac-
teristics of the spreading of data through the agent system, such as: the speed
of the spreading, the coverage reached by each data piece and the particu-
lar areas preferred for spreading. The outputs of the experiments show how
these characteristics are linked with the measures of context assigned to the
information.

The implementation was focused on speed – so that more experiments could
be carried out. The platform did not use multiple execution threads, but
rather the agents were executed sequentially: at each ”step” of global time,
the agents’ algorithm was executed for one step, one agent after the other.
Messages sent in one step of the global time were only made available to
agents in the next step.

The simple agent behavior and this method of execution meant that between
3 and 5 steps of global time could be executed in one second, on a Intel Core
2 Duo 2.5GHz processor.

3.3.2 Desired Outcome

The desired outcome of experiments was to be able to control the distribution
of information in the agent system by means of the context measures.

The most important context measure is Specialty. The intention is to have
the information characterized by a certain specialty reach the agents in the
system that have similar specialty.

But temporal context is also important: some information expires more quickly
than other, so our intention is to be able to control how long the pieces of
information remain in the system, by means of persistence.

Also related to context is the fact that some information should reach agents
with more urgency. This is what pressure is for, and the intention is to be able
to control the speed with which the information spreads by means of pressure.
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3.3.3 Experimental Scenarios

As with any distributed system that is based on emergent behavior, a great
number of experiments were needed in order to observe and tune the system.
For this purpose, scenarios needed to be used, with different parameters and
containing many events.

In all experiments we have used specialties that relate to three domains of
interest. This is not a limitation of the model or of the implementation, it is
just meant to allow for a better visualization of the results. Thus, we consider
the specialty vector describing the data or the interest of the agent as a color,
with each basic color corresponding to one of the three domains. We called
the three domains A, B and C.

In order to allow easier specification of scenarios, we have used XML files to
characterize the scenarios in a simple and effective manner. The XML files
use special tags designed to allow the specification of complex scenarios. For
example, generating 15 instances of some data and placing them at random
positions in the system is performed by the following XML snippet:

<event type = "inject" pressure="0.1" persistence=".05">

<event.time min="0" max="150" count="15" dev="2" />

<event.domain a="1" b="0" c="0" />

<event.location.x min="0" max="30" dev="2" for-each="time"/>

<event.location.y min="0" max="30" select="1"

for-each="location.x,time" />

</event>

That is, an ”inject” event is characterized by its time – which in the example
is between steps 0 and 150, by the domain of the inserted data, and by the
location – x and y, spanning all the grid. There are 15 moments in time at
which events will happen, for each moment there is an x location, for each
time and x location there is a y location. The features of the system (number
and position of agents) are also given in the scenario XML.

Random values are specified by the interval for the value, and the deviation
(the dev attribute in the XML file). All random events are generated using
a seed, also given in the scenario XML. When running the simulation, a new
seed can be generated, or the previous seed can be used, leading to the exact
same scenario (with the same random values) as before, therefore allowing
reproduction.

The scenarios that were studied follow the following pattern:
• insert several pieces of information into the system, with different spe-

cialties and let them spread until their maximum coverage is reached
and certain areas of interest are established in the system;
• insert ”test” pieces of information, of different specialties, and observe

how they spread according to previously established areas of interest,
while the interest of each agent suffers only small changes; this stage
also shows how old (and less relevant) information is forgotten by the
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agents as they receive the new data;
• insert one or two pieces of information of no particular specialty (equally

related to all domains of interest) but with very high pressure, and ob-
serve if and how fast they reach all the agents in the system

Using the type of scenarios specified above, we can verify the objectives of
our system: that the direction of the information spread is controlled by spe-
cialty; that higher pressure means information spreads faster; that persistence
controls how long does information remain in the system.

3.3.4 System Monitoring and Visualization

The behavior of complex systems is extremely difficult to observe in simple
graphical representations and the study of the system’s behavior means, most
times, the minute observation of the activity log of each agent. This is the
reason why some visualization tools have been developed.

There are two types of graphical outputs: distribution representations and
graph representations. The distribution representation is a 2-dimensional rep-
resentation of the agent system, showing one dot (or one cell) for each agent,
placed at its respective location and having a color that indicates different
things depending on the type of the representation (see for instance Figures
3.3, 3.4 or 3.7). Depending on the particular type of the distribution, there
are:

• fact distributions – the cell is visible if the respective agent has that data
and the color of the cell depends on the specialty of the data (see Figure
3.3 (left), 3.5 and 3.6);
• per-domain interest distributions – the cell is visible if the agent is inter-

ested in that domain, the hue depends on the domain and the intensity
of the color depends on the degree of interest (see Figure 3.4 (b), (c),
(d));
• global interest distributions – the cell shows the specialty of the agent,

the color of which is taken directly from the specialty vector (see Figure
3.3 (right) and Figure 3.4 (a));
• agent balance distribution – the color intensity in the cell shows the

balance of the agent (see Figure 3.8 (a) - (d)).

Graphs representations are value-time graphs that show the evolution of a
particular value over time. The value is the result of the aggregation of a
certain characteristic over the whole agent system, taking either the maximum
value or the mean value across the system. The numeric representation of the
instantaneous value is also displayed under the graph. An example of a graph
representation can be found in Figure 3.8 (e).

When running the platform, an automatic window layout feature places the
relevant distribution and graph representation across the screen, so that the
system can be easily followed through its evolution.
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(a)

(b)

(c)

Figure 3.3: The spread of three data pieces (left) and the evolution of agent interests
(right) at simulation step: (a) 31; (b) 60; (c) 130. The corresponding
data, from left to right, are related to domains A, B, C.

(a) (b) (c) (d)

Figure 3.4: The agent interests at step 130: (a) global, (b) for domain A, (c) for
domain B, (d) for domain C.

3.3.5 Tweaking the Parameters

The behavior of the agents was built and tweaked so that it will contain
mechanisms enabling self-organization of the system. More precisely, there
are feedback loops that are created: the agent state is influenced by the in-
formation it receives, and the decisions of what information it disseminates
are influenced by its state; moreover, the agent will receive information that
it itself has disseminated in the past.

One of the problems that a badly tweaked agent system suffers from is message
or goal overload. If the agents send too many messages, and there is a goal
generated for each received messages, they will quickly overload. Tweaks relate
to how many messages should the agent process in one execution step; or to
how quickly an agent should forget old / unimportant goals.

Knowledge-base related tweaks relate to how should the importance of the
Free goal depend on the occupied capacity of the KB; to how quickly should
fact persistence fade for facts relating to the agent itself and to facts that relate
to other agents; or to how should agent Specialty update when receiving new
pieces of information.
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3.3.6 Results of Experiments

Let us first see how the system evolves in the case of a scenario in the lines
described in Section 3.3.3. What we are interested in is to see how the context
measures that we have defined influence the spread of the ”test” pieces of data.

Initially – at the start of the system’s evolution – none of the agents is in-
terested in a particular domain. During the first phase of the experiment,
three data pieces are used, with the following specialties regarding the given
domains: (1.0, 0.0, 0.0), (0.0, 0.0, 1.0) and (0.0, 1.0, 0.0) – call them A, C, B
according to the corresponding domain. 15 instances of each of the three data
are injected in the system, into randomly chosen agents, at regular intervals
until simulation step 150. Since the specialty of agents is influenced by the
specialty of the data that is received by the agent, the agents’ interests will be
grouped in contiguous regions, as can also be seen in Figure 3.3. Note that the
regions only overlap at their borders. Figure 3.4 shows the agents’ interests
as a whole and for each separate domain.

The next phase of the experiment consists in injecting, at simulation step 130
and around the center of the system, 3 new data pieces with the following spe-
cialties: (0.0, 1.0, 0.1) – call it Bc, (1.0, 0.1, 0.0) – call it Ab, and (0.1, 0.0, 1.0)
– call it Ca. Figure 3.5 shows what happens with these new data, as well as
with the old data. As shown in the figure, the old data is forgotten as new data
arrives. Furthermore, the distribution of the new data is in accordance with
the already established agent interests. Note that the less important specialty
component (0.1 value) is also relevant to the spreading. Indeed, the Ab piece
reaches agents interested in A but also the agents interested in B.

The last part of the scenario tests the behavior of the system for data that is
equally related to all domains, but has high pressure. Two such pieces of data
are inserted in the system, one at the upper left corner and the other at the
center of the grid, at simulation step 200. From the snapshots in Figure 3.6,
one can see that these data manage to reach most agents. This last part of
the scenario also shows that the existence of two data with high pressure in
the system is not a problem (both of them spread to all agents).

The results are not limited to the grid structure (which is again a more conve-
nient way for visualization purposes). Experiments have also been performed
on agents placed randomly in the environment and communicating only with
agents at a distance under a certain threshold. The obtained results were
similar in nature, with the observation that the information took longer to
spread, due to the many points where agents were too far to communicate.
Results of the same type of experiment as above, but with randomly placed
agents, are presented in Figure 3.7.

The results show how generic measures of context can be used, together with
a simple (and fast) agent behavior, in order to obtain context-aware behavior.
Local knowledge and simple context measures meant that knowledge bases of
agents did not need to hold more than 12 root facts, among which the mean
recursive depth was 2, meaning that very little memory was used.
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(a)

(b)

(c)

(d)

Figure 3.5: Agents forget old data (left) as they receive new data (right) at simula-
tion steps: (a) 152; (b) 170; (c) 210; (d) 271. The corresponding data,
from left to right, are related to domains: A, B, C, Ab, Bc, Ca.

(a) (b)

(c) (d)

Figure 3.6: Data with high pressure and relatedness to no particular domain spread-
ing through the system at simulation step: (a) 211; (b) 300; (c) 350; (d)
447.

For further evaluation of our system, we have also developed a measure of
satisfaction for agents. This measure deals with how relevant the facts that
an agent has (that it has received from other agents) are with respect to
its specialty. For every fact, an overall degree of usefulness is calculated,
considering the history of the agent’s specialty (which is recorded throughout
the agent’s evolution) and the fact’s specialty. While it is calculated using the
agent’s history, this measure is instantaneous. Based on it, a balance for the
agent is calculated, that measures the balance between the useful facts (useful
over a certain threshold) and the useless facts.

Let us observe how the agent balance changes throughout the system’s evolu-
tion. We will use the same scenario that we used earlier, and we will observe
the snapshots at the same steps. Figure 3.8 shows the evolution of the agent’s
balance. One can see that at start agents contain many facts that do not
regard their specialty, therefore their balance is low. Later, as ”test” data
begins to spread, the specialty of agents is already formed, so the facts are
deemed useful – the balance of agents is high, reaching 90% useful facts toward
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(a)

(b)

Figure 3.7: (a) Areas of specialization according to the three domains of interest,
with agents randomly placed. (b) Resulting distribution of data.

(a) (b) (c) (d)

(e)

Figure 3.8: (a)-(d) Evolution of the agents’ balance at steps 130, 152, 170 and 210 –
more intense color means better balance. (e) The graph of the average
balance over all agents, between steps 0 and 210.

step 250. This means that the system functions so that the satisfaction of the
agents reaches good levels after a certain time3.

3.4 Lessons Learned

The most important thing that we have learned through the AmIciTy:Mi
experiments was that the principle stated in the preamble of Section 3.1 works,
and that the distribution of information in the agent system can be controlled
by means of the measures of context presented in Section 3.2.1: pressure for
speed, persistence for time span, specialty for direction and covered area.

The project has helped design an agent behavior that is based on local inter-
action and self-organization mechanisms, and that can use knowledge bases of
variable size, including very small ones.

Let us look at how such an agent behavior would work for the reference scenario
from Section 1.3.4, more precisely for the first part of the scenario, in which
Alice’s train is delayed and the Professor is informed that Alice will be slightly

3The contributions related to agent balance have been implemented by Sofia Neaţă, a
Bachelor student at University Politehnica of Bucharest, during he internship at the AI-
MAS Laboratory.
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late for the course.

The scenario features important elements of our approach: the behavior of the
system is context-aware, and the context is changing (dynamic context); the
behavior observed in the scenario is based on the exchange of information be-
tween several agents (Alice’s agent, the Professor’s agent, the agent managing
the Computer Science Course, the agent managing the train, etc.), connected
by relations based on the context of the entities (see also Chapter 4). Exam-
ples of such relations are: Alice and the Professor are both part of the same
activity – the Computer Science Course, which is part of the University. The
activity of Alice may be managed by a specialized Schedule agent. The service
that gives information about the present and missing students may be itself
an agent – the CourseStarter.

The agent behavior presented in this chapter is necessary so that the infor-
mation about Alice being late is disseminated, starting from Alice’s agent,
passing through Alice’s Scheduler, through the agent managing the Computer
Science Course and reaching the CourseStarter service which will display it
to the Professor. There may be other agents with which Alice’s agent com-
municates, but they will not be considered as potentially interested in the
information that Alice is late for the CS Course. Even if this information is
sent to the University agent (as Alice is a student at the University) the Uni-
versity agent will most likely discard it as it is not interested in the particulars
of Alice’s attendance to courses.

Of course, in order to obtain the desired outcome, the agents need a better
topology and a semantic-aware manner of computing the relevance of infor-
mation, but the basic behavior of agents would remain the one presented in
this section.

3.5 Perspectives

The step that naturally followed the AmIciTy:Mi was the development of the
aspects that were kept simple in the platform: agent topology and represen-
tation of context. Agents should be neighbors not only if they have nearby
positions, but also if they share other types of context. This has been stud-
ied in the Ao Dai project, presented in Chapter 4. Moreover, context should
be represented in a more advanced manner than just by a Specialty vector
and measures of persistence and pressure. This is why a graph-based repre-
sentation of context, together with context patterns, have been developed, as
presented in Chapter 5.

But there are many perspectives for the AmIciTy:Mi platform itself. It makes
a great platform to study complex systems formed of large number of agents
with similar behavior. It could be extended to support agents of different sizes
and agents that move through space. It could also be used to develop new
measures for context, as well as new measures for evaluating the evolution of
the system.
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Chapter 4

Structuring the Agent
System1

Following the implementation of and the experiments with the AmIciTy:Mi
project – presented in the previous chapter, it was clear that more structure
was needed for the system, beyond the simple space-related topology of the
AmIciTy agents.

An essential factor in the effort to find a better system topology was the work
with the CLAIM agent-oriented programming language (Computational Lan-
guage for Autonomous, Intelligent and Mobile agents) and the Sympa platform
(Système Multi-Plateformes d’Agents) [Suna and El Fallah Seghrouchni, 2004].
Beside the advantage of being agent-oriented, CLAIM is inspired by pro-
cess calculus, and more precisely by the ambient calculus of Luca Cardelli
[Cardelli and Gordon, 2000]. By having mobile ambients as foundations of
the language, CLAIM agents are characterized by mobility, and specifically
hierarchical mobility. That is, agents are placed in a hierarchy and when one
agent moves to another machine, its entire sub-tree of agents moves with it,
automatically.

Our approach to creating a context-aware agent topology – presented in Sec-
tion 4.1 – is based on the idea of mapping the hierarchical aspects of context
to a hierarchy of agents. This approach has been validated for a first time
with the Ao Dai project.

4.1 Approach

From the point of view of the application layer, it is context-awareness that
is the solution for a predictable, natural flow of information. Like in social
networks and shopping sites, one can assume that the user will be interested in
things that are related to what he or she already knows, to what he or she does,
and to the people that he or she is acquainted with. It is unlikely that someone

1The results of the work presented in this chapter have been published in our paper for
PRIMA 2010 [El Fallah Seghrouchni et al., 2010b, El Fallah Seghrouchni et al., 2011].
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is normally interested in something that bears no relation whatsoever with any
part of his or her life. Relevant information is information that is related to
the context that the user is in. Context has several aspects: physical space,
time, activity (current, past or planned), social relations and (computational)
resources. Considering a space in which the dimensions relate to these five
aspects, relevance of information may be defined as proximity in this space.

As context is based on this sort of locality, this also solves the problem of
information overload. The user can only do one thing at a time, be in only
one place, only a number of past actions are still relevant and only a limited
number of actions can be planned. So the context space of the user is limited
and will only be related to a limited amount of information, that itself can be
sorted according to its degree of relevance toward the current context.

The need for more structure for the system comes from two directions. First,
in the context of the AmIciTy framework, the agent behavior is to exchange in-
teresting information with the potentially interested neighbors in the topology
of the system. But agents that are potentially interested in the information
should share some context with the agent that is sending the information.
That is why the structure of the system should be based on shared context.

Moreover, our commitment to a distributed system favors a topology that is
decentralized, but a policy is needed to know which agent should communicate
with which. Spatial proximity is one option, that is adequate for wireless
sensor networks, for instance. But we chose to use other aspects of context as
well. One of them – that has been integrated in Ao Dai – is computational
context, i.e. the relations between devices, services, and spaces.

4.1.1 CLAIM and Sympa

As an agent-oriented programming language, CLAIM eases the task of im-
plementing multi-agent systems [Suna and El Fallah Seghrouchni, 2004]. It
works on top of Java, giving direct access to Java resources if needed. Agents
implemented in CLAIM are executed using the Sympa platform, that manages
the agents’ life cycle and also their mobility.

The CLAIM language is based on explicit declaration of agent’s characteristics.
For example, the code in Figure 4.1 shows a part of the definition of agent
PDA in the Ao Dai project.

Agents are characterized by their parent in the agent hierarchy, their knowl-
edge – represented as first order predicates, their goals, messages that they
can receive, capabilities, processes that they execute, and agents that are their
children. Capabilities are activated by certain messages that are received, or
certain conditions that can occur (that are verified continuously).

For instance, in the example above, when the agent PDA receives a message
about its new location, it will execute the action ”migrate”. In this action,
it checks if its actual location is already the location brought by the message
(which is represented by the variable ?name). If it does, the agent ignores
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PDA.adf agent definition file
1. defineAgentClass PDA(?w,?h,?xi,?yi){
2. authority = null;
3. parent = null;
4. knowledge = {location(?xi,?yi); type(1);}
5. goals = null;
6. messages = null;
7. capabilities = {
8. message = PDAatLoc (?name,?xnew,?ynew);
9. condition = null;
10. do{send(this,migrateTo(?name))}
11. effects = null;
12. }

13. migrate{
14. message = migrateTo(?name);
15. condition = not(Java(PDA.isParent(this,?name)));
16. do{send(this,removeOldNavi(?name))

.moveTo(this,?name).send(this,demandNavi(?name))}
17. effects=null;
18. }
19. . . .
20. processes={send(this,starting())}
21. agents=null;
22. }

Figure 4.1: Sample of CLAIM code, used in the Ao Dai project for the PDA agent.

the message, otherwise, it will move to the new site by calling the function
”moveTo()”. If the new site is located in another computer in the network,
the agent PDA and all its children will migrate to this new computer.

It is important to observe that agents are part of an agent hierarchy. There
is one or more logical trees of agents, each agent being able to have a parent
and a certain number of children. This idea of having an agent hierarchy is
central to our approach.

It is also important that CLAIM agents are mobile, featuring strong mobility:
when they move to another machine, their execution continues without losing
knowledge, messages or capabilities. The developer, in this case, need not
to worry about the code migration and registration problems that may arise.
The language takes care of it, concentrating the agents’ information in the
Administration System. To address the security issues concerning mobile code,
CLAIM offers some features like the agent’s authority validation, and also
allows the developer to decide if an agent must have some special access or if
an agent must have some resource denied. The sum of these features creates a
powerful platform to the development of agent-oriented mobile applications.

From the point of view of this work, there are two structures that agents
are part of: the physical structure, where each agent executes on a certain
machine; and the logical structure, where agents are part of logical hierarchies,
that may well exist across multiple machines.
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4.1.2 Structure of Context vs. Hierarchy of Agents

Although many AmI applications presented in the literature consider context-
awareness as being related only to location and smart spaces, there much more
to context than that (see also Section 2.2). Research in context-awareness
shows that there are many aspects of context. One classification of context
[Chen and Kotz, 2000] divides context into computational context – available
computing and networking resources, including the cost for using them; user
context – user’s profile, location, people and objects nearby, social situation;
physical context – light and noise levels, temperature, traffic conditions, etc;
and time context – the current time coordinate of the user and related in-
formation (like the season, for instance). Context can be further classified
[Dey and Abowd, 2000] as primary – sensed directly by sensors and special-
ized devices – and secondary – which is inferred from the primary context.
Another type of context is activity – information about the current activity
of the user, and related devices and people [Henricksen and Indulska, 2006].

In our work, we deal with 5 types of context: spatial context, computational
context, temporal context, activity context, and social context. One can ob-
serve that the structure of the 5 types of context is, to a significant extent,
hierarchical: places are part of larger places; computational resources cover
certain spaces, are located in certain places, and services run on certain de-
vices; time can be iteratively divided in intervals of time; activities are formed
of sub-activities; and social groups may also have hierarchies. Moreover, activ-
ities take place in a certain interval of time, and concern certain users, which,
by participating in the same activity, form a group. As these types of context
are hierarchical, it means that the current context of a user is in relation with
several of these hierarchies: the user is in a certain place, at a certain time,
participating in a certain activity, using certain devices and services.

Since both context and the CLAIM agent programming language are related to
hierarchical structures, we can attempt two connect the two, by mapping the
structure of the multi-agent system (implemented in CLAIM) to the structure
of the current context. This offers not only a representation of context by
means of the structure of the multi-agent system itself, but it also offers a
means for agents to easily communicate only within their context. This is the
central idea of the Ao Dai project.

4.2 The Ao Dai Project

The purpose of the Ao Dai project is to implemented a simple AmI-oriented
multi-agent system scenario, in which agents are assigned to different elements
of context – places, devices, services, users – and hierarchical relations between
the agents reflect the hierarchical structure of context. In the scenario, a user
is pro-actively assisted in navigating through the floor of a building and in
locating computational resources needed for a presentation.

The Ao Dai project has been implemented in collaboration with Thi Thuy
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(a) (b)

Figure 4.2: Visual representations of sample agent hierarchies: logical (a), and both
physical and logical (b).

Nga Nguyen and Diego Salomone-Bruno, under the supervision of prof. Amal
El Fallah Seghrouchni. The scenario presented below has been demonstrated
in a simulated environment, running on two different machines, during the 5th
NII-LIP6 Workshop, held in June 2010 in Paris, France2.

4.2.1 Design Idea

The architecture of the Ao Dai system revolves around one critical idea: map-
ping different contexts to different parts of the logical hierarchy of agents
formed by the parent / children relationships in CLAIM agents.

Location is, notably, the most used context in applications, because it reflects
an important set of physical contents [Dey and Abowd, 2000]. In the Ao Dai
project, besides location, we also consider as part of the user’s context the
available computing resources around him and his preferences.

The context-awareness in Ao Dai is done by exploiting the particular hier-
archical agent structure that is offered by the CLAIM language. In CLAIM
it is very easy for the developer to instruct agents to move from one parent
to the other, and an agent moves, automatically, along with its entire sub-
hierarchy of agents. This resembles the mobile ambients described by Cardelli
[Cardelli and Gordon, 2000] and is an essential advantage when implementing
context-awareness. That is because agents, while representing devices or loca-
tions, can also represent contexts, allowing the developer to describe, in fact,
a hierarchy of contexts.

For example, when the user is inside a room, its agent is, in the hierarchy, a
child of the agent managing that room. The children of user’s agent – devices
or services – are also in the same context. When the user moves to another
room, the user’s agent changes parent and, along with it, its children move as

2Workshop held in collaboration by the National Institute of Informatics in Tokyo and
the Laboratory of Computer Science of University Paris 6. Details at http://www-desir.

lip6.fr/~herpsonc/5workshopNii/program.htm
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well, therefore changing context. Some devices may not be able to move along
with the user (e.g. fixed screens, etc.) so they will determine that the new
context is incompatible with their properties, moving back to be children of
the agent managing the room.

But context is not only about location, and the hierarchical structure that
is offered by CLAIM can be used for easy implementation of other types of
context. One of them is computational context. When the user uses a service,
an agent is created that offers that service and that becomes a child of the
user’s agent. It is easy for the service to interrogate its parent in order to find
out more about its capabilities. Conversely, it is easy for the user’s agent to
check on its children – services or devices – in order to find the resources and
capabilities that the user is able to use.

One last type of context that is handled in Ao Dai is user preferences. The
user is able to input preferences on the capabilities of devices that it needs to
use. These preferences are then integrated in the queries that are launched
by the agents. While the structure offered by CLAIM is not directly useful
for this aspect, the preferences help find not only the closest device with the
required capability, but also the closest device that fulfills certain user require-
ments. Preferences can also be used to limit the range of the search, which
is meaningful from the context-aware point of view: a device that is closer in
the agent hierarchy also shares more context with the user.

4.2.2 Scenario

In the project, we have studied several scenarios including the following (see
also Figure 4.3): a user has a meeting in a building that he / she does not
previously know. When arriving at the right floor, the user’s PDA automat-
ically connects to a local wireless access point. A CLAIM agent executes on
the user’s PDA – we will call this agent PDA. Another agent executes on a
local machine and manages the context of the building’s floor – call it Floor.
Floor detects the presence of the user’s PDA, and instructs the PDA agent to
move in the agent structure and become a child of Floor. The movement is
only logical: the agents keep executing on the same machines as before.

When PDA enters the floor, Floor also spawns a new agent – called Navigator
– and instructs it to move as a child of PDA. This time, the movement is not
only logical: Navigator is a mobile agent that actually arrives on the user’s
PDA and will execute there for all the time during which the user is on the
floor. The Navigator can provide PDA (and inherently the user) with a map
of the floor, can translate indications of the floor’s sensors (sent to Navigator
by Floor, and through PDA) into positions on the graphical map, and can
calculate paths between the offices on the floor. Navigator is an agent that
offers to the user services that are available and only makes sense in the context
of the floor.

For displaying the map, PDA may detect that its screen is too small too
appropriately display the map, so PDA will proactively initiate the search for
a larger screen in the nearby area. The search can have several criteria: the
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(a) (b)

(c)

(d)

Figure 4.3: Steps of the Ao Dai scenario: a user with a PDA enters the floor, Floor
takes PDA as a child and creates a Navigator service (a); Navigator is
sent as child of PDA (b); PDA requires a screen, which is found as child
of Floor (c); PDA gains control of Screen.

space in which the search will take place (the current office, a nearby office, the
whole floor), the range in which to search, and the minimal size of the searched
screen. Devices are searched by the capabilities they offer – in this case the
display capability is needed. PDA sends the query to its parent – Floor – which
in turn locates among its children an agent Screen, that manages a physical
screen that fits the requirements, is located near to the user and is available.
Screen answers the query and PDA asks it to move to become its child. Being
a child of PDA also marks the fact that Screen is in use by the user, and PDA
gains control over the displayed information. Agent Screen may either run
on the actual intelligent screen, or may only manage the screen while being
executed on a server. When the user moves farther from the screen, the PDA
will detect that the context is no longer compatible and will free Screen, which
will return to be a child of Floor.
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Figure 4.4: The interface for the simulation, displaying the floor plan of a corridor
in the LIP6 laboratory.

4.2.3 Implementation

In the implementation of the scenario presented in Section 4.2.2, there are
three major types of agents: the Site agent (of subtypes Floor and Office),
the Device/Service agent (e.g. Navigator agent, Agenda, Screen) and the
PDA agent, the latter with the specific role of representing the user during
the simulation. Also see Figures 4.2 and 4.3.

• The Site agent is used to determine the physical relationship between
the agents. It means that an Office agent is a child of a Floor agent only
if it is physically located on the given floor.
• The Service (or Device) agent has the capability to offer to the other

agents some specific service. It may be in a direct or indirect way, like
showing some information on the screen or advising other agents of the
user meeting.
• The PDA agent works like a personal device that follows the user through

his tasks. The most important features of this agent are the fact that
the PDA moves physically with user and has the CLAIM capability of
managing requests for services or devices. It also stores user’s prefer-
ences. It is important to note that the PDA actions will depend mostly
of the user’s current context.

In the first version of this project, the context is directly sensed (in a simulated
manner) by the PDA and the Site Agents. In real applications, an additional
layer would be needed to capture the sensor information and translate it into
useful data.

In a highly distributed AmI environment, a good representation of context
and context-related relations between devices means that most of the com-
munication will happen only at a local level within the structure formed by
these relations. In Ao Dai, the CLAIM agent hierarchy facilitates this: agents
sharing a parent share a context.
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To preserve the hierarchy of agents, agents are allowed to interact only with
their parent and their children. Take for example the search for devices (see
Figure 4.3). When agent PDA wants to search for a device with a certain
capability and certain criteria, it must send a request to its parent, for example
agent Floor. Once the request received, agent Floor searches itself to see if
it has the requested capability and it satisfies the criteria. If it does, Floor
answers immediately to agent PDA, in the other case, it searches in all of
its children (if any) except the agent who invoked the search (agent PDA).
After all of its children have answered, agent Floor checks if there are one
or more children that have the capability requested and satisfy the criteria.
If it has a confirmation answer, it sends the search result which contains the
information about the found device(s) to agent PDA and the search is finished.
If not, agent Floor has to search in its parent (if any). After the parent has
answered, the agent floor sends the search result to agent PDA and finishes
the search. The search process is executed recursively. User preferences can
be used to limit the range of the search to closer contexts.

The advantage of using such a protocol in conjunction with mapping context
over the agent hierarchy is that the search will usually end very quickly, as-
suming the user will most times ask for devices that are likely to exist in his
context. The search is executed in the current context first, and then in the
parent context and sibling contexts.

4.3 Lessons Learned

The experience of the Ao Dai project has taught us valuable lessons about
the implementation of Ambient Intelligence applications. On the one hand,
it was about the requirements of creating a scenario closer to real-life, and
about the difficulties of simulating such a scenario. Real-life scenarios come
with the need for credibility, and it is more difficult to restrict the world of the
application to just a few elements. Also, the simulation of scenarios requires
the tools to input events to the system, and the tools to visualize the system.
Although these were fairly primitive in the first implementation of Ao Dai, we
have learned what requirements exist for future implementations.

On the other hand, we have learned about how context can be linked to the
topology of the agent system, and about the advantages of such an archi-
tecture. First, the possibility of local interaction, and local searches, in a
distributed environment. Although the Ao Dai project only used few agents,
there was no central agent. Second, the hierarchical structure that is related
to context makes it much easier to understand how the system works, and the
communication between agents becomes much more intuitive.

Another important thing that was learned was that CLAIM is a language that
is particularly appropriate for the implementation of this type of application,
and its hierarchical structure for the agent system is of great help for the
representation of context that we have introduced.
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4.4 Perspectives

The Ao Dai project was not an isolated project. It has lead to several fol-
lowups, both in theoretical development as well as in the development of the
platform.

As a theoretical proof-of-concept, the research that followed extended the idea
of mapping context to structure of the agent system. More types of context
were considered, leading to several types of agents and specific hierarchical
relations between agents, depending on the type of shared context (see Section
5.3).

As a platform for AmI applications, the Ao Dai project lead to the cre-
ation of a new agent platform, underpinned by the JADE Agent Develop-
ment Framework [Bellifemine et al., 2001], and using a cleaner and simpler
version of CLAIM, that was named S-CLAIM, and that is more focused on
agent-characteristic features, rather than being a full-featured programming
language (see Chapter 6).

Last but not least, the Ao Dai project, initially a collaboration between stu-
dents from several universities in Europe, Brazil and Vietnam3, has become
the base for a new project lead by teams from the LIP6 laboratory in Paris,
the AI-MAS laboratory in Bucharest, and Honiden-Lab at the NII institute
in Tokio.

3MAS team from University Pierre et Marie Curie (Paris 6), AI-MAS from University
”Politehnica” of Bucharest, IFI institute form Hanoi and PUC-Rio University from Brazil.
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Chapter 5

Improving
Context-Awareness

There are many definitions for what context is. One of the dictionary defini-
tions refers to context as ”the interrelated conditions in which something exists
or occurs”1. Another definition states that context is ”that which constrains
something without intervening in it explicitly” [Brezillon and Pomerol, 1999].
These vague definitions point to the fact that the elements that compose the
context have an influence on what is happening, but they are somewhat ex-
ternal to it.

In the field of Ambient Intelligence and context-aware applications, there is
one definition that is more cited than others, given by Dey in 2001: ”Context
is any information that can be used to characterize the situation of an entity.
An entity is a person, place, or object that is considered relevant to the inter-
action between a user and an application, including the user and applications
themselves” [Dey, 2001].

As for context-awareness, being context-aware is that property of an appli-
cation that it automatically adapts to discovered context, by changing the ap-
plication’s behavior accordingly [Chen and Kotz, 2000]. For AmI applications
and infrastructures, context is fundamental, as the capabilities of being pro-
active and non-intrusive, and natural and intuitive, require the application to
understand the context and the expectations of the user – the same action
for the same causes may be regarded as appropriate in some contexts and as
unappropriate in others.

To exemplify, let us reiterate our short example in Section 1.3.2: a researcher
on the last day before the deadline for an important conference, writing the
article (that has been left for the last moment) may be annoyed to be notified
of a message from a colleague regarding a interesting link that relates to their
research field. Normally that wouldn’t happen, but in this particular context,
it is best to show the notification for the message only on the following day.

1The second meaning of the word ”context” (the first refers to texts) from http://www.

merriam-webster.com/dictionary/context.
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Level Context-aware elements Result

System
(outside the agent)

Context-aware relations be-
tween agents

Context-aware topol-
ogy

Agent
(inside the agent)

Context representation and
context patterns

Context-aware behav-
ior

Table 5.1: Elements of our approach: the level, the implementation, and the result.

A context-aware application (and an AmI application in particular) must be
able to access context information (e.g. know what is the activity of the
researcher, know when is the deadline for the article), must understand the
context (e.g. understand the relations between the different facts, be able to
evaluate the importance of the message that is received) and must be able to
decide upon the correct context-aware action (e.g. know about previous
user experience and expectations, and also actually be in charge of managing
notifications).

Our goal is to integrate context-awareness in a multi-agent system for
Ambient Intelligence, so that agents naturally access, process and
share context information.

This chapter presents our approach to context representation and context-
aware behavior that is placed in the context of the approach to an AmI mid-
dleware presented in Chapter 3, but much more improved. Section 5.1 gives
a holistic perspective on our approach to context-awareness and describes the
formal model for the multi-agent system. Following are details on the two
aspects of context-awareness: first, a better representation for the context of
information and for the context of the agent, as well as means to recognize rel-
evant information in the given context, using context graphs, context patterns
and context matching – Section 5.2; second, a context-oriented topology for
the agent system that is built upon the concepts developed in Chapter 4, but
using a more general mapping between context and agent system topology,
which is also integrated with the context graphs inside the agent – Section
5.3. Last, an improved agent behavior is described, based on the elements of
context-awareness in the previous sections – Section 5.4.

5.1 A Holistic Approach to Context-Awareness

Our approach to building a multi-agent system for the application layer of
Ambient Intelligence features two aspects: the context-aware topology of the
agent system and the use of context patterns to recognize relevant information.
Beside these two elements, the behavior of the agents relies on the exchange
of information with neighbor agents in order to spread interesting information
(with respect to the current context).

Relying on local information exchange has proved effective in previous stud-
ies (see Chapter 3), in which pieces of information successfully spread in a
multi-agent system where the agents had a preference only for certain types of
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information. The information did spread quickly and correctly, even though
each agent had only a very small knowledge base that referred only to its own
information and to some of the neighbors’ information. However, AmIciTy:Mi
used a space-based topology – two agents were neighbors (i.e. could communi-
cate directly) only if they were within a certain distance of each other – and a
simple indication of context – information was characterized by some domains
of interest, its persistence and a measure of importance.

In this chapter we extend our approach with an improved topology – that con-
siders shared context of more types – and improved computing of relevance –
the relevance of the information is computed using a graph-based representa-
tion for information and also graph patterns that represent the interest of the
agent. We present the elements of our approach in Table 5.1.

5.1.1 A Formal Model for the Multi-Agent System

The multi-agent system is organized on three levels: containers, agents, and
knowledge / context information. The current state of the system represents
the current state of the world, according to the perspective of the system as a
whole. Likewise, the context graphs held by each agent represent the current
state of the world from the perspective of the agent.

Containers are assigned to physical machines, and at a moment of time each
agent executes on one container. Each agent has knowledge, represented by
its context graph, and by its context patterns. Each of the three levels forms
a graph, that is a subgraph of the whole three-level graph, that we will call
the Tri-Graph.

The containers form a complete subgraph ContainerGraph:
ContainerGraph = (Containers, Connections)
Containers = {Container | Container is a container that allows the exe-

cution agents }
Connections = {(Ci, Cj) | Ci, Cj ∈ Containers}

Connections shows from what container to what other container can the
agents move. In this work it will be considered as containing a pair for each
two containers.

The agents form the subgraph AgentGraph in which edges are labeled with
types of relations related to shared context (see Section 5.3.2): is-in, part-of,
etc.:
AgentGraph = (Agents,AgentRelations);
Agents ⊂ AgentNames;
AgentRelations = {(Ai, Aj , Relation)} where Ai, Aj ∈ Agents

and Relation ∈ AgentRelationTypes;
AgentRelationTypes = {is-in, part-of , of , in, controlled-by, executes-on}.

The assignment between agents and containers is done by a supplementary
component of the Tri-Graph – AgentLocations, that links the container level
with the agent level:
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AgentLocations ⊂ Agents× Containers× {resides-on}, where
∀A ∈ Agents,∃ (A,Ci, resides-on) ∈ AgentLocations, and
6 ∃j 6= i, (A,Cj , resides-on) ∈ AgentLocations.

An agent A is a tuple A(Name,CGA, Patterns,R, I, Goallist), containing
the agent’s name, context graph, set of patterns, relations with other agents,
interest information, and goal list. These components will be discussed in
detail in Sections 5.2.2 and 5.4.

The relations component of the agent describes all the relations of the agent
with the other agents:
R ⊂ (AgentNames− {Name})×AgentRelationTypes× {in, out}.

The Tri-Graph is formed by the reunion of the graphs for containers, agents,
and agent knowledge:
Tri-Graph = (Nodes,Edges), where
Nodes = Containers ∪Agents ∪

⋃
A agent

CGA.Concepts

Edges = Connections ∪AgentRelations ∪AgentLocations
∪

⋃
A agent

CGA.Relations

Note that, as we have Containers ⊂ Concepts, Agents ⊂ Concepts, and also
AgentRelationTypes ⊂ Relations, it is possible that the reunions of nodes and
edges from the agents’ context graphs already contain the other components
of the equations above, but that is not strictly necessary.

Also note that an agent may ”know” any part of the Tri-Graph (at any level),
therefore ∀A agent, CGA ⊂ Tri-Graph.

In the sections that follow, we will discuss the details of context-awareness
inside the agent – context graphs, patterns, and matching – and outside the
agent – the context-aware topology of the agent system.

5.2 Context-Awareness Inside the Agent2

As we have seen in Section 2.2, context-awareness is assured by obtaining
context information – which is usually related to physical factors, most notably
location – and deciding upon appropriate action by means of rules.

There are several issues regarding context-awareness as presented by many
AmI applications in the field [Perttunen et al., 2009, Bettini et al., 2010]: ei-
ther the representation of context is very simple (tuples or key-value pairs),
being easy to process but very limited in possibilities; or the representation is
very complex, ontologies are used, and the processing is most times external-
ized to ”context servers”. Either way, there is little exploitation of the actual
relations between concepts.

In our approach towards an implementation of Ambient Intelligence, we are

2The results of the work presented in this section have been published in our paper for
IsAmI 2011 [Olaru et al., 2011]
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trying to build mechanisms and representations that facilitate a more flexible
approach to AmI and context-awareness, while in the same time are easy to
implement and can work on resource-constrained devices.

After discussing the elements that lead to our approach in Sections 5.2.1, we
present in Section 5.2.2 a simple formalism that allows agents in a multi-agent
system, that have only local knowledge, to share and process context-related
information and to solve problems by using context matching (Section 5.2.3).

5.2.1 ”Context as a Dressing of a Focus”3

When the agents feature a more advanced representation of their knowledge,
one may ask what is the difference between the knowledge of the agent and the
information about context. Context information is a part of agent’s knowledge
(it is something that the agent knows) but what knowledge is not context
information?

As pointed out by the work of Brezillon [Brézillon and Brézillon, 2007], the
discriminating factor between what they call external knowledge
and contextual knowledge is the focus. In case of user-application in-
teraction, the focus of the user’s attention. Contextual information is that
information which is related to the current focus, and everything else is exter-
nal knowledge. The focus changes either as a cause of external events, or as a
cause of internal decisions.

But how do we know what is the focus? And how do we know what is rel-
evant with respect to it? In the experiments presented in Chapter 3, the
agent was interested in information that was compatible with its specialty.
As new relevant information was received, with slightly different specialties,
the specialty of the agent changed. In those experiments, we could consider
that the focus was current specialty – this influenced what information was
considered relevant, and also changed with the newly received information. So
we can consider that as the relevance of information is depending on context,
conversely what characterizes the focus is what information is considered as
relevant.

Based on the work of Henricksen and her colleagues [Henricksen et al., 2002,
Henricksen and Indulska, 2006], that represent context information as a set of
associations, we choose to represent context information as a graph – the Con-
text Graph of the agent. Information in this graph will be all the information
that the agent has and that is currently relevant to the agent’s activity. The
general focus of the agent’s activity will be defined by the situations that it is
able to handle, which will be represented by means of context patterns, that
are graphs with generic labels, and which fit a certain range of ”concrete”
graphs. An agent’s patterns also show what kind of information is relevant to
the agent.

While representing knowledge as graphs is nowhere near new, this work brings

3The quotation reads the title of the paper by Brezillon and Brezillon
[Brézillon and Brézillon, 2007].
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two important novelties: first, the representation of context information as
graphs; second, using matching of context patterns against the context graph
to detect context compatibility.

5.2.2 Defining Context Graphs and Patterns

Each agent A has a Context Graph CGA = (V,E) that contains the informa-
tion that is relevant to its function.
CGA = (V,E), where V ⊂ Concepts and E = {edge(from, to, value,

persistence) | , from, to ∈ Concepts, value ∈ Relations, persistence ∈ (0, 1]
}

The elements of Concepts and Relations are strings or URIs; Relations also
contains the empty string, for unnamed relations.

For instance, the agent that assists Alice (from our reference scenario in Section
1.3.4) would have a graph that contains parts of Alice’s schedule, like in Figure
5.1.

In order for agents to be able to recognize situation, we introduce context
patterns [Olaru and Florea, 2010a, Olaru et al., 2011]. A pattern represents
a set of associations that has been observed to occur many times and that is
likely to occur again. Patterns may come from past perceptions of the agent
on the user’s context or be extracted by means of data mining techniques
from the user’s history of contexts. Commonsense patterns may come from
public databases or be exchanged between agents. A pattern is also a graph,
but there are several additional features that makes it match a wider range
of situations. For instance, some nodes may be labeled with ”?”; also, edges
may contain regular expressions.

An agent has a set of context patterns Patterns:
Patterns = {(GP

s , relevance, persistence) | s ∈ PatternNames, GP
s a

graph pattern, relevance, persistence ∈ (0, 1]}.

A context pattern s is defined as a graph GP
s that has some special proper-

ties, as follows4:
GP

s = (V P
s , E

P
s ), the graph is the pair of vertices plus edges.

V P
s = {vPi (label) | label ∈ Concepts ∪ {?}}, with the condition that
∃ i 6= j, vPi .label = vPj .label ⇒ vPi .label = vPj .label =?, that is there cannot

be multiple nodes with the same label, if the label is not a question mark.
EP

s = {(from, to, label, characteristic, actionable)},
with from, to ∈ V P

s , label ∈ Regexps(Relations),
characteristic, actionable ∈ (0, 1],
where we noted Regexps(Alphabet) the set of all regular expressions that

can be build over Alphabet.

Besides the vertices and the label of an edge, there are to other features that
define it: characteristic defines how characteristic the edge is for the pattern,

4We will mark with ” P ” graphs and elements that contain ? nodes, regular expressions,
and other generic features.
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Figure 5.1: The context graph of the agent assisting Alice, showing information about
Alice’s activity.

Figure 5.2: Context pattern matching the time interval in which Alice will attend the CS
course.

and influences the measurement of how well a pattern matches a subgraph;
actionability measures how correct it would be for the agent to infer the
existence of this edge in the context graph if the pattern matches a subgraph
in CG, but this edge is missing.

Beside the graph itself, the pattern is also characterized by two other properties
that are stored in the Patterns component of the agent description: relevance
shows how important an information from the context graph is, if it is matched
by the pattern; persistence shows for how long a new information will persist
after being matched by a pattern. See section 5.4 for details.

Both relevance and persistence, as well as characteristic and actionable of
each edge are set in the process of pattern creation or mining, that is not
covered in this work.

Patterns represent situations that are relevant to the function of the agent.
Therefore, the agent will be interested in information that matches these pat-
terns. Take for example agent CSCourseAttendance, that manages Alice’s
attendance to the course: among others, it will be interested in information
about when will Alice actually attend the course. This can be expressed by
the pattern in Figure 5.2. That is, the pattern matches graphs that contain
the time interval in which Alice will be attending the course. Since Alice will
be late, we would want the CSCourseAttendance agent to receive information
about the new interval in which Alice will be attending the course, with an
updated start time.
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5.2.3 Recognizing Context: Context Matching

An agent has a set of patterns that it matches against the current context,
and against information that it receives from other agents.

A match i between a context pattern GP
s and an agent A’s context graph CGA

is defined5 as MA-si(G
′
A, G

P
m, G

P
x , f, kf ).

G′A, G
P
m, G

P
x are graphs, with G′A ⊂ CGA, G′A = (V ′, E′), GP

m = (V P
m , E

P
m),

GP
x = (V P

x , E
P
x ), where

V P
m ∩ V P

x = ∅, V P
m ∪ V P

x = V P
s

EP
m ∩ EP

x = ∅, EP
m ∪ EP

x = EP
s

That is, G′A ⊂ CGA is a full match for the solved part GP
m of pattern GP

s .
What is left of the pattern is the unsolved part GP

x (also called the problem).
There is no intersection between the solved and unsolved parts of the patterns.

The function f : V P
m → V ′ is injective, and:

(1) ∀vPi ∈ V P
m , v

P
i .label =? or vPi .label = f(vPi ).label

and
(2) ∀ePi ∈ EP

m, with ePi .from, e
P
i .to ∈ V P

m , ePi .value matches (as a reg-
ular expression) the sequence value0 · value1 · · · · · valuep of values from
edges e0 = (f(ePi .from), va0 , value0) . . . ek = (vak−1

, vak , valuek+1) . . . ep =
(vap−1 , f(ePi .to), valuep), with k = 1, p− 1, ak ∈ {0, . . . , |V ′| − 1} and vak /∈
f(V P

m ).

That is, every non-? vertex from the solved part must match a different vertex
from G′A; every non-RegExp edge from the solved part must match an edge
from G′A; and every RegExp edge from the solved part must match a series
of edges from G′A. A supplementary condition is that G′A does not contain
other nodes or edges than the ones that are matched by the pattern (G′A is
minimal).

The number kf ∈ (0, 1] indicates how well the pattern GP
s matches G′A in

match MA-si, and is given by the normalized sum of the characteristic factors
of matched edges, i.e.

kf =

∑
eP
i
∈EP

m

ePi .characteristic

∑
eP
j
∈EP

s

ePj .characteristic

We will also use the term that a pattern GP
s k-matches (matches except for k

edges) a subgraph G′ of G, if condition (2) above is fulfilled for m − k edges
in EP

s , k ∈ [1,m− 1], m = ||EP
s || and G′ remains connected and minimal. A

k-matching pattern with k above a certain threshold may indicate a problem
in the situation of the user: the pattern matches, therefore the user is in the
specified situation, but some elements are missing, therefore it may mean that
the agent should try and retrieve those elements.

Equivalently, we can define the match of any two non-generic graphs GX and
GY – whereGY has the place of the ”pattern” – asMGX -GY i(G

′
X , G

P
m, G

P
x , f, k),

5There may be multiple matches between the same pattern and the same graph.
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since a graph is a particular case of graph pattern, with no ”?” nodes and with
no edges using Regexp operators.

Example. We can presume that agent Alice knows that agent CS Course
Attendance is interested in the pattern in Figure 5.26 . This pattern fully
matches the context graph held by agent Alice, with the solution CS Course

Attendance (
within−−−−→ 14:00-16:00

isa−−→ Time Interval)
part−of−−−−−→ Schedule

of−→
Alice. Agent Alice will send to CSCourseAttendance this solution, thus in-
forming it of Alice’s participation to the course.

5.2.4 An Algorithm for Context Matching

In order to perform the operation of context matching, we have devised a
matching algorithm. The algorithm returns, for a graph G and a pattern GP

s ,
the subgraph(s) G′ (G′i) of G that fully match(es) the pattern GP

s or, should
no such subgraph exist, the subgraph(s) G′ (G′i) of G that k-match(es) GP

s ,
for the minimal existing k (the full match has k = 0).

The matching algorithm is described in the following paragraphs (see also
Figure 5.3). We consider that there is known a node vPM ∈ V P

s which is
one of the nodes with the maximum difference between its out-degree and its
in-degree.

First, create a queue MatchQueue. MatchQueue will contain parts of the
pattern that partially match the G graph, as matches – tuples (G′i, G

P
xi) formed

of the k-matching subgraph of G and the not matching part of the pattern:
G′i ⊆ G and GP

xi = (V P
xi , E

P
xi):

V P
xi = {v ∈ V P

s , v /∈ dom(f)} for f the matching function;
EP

xi = {e ∈ EP
s for which condition (2) in the matching of pattern GP

i is
not fulfilled}.

Next, for each edge ePk in EP
s that is a non-RegExp edge and that has

one or more matches in graph G, add one match (or more matches) m =
(er, G

P
s \ {ePk }) in MatchQueue, where er is the edge (or one of the edges)

in G that match ePk , i.e. value(ePk ) = value(er). Edges in MatchQueue are
primarily sorted according to distance from vPM (ascending) and also according
to distance to the closest leaf (also ascending).

The next step in matching is to try to grow the existing single-element matches
to cover most of graph G: for each match m = (G′i, G

P
xi) in MatchQueue all

edges that are in GP
xi and that are outgoing from GP

s \ GP
xi (i.e. outgoing

from the part that already matches the graph) are explored, and matches
are attempted with the outgoing edges of G′i. Matching edges and nodes are

6We use the following notation for graphs written in text, using labeled (if the edge is
labeled) right arrows, parentheses and stars (”?”): a graph with three nodes A, B and C and
two edges, from A to B, and from B to C, is written as A −→ B −→ C; a tree with the root A
having two children B and C is written as A(−→ B) −→ C; a graph with three nodes forming
a loop is written as A −→ B −→ C −→ ?A (the star is are used because the node A has been
previously referred before (and its definition is elsewhere); finally, a graph with two loops
ABCA and ABDA is written as B(−→ C −→ A −→ ?B) −→ D −→ ?A (every edge appears only
once).
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1. Match(G,GP ) (G = (V,E), GP = (V P , EP )): // matching a graph to a pattern
2. MatchQueue← ∅
3. vPM ← vPi

with max(outdegree(vPi )− indegree(vPi ))
4. for each ePk = (vPi , vPj , val) ∈ EP

5. if val = string or val = URI // the value is fixed
6. for each er = (vs, vt, val

′) ∈ E
7. if (val = val′ or val′ = ∅)

and (vPi and vPj match vs and vt)
8. MatchQueue←MatchQueue∪

({er}, {ePk , vPi , vPj }, GP \ {ePk , vPi , vPj }) // enqueue single-edge match
9. sort MatchQueue by distance from vPM // best is closest to vPM

and by distance to leafs and closest to a leaf

10.while MatchQueue 6= ∅
11. m = (G′, GP

m, GP
x )← extract(MatchQueue) // the matching subgraph, the

matching part of pattern, the un-
matched part of pattern

12. for each ePk = (vPi , vPj , val) ∈ GP
x

13. if vPi ∈ GP
m // edge is outgoing from match

14. if ePk ∈ m1, // the edge is matched
with m1 ∈MatchQueue ∪Matches

15. if GP
m ∪ ePk matches G′′, // full match required

with G′ ⊆ G′′ ⊆ G
and m can merge with m1 // matches are compatible

16. m′ ← merge(m,m1) // merge the two matches
17. MatchQueue←MatchQueue ∪m′ // (keep MatchQueue sorted)
18. else
19. find a match m1 for ePk , starting from vPi // vPi is already matched in G
20. if m can merge with m1 // matches are compatible
21. m′ ← merge(m,m1) // merge the two matches
22. MatchQueue←MatchQueue ∪m′

23. for each ePk = (vPi , vPj , val) ∈ GP
x

24. if vPj ∈ GP
m // edge is incoming to match

25. [same as for outgoing edges]
26. remove m from MatchQueue
27. Matches←Matches ∪m // keep sorted by k
28.return Matches

Figure 5.3: The matching algorithm for a graph and a pattern.

added to m. Edges already in MatchQueue are tried first and, if matching,
their match is merged with m. The same is done for incoming edges. If no
more edges or nodes can be added to the match, the match is removed from
MatchQueue and added to the Matches list.

The algorithm ends when there are no more elements in MatchQueue. It
returns the list Matches, sorted ascending according to the k of the matches.

5.3 Context-Awareness Outside of the Agent

The need for structuring the agent system in a context-aware manner comes
from the fact that the agent behavior – developed in AmIciTy:Mi (see Chapter
3) – is based on local interaction and local knowledge. But ”local” must not
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necessarily be local in space. Other aspects of context may be used. This
was first explored in the Ao Dai project – see Chapter 4 – where the agent
system was hierarchized in order to reflect the hierarchical nature of two types
of context – space and computational elements.

This section will build upon the ideas in the Ao Dai project, but extending the
hierarchic structure to more types of context, in order to obtain an context-
aware topology for the agent system.

In the context of a decentralized and scalable agent system, one challenge is
with whom should agents communicate. That is, in the topology of the agent
system, who should be the neighbors of an agent?

The agent system relies on the context-aware exchange of information between
an agent and its neighbors. But an agent should only exchange information
with another agent that may consider that information as relevant. And that
can happen only if the agents share some type of context. For instance, if the
agents are part of the same activity, or if their users are located in the same
space. Two agents that share no context would not have any information that
is relevant to both of them.

Therefore, the topology of the system should be induced by context:
if two agents share context, they should be neighbors. This creates a topology
that is an overlay over the actual topology of network that interconnects the
agents. We can consider that the underlaying network allows direct connec-
tions between any two agents (i.e. the connection graph is complete).

5.3.1 Hierarchizing the Different Aspects of Context

Chen and Kotz have identified four types of context [Chen and Kotz, 2000]:
computational context – available computing and networking resources, in-
cluding the cost for using them; user context – user’s profile, location, people
and objects nearby, social situation; physical context – light and noise lev-
els, temperature, traffic conditions, etc; and time context – the current time
coordinate of the user and related information (like the season, for instance).
Further, in the work of Henricksen and her colleagues [Henricksen et al., 2002,
Henricksen and Indulska, 2006], activity context bears a major role. Conse-
quently, we deal with 5 types of context: spatial context, computa-
tional context, temporal context, activity context, and social con-
text.

Working with specific aspects of context has two important consequences.
On the one hand, we can create specific types of agents and of inter-agent
relations, allowing for specific behaviors depending on the common shared
context. On the other hand, all of these aspects of context have, to some
extent, a hierarchical structure (see Section 4.1.2), and therefore we are able to
use the mechanisms that are offered by CLAIM for hierarchical agent mobility.
However, as – differently from the Ao Dai project – now we have multiple
hierarchies (one for each aspect of context) that are intertwined, we need to
extend CLAIM (see Chapter 6) in order to support ”secondary parents”.
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Agent type Possible incoming relations
(and their sources)

Possible outgoing relations
(and their destinations)

Place is-in (from Activity, User, De-
vice, Service, Place

is-in (toward Place)

Activity part-of (from User, Group, Ac-
tivity, Service)

of (toward User), part-of (to-
ward Activity)

Device executes-on (from Service) is-in (toward Place),
controlled-by (toward User)

Service - executes-on (toward Device),
is-in (toward Place), part-of
(toward Activity)

User controlled-by (from Device), of
(from Activity), connected-to
(from User)

part-of (toward Activity), in
(toward Group), connected-to
(toward User)

Group in (from User) part-of (toward Activity)

Table 5.2: The possible relations between different agent types, resulting from map-
ping of context to system topology.

5.3.2 Agent Types and Relations

As in the Ao Dai project, we keep different agent types for each aspect of
context. That is, an agent will be primarily interested in information relating
to one aspect of context, for instance related to a place, to a user, etc.

We have defined the following types of agents and of neighborhood relation-
ships, to match the different aspects of context (a more organized perspective
on the relations between agents is presented in Table 5.2; a graphical represen-
tation of example agent topologies using these relations is presented in Figure
5.4):

• for spatial context – the Place agent and the is-in relation;
• for computational context – the Device and Service agents and the of

(linking to the agent to which the offering of the service is related, like
a place) and executes-on relations for services and controlled-by (linking
the device to the user that controls it) for devices;
• for activity context – the Activity agent and the part-of relation;
• for social context – the User and Group agents and the in (linking a

user to a group) and connected-to (linking two users) relations.

While temporal context is an aspect of context that we consider, we do not
have a specialized agent for time intervals (which would be the hierarchical
element of temporal context), as an agent that manages a time interval does
not make much sense: since the internal context representation, as well as the
relations between agents, happen in the present – therefore shared temporal
context is already achieved. However, should specific indications of time in-
tervals be needed – for instance in the case of activities, availability of devices
or services, and temporary user groups – this information may be attached to
the agent’s knowledge.
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(a) (b)

(c) (d)

Figure 5.4: Examples of possible agent topologies. The examples are centered
around different types of context: spatial, computational, activity, and
user / social.

5.4 An Improved Agent Behavior

Although the AmIciTy agent behavior presented in Section 3.2.3 assures the
coherent spreading of information in the agent system, controlled by context
measures, both the agent topology and the context measures that were used
were fairly simple. In the preceding sections of this chapter, we have formalized
an improved manner of handling context information, as well as an improved
agent topology.

5.4.1 Principles

The principles that the improved agent behavior is based on are the ones that
have been presented throughout this work:
• an agent should send pieces of information it is interested in to neighbors

that the agent believes may be interested in those pieces of information
(Section 3.1);
• the discriminating factor between external knowledge and contextual

knowledge is the focus (Section 5.2.1);
• the topology of the system is induced by context: if two agents share

context, they should be neighbors (Section 5.3).

5.4.2 Description

As stated in Section 5.1, an agent A is modeled as a tuple
A(Name,CGA, Patterns,R, I, Goallist) with the following components:
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Name ∈ AgentNames, the name of the agent;
CGA = (V,E), where V ⊂ Concepts
and E = {edge(from, to, value, persistence) | from, to ∈ Concepts, value

∈ Relations, persistence ∈ (0, 1] }, the Context Graph of the agent where
elements of concepts and relations are strings or URIs; Relations also con-
tains them empty string, for unnamed relations; note that AgentNames ⊂
Concepts;
Patterns = {(GP

s , relevance, persistence) | s ∈ PatternNames, GP
s a

graph pattern, relevance, persistence ∈ (0, 1]}, the patterns of the agent (see
Section 5.2.2 for details);
R ⊂ (AgentNames− {Name})×AgentRelationTypes× {in, out}, all re-

lations with other agents;
I = {(Agent, s, factor) | Agent ∈ AgentNames, s ∈ patternNames,

factor ∈ (0, 1]}, the observed interests of other agents for different patterns;
Goallist = {Goal(G′, GP

s , importance) | G′ ⊂ CGA, importance ∈ (0, 1],
GP

s ∈ Patterns}, the sharing goals of the agent, which contain a certain piece
of information (subgraph of CGA) that matches a pattern.

All agents are defined by three essential behaviors: pattern matching (situ-
ation recognition and pro-activity related tot the user), information sharing
(pro-activity related to other agents), and information integration (reac-
tivity). These behaviors are described in pseudo-code in Figure 5.5. The agent
behavior is identical to the behavior presented in Section 3.2.3, just that in-
stead of working with specialties and pressures, now the agent works with
context patterns and context matching.

An important process that is not illustrated in the algorithms is the removal
of parts for the context graph. When new edges are added, their persistence
is set according to the indications of the pattern that contains the edge. With
time, persistence of the edges in the context graph of the agent (CGA) fades,
and as it reaches zero, the edge is removed (along with any resulting isolated
nodes).

All actions that an agent can take are related to pattern matches and added
edges (creation of relations between concepts). The actual actions that are
connected to the addition of edges may also have associated with them some
special procedures, allowing the agent to actually change its environment ac-
cordingly. This is why the only edges that are ”actionable” should be the ones
that correspond to effects that the agent can actually create.

From the perspective of the multi-agent system, a special case of action is the
inference and creation of relations between agents. According to its patterns,
an agent can infer that in some case a relation should exist with another agent
(inter-agent relations are one of is-in, part-of, of, in, controlled-by, executes-
on, within), by effectively adding an edge in CGA between the concepts rep-
resenting itself and the other agent. Should that be the case, the agent will
also inform the management of the multi-agent system (as well as the other
agent) of this new relation. The same happens when the edge disappears.

90



· Pattern Matching for agent A

1. foreach (GP
s , relevance, persistence) ∈ A.Patterns

2. match GP
s against CGA

3. obtain MA-si(G
′
A, G

P
m, GP

x , f, k)
4. if k > matching threshold // match is considered valid
5. if k < 1 // incomplete match
6. while ∃eP ∈ EP

x with
eP .value has no Rexgexp operators // eP .value ∈ Relations
and eP .actionable > actionability threshold
and (eP .from ∈ V P

m or eP .to ∈ V P
m ) // at least on matched end

and (eP .from ∈ V P
m or eP .from 6=?) // the unmatched end . . .

and (eP .to ∈ V P
m or eP .to 6=?) // . . . is not undetermined

7. if eP .from /∈ V P
m // insert corresponding nodes

8. insert eP .from ∈ CGA and adjust MA-si

9. if eP .to /∈ V P
m

10. insert eP .to ∈ CGA and adjust MA-si

11. insert in CGA new edge(eP .from, eP .to, // insert actioned edge
eP .value, persistence)

12. adjust MA-si

13. (re)insert (G′A, G
P
s , k · relevance) in Goallist // sorted by importance

· Sharing for agent A

1.while Goallist.size > 0
2. extract first (G′A, G

P
s , importance) from Goallist

3. potentials = // potentially interested agents
{(Ag, s′, factor) ∈ IA | s′ = s, factor > 0}

4. sort potentials by factor
5. fraction = importance · potentials.size // more important information. . .
6. send G′A to first fraction agents in potentials // . . . gets sent to more agents

Receiving for agent A

1. receive G′Ag from agent Ag
2. foreach (GP

s , relevance, persistence) ∈ A.Patterns
3. match G′Ag against GP

s // is the important to agent A?
4.obtain match MAg′-si(G

′
Ag, G

P
m, GP

x , f, k) with best k// best k is greatest k
5. if k > matching threshold
6. add / adjust (Ag, s, k) in A.I // check agent Ag’s interests
7. match G′Ag against CGA

8. obtain match MA-Ag i(G
′
A, GAg-m, GAg-x, f, k)

with best k
9. if k > matching threshold
10. foreach edge ∈ G′Ag-x.E

′

11. integrate edge in CGA // add the new information
12. edge.persistence = persistence // get indication from pattern
13. foreach edge ∈ G′A.E

′

14. edge.persistence = // refresh persistence indication
max(edge.persistence, persistence)

Figure 5.5: Pseudo-code for the behavior of context-aware agents.

5.4.3 An Extended Example

In order to give a better feel about how the context-aware behavior for agents
works, let us return to our scenario, presented in Section 1.3.4.

The scenario describes the following situation: Alice, a user of AmI services, is
on a train, on the way to attending a session of the Computer Science course
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Figure 5.6: Agent topology for the scenario from Section 1.3.4. Agents running on
the same machine are circled accordingly.

at the University at which she is a student. Alice’s train will be a few minutes
late. Concurrently, the Professor that is going to teach the course is waiting
for the course to begin, using the CourseStarter service to be notified which
students will be late, and for how long.

Considering an agent assigned to each element of context – devices, services,
users, places, activities – the topology of the system is presented in Figure 5.6.
Having this topology, when the information that Alice will be late is generated
by her Scheduler (having used information sent to Alice by Train), it will
inform the agent managing her CS Course attendance, which will disseminate
this information to CSCourse, which will inform the CourseStarter. This
way, the information spreads among agents having a common context, here
the common context being mainly related to activity. Considering the agent
behavior described in Section 5.4, there may be other agents receiving this
information as well, but they will discard it as the information is not relevant
to them.

But how will the agents know what information to send? This is where con-
text patterns come in. We can safely presume that the Train agent knows

that, among others, the user Alice is on the train, therefore having Alice
is-in−−−→

Train #1691 as a subgraph of CGTrain. It is also reasonable to believe that

the Train agent has a pattern TrainRide(
on−→ Train #1691) (

to−→ ?Place)

(
within−−−−→ ?Time Interval)

(part-of | of)∗−−−−−−−−−→ ?User
is-in−−−→ Train #1691). This pat-

tern matches the information about the time interval of a train ride that is part
of the activities of a specific user (and has a specific destination). Domain-
specific information and algorithms will allow the train to estimate the time
intervals for the destinations of all the users. Then, this information will be
sent to the users that are potentially interested – that is, each match will be
sent to the appropriate user.

Having this new information, Alice’s agent will update its own context graph,
with the result displayed some pages ago, in Figure 5.1. Now take the pat-
tern in Figure 5.2, which is one in the set of patterns of agent CS Course
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Attendance. CGAlice matches this pattern. Since Alice’s agent knows that CS
Course Attendance is interested in this pattern, it will send to it the infor-
mation. Similarly, the information will be disseminated until it reaches agent
CourseStarter.

5.5 Lessons Learned

This chapter presents a new, holistic approach to context-awareness in a de-
centralized multi-agent system for Ambient Intelligence. This approach has
two main aspects: first, situation recognition and problem solving by means
of graph patterns that match the context graph – a graph which represents
the context information for the current situation of the agent.

There are several advantages to this proposal: using graphs, both for the
agent topology and for the representation of context information and context
patterns, visualization of this information is easy to understand, and can be
easily followed when context changes (unlike propositional logic for instance).
It is easy to notice how patterns match context graphs, for instance.

Another advantage is that using graphs means the possibility of using all
already existing (and well researched) graph algorithms, especially for the
graph matching problem.

Although graphs are fairly simple structures, using them to represent knowl-
edge can be effective and powerful, especially as, although a certain range of
predefined relations are used, new relations can be added to context graphs
and to context patterns.

5.6 Perspectives

We believe that our approach has a lot of potential, that has not yet been
entirely explored. Both context-awareness outside and inside the agent are
new contributions, therefore it is only intensive testing that will fully validate
their adequacy to various applications.

Temporality has only been little explored. User’s (or agent’s) history, as well
as planned activities, could be formalized as special elements and treated as
such.

A path to explore would be the creation of relations between peers, or sibling
agents. This would help the system’s decentralization, and would lower the
load on a parent with many children.

Another aspect that needs a testing in practice and non-simulated applications
is the use of the characteristic and actionable features of patterns, which have
the power to greatly increase the possibilities of applying patterns.
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Chapter 6

A New Platform for AmI
Applications

In order to be able to test the agent-based model that we have developed, an
implementation is necessary. Although some parts of this work were tested
using simple or partial implementations of the system, the final result would
need, on the one hand, to integrate all the theoretical concepts that we have
presented and, on the other hand, to feature functionalities like distributed
communication, mobility and centralized visualization of the agents.

This chapter gives details on the implementation of the Ao Dai platform (which
is different from the Ao Dai prototype). The realization of the platform has
been a collaborative effort of Andrei Olaru, Thi Thuy Nga Nguyen and Marius-
Tudor Benea, under the supervision of prof. Amal El Fallah Seghrouchni and
with the assistance of Cédric Herpson1.

6.1 Why Build a New Platform?

There were several reasons for which the Ao Dai platform has been created.
First, both the teams in Bucharest and Paris were in need of a platform for the
deployment and testing of AmI applications. Second, the Ao Dai prototype
showed that the CLAIM language and hierarchical mobility have great po-
tential for use in context-aware applications. However, the CLAIM language
was overly complicated, it was somewhat difficult to read, the Sympa platform
used mobility and communication primitives that were hard to interoperate
with other platforms, and the implementation was generally not modular and
difficult to extend. Extension was needed as interoperation was required with
web services, an improved knowledge representation was going to be used,
and there was a need to be able to implement new types of agents on top and
besides CLAIM agents.

1Nga is currently a PhD student in cotutelle between University Pierre et Marie Curie
(Paris 6) in France, and IFI Hanoi, in Vietnam. Tudor was a master student at University
Politehnica of Bucharest, on internship at Paris 6. Cédric is a PhD student at Paris 6.
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The features that were required from the new platform were the following:

• the use of CLAIM or a similar language for the high-level implemen-
tation of agents – this meant either working with the existing code for
parsing and interpreting CLAIM definitions, or writing a new one, which
meant that we could also bring modifications to the specifications of the
language;
• a modular and extendable structure that allows for easy future develop-

ment of new modules or improvement of existing modules – that is, a
clear organization of the code in a hierarchy packages, and loose coupling
of components;
• an improved representation of knowledge (with respect to CLAIM) that

is easily translatable from and to XML and other serializable formats –
because of the need to store knowledge or to load knowledge from disk,
and also to display knowledge in a user-readable form; also support for
interchangeable knowledge formats was necessary, so that for instance
some agents can use propositional logic, others can use knowledge maps,
etc;
• potentially deployable on mobile devices – as the platform would be di-

rected toward Ambient Intelligence applications, smartphones and other
mobile devices are key components of any AmI environment; this also
meant, among others, that the platform would have to implement (or
use a framework that implements) standard communication primitives;
• good possibilities of traceability and visualization – as we have learned

from the AmIciTy:Mi project (where we had such tools) and from the Ao
Dai prototype (implemented in CLAIM, which did not offer such tools)
it is very important and useful to be able to visualize and follow the
evolution of the system as a whole and of individual agents, at varying
levels of detail;
• the use of scenario-based simulation – that is, the existence of a machine-

readable format for scenarios and of components that use scenarios writ-
ten in this format to produce simulations that are repeatable and do not
need input from the user (all input is generated based on the scenario),
as in the AmIciTy:Mi project;
• the possibility of integration with other platforms and protocols – that

is, the use of standard formats and protocols (e.g. FIPA-compliant), and
the possibility of communicating with the agents from the exterior of the
platform, through standard protocols (e.g. web services).

The new platform was designed and built considering these requirements.
However, the platform has not been implemented from the ground up. Ex-
isting components that fitted the requirements were used, with the purpose
of increasing modularity and also for easier understanding of the platform by
others.

For instance, the new platform is underpinned by JADE – the Java Agent
Development Framework – which is a popular and easy-to-use environment
for the deployment of multi-agent systems. Moreover, the CLAIM language
was not totally discarded. We have worked with a simplified and improved
semantics, while keeping its theoretical fundaments intact.
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6.2 Architecture and Components

In order to make the architecture of the platform easy to extend and improve,
we have adopted a modular approach, based on several components and layers,
as follows:

• the Core component, containing the classes for agents, organized on
several layers:

– agent communication, mobility, and management – JADE agents
are used;

– agent logging and visualization – agents must send data about their
activity, as well as their neighbors, to a centralized entity. Each
agent also displays a window on the screen of its execution host;

– hierarchical mobility for agents – protocols and behaviors that allow
agents to automatically move together with their parents;

– web service access – functionality to expose agents as web services
and allow agents to access web services;

– S-CLAIM interpretation and execution – a parser for S-CLAIM
agent description files, and the components that transform the def-
inition into actual behavior;

– Knowledge Base – an interchangeable component that allows access
to knowledge through a standard set of functions;

– context-awareness – use of context matching for problem solving
and exchange of relevant context information.

• the Simulation component, serving for the repeatable execution of sce-
narios:

– uses as input XML files that completely define the execution sce-
nario;

– deploys the agents according to the scenarios, on the specified con-
tainers and machines;

– sends ”external” event messages, equivalent to perceptions of agents
in a real environment;

• the Visualization component, that assures the centralized visualization
of agent activity:

– receives log reports and mobility events from agents;
– displays all agent logs in a centralized, chronological manner;
– displays the system structure (topology), showing relations between

agents;
– provides components for the automatic layout of agent windows on

the screen of the machine they execute on.

An informal view of these components is presented in Figure 6.1. In the
following sections we will give details on the building blocks for the platform
and on the S-CLAIM agent language.
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Figure 6.1: An informal visual representation of the components of the Ao Dai plat-
form. With solid border, actual components of the implementation. In
dotted line, specifications and formats that characterize the inputs of
the components.

6.2.1 Building Blocks

A first building block of the Ao Dai platform was the JADE Agent Devel-
opment Framework2 [Bellifemine et al., 1999, Bellifemine et al., 2001]. It is
implemented in Java. It can be deployed on multiple machines, agents can
join or leave at any time (open system), and it handles agent communication,
mobility and management. Being built upon Java, JADE ca be easily de-
ployed on different platforms. Third-party modules allow the deployment of
agents on mobile devices (for instance Android smartphones or tablets) and
interoperability with web services.

For logging the agent’s activity, we have developed a wrapper for Apache’s
log4j3, that allows for quick configuration of a log that shows the output to
the console, displays it in a window, and sends it (as a JADE message) to the
visualization agent simultaneously.

A component has also been developed for the deployment of S-CLAIM agents
on mobile Android devices4, using the JADE-LEAP add-on5. This add-on
allows the execution of a JADE container on a devices running the Android
operating system, enabling the execution of JADE agents on the device, and
the movement of agents to and from the device, practically seeing the Android
device in the same way as a workstation. Changes were, however, necessary,
to the visualization component on the Android devices, due to reasons of
platform compatibility, screen size, etc.

For the interoperability of Ao Dai agents with other components and infras-
tructures, the agents integrate primitives for both the access of SOAP and
RESTful web services, and for the exposure of agent capabilities as web ser-
vices. This has been done with the help of the WSIG and WSDC JADE

2http://jade.tilab.com/
3http://logging.apache.org/log4j/
4http://www.android.com/
5http://jade.tilab.com/community-addons.php

98

http://jade.tilab.com/
http://logging.apache.org/log4j/
http://www.android.com/
http://jade.tilab.com/community-addons.php


CourseAgent.adf2 agent definition file

1. (agent Course ?courseName ?parent
2. (behavior
3. (initial register
4. (send ?parent (struct message managesCourse this ?courseName))
5. )
6.

7. (reactive registerUser
8. (receive assistsUser ?agentName ?userName)
9. (addK (struct knowledge userAgent ?userName ?agentName))
10. )
11. . . .
12. (reactive changeRoom
13. (receive managesRoom ?roomAgentName ?roomName)
14. (condition (readK (struct knowledge scheduling ?courseName ?roomName)))
15. (addK (struct knowledge roomAgent ?roomName ?roomAgentName))
16. (forAllK (struct knowledge userAgent ?userName ?userAgentName)
17. (send ?userAgentName

(struct message scheduling ?courseName ?roomAgentName))
18. )
19. (in ?roomAgentName)
20. )
21. )
22.)

Figure 6.2: Sample of S-CLAIM code, used in the Ao Dai platform scenario for the
CS Course agent.

add-ons.

The window layout component – for the layout of various windows (for instance
each agent has its own window) across the screen – has been ported from the
AmIciTy:Mi project. The advantage of using an automatic layout tool for
windows is that, in the case of many windows, it is not the user who needs
to manually move each window to the desired position, at each run of the
simulation.

6.2.2 S-CLAIM

Our main goal while creating S-CLAIM (”Smart CLAIM”) was to make it as
easy to use as possible, so that it could be a great tool even for those which
were not very familiar with other programming languages. This was in fact
also the goal of CLAIM (Computational Language for Autonomous, Intelligent
and Mobile agents) – to be an agent-oriented programming language that was
simple to use by agent designers.

However, the semantics of CLAIM are trying to cover a large range of function-
ality, but are still not powerful enough to allow for the complete description
of the agent’s algorithms or visual components. Therefore, for anything more
than the simplest examples, the developer must implement some functionality
in Java anyway. Moreover, the syntax of CLAIM is not very easy to read.
For these reasons, and also because the Sympa execution platform for CLAIM
agents was using non-standard means of communication and agent mobility
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and was hard to expand or modify, we have chosen to redesign CLAIM and
to reimplement the agent execution platform (this time using JADE).

Semantics

The semantics of S-CLAIM are closely based on the CoCoMo semantics de-
veloped by Abdelkader Behdenna, during his Master internship at LIP6 in
2009. They are a simplification of the semantics of the CLAIM language
[Suna and El Fallah Seghrouchni, 2004], which reduces the list of primitives to
only the ones which are characteristic to agent management and interaction.
S-CLAIM specifies the following primitives (classified by their destination) –
more on the syntax of these primitives unde the ”Syntax” section:

• communication:

– send – send a message to another agent, reply to a message or
access a web service;

– receive – receive a message from another agent, or receive an invo-
cation as a web service;

• mobility:

– in – become a child of another agent; if the agent is not bound to
its container, the agent will also move, together with its hierarchy;

– out – exit the context of the parent agent;

• agent management:

– open – order the dissolution of a child agent, recovering all the
capabilities and knowledge of the child agent;

– acid – dissolve itself into the parent agent, the parent recovering
all the capabilities and knowledge of the agent;

– new – create a new agent, that becomes a child of the creating
agent;

• knowledge management:

– addK – add a piece of knowledge to the knowledge base;
– removeK – remove the piece of knowledge matching a pattern;
– readK – read the first piece of knowledge matching a pattern, filling

the unspecified parts of the pattern;
– forAllK – iterate over all the knowledge that matches a certain

pattern, at each iteration executing a series of statements, using
the selected piece of knowledge;

• control primitives:

– condition – condition the activation of a behavior on a logical op-
eration or the result of a boolean function;

– if – condition the execution of a block of statements;
– wait – interrupt the agent behavior for the specified amount of time;

The semantics of S-CLAIM includes only the primitives that involve agent
management, knowledge management or agent communication, plus a strict
selection of control primitives. This leaves out all algorithmic parts of the
agent’s description, processing functions, arithmetic or logic operation, etc.
These can be implemented in other, classic, programming languages (only
Java is supported for the moment), and can be invoked in the same manner
as S-CLAIM-specific primitives.
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Syntax

The syntax of S-CLAIM uses parentheses, like LISP, in order to make the code
cleaner and simpler. Variables in S-CLAIM are preceded, as in CLAIM, by a
question mark. An example of S-CLAIM code is presented in Figure 6.2.

A usual agent definition contains the name of the defined type of agent, the
parameters for the agent, and its list of behaviors. For the moment three types
of behavior are specified:

• initial – executed at the creation of the agent;
• reactive – executed as consequence of receiving a message and, optionally,

fulfilling some conditions;
• proactive – goal-oriented behavior that executes without the need exter-

nal events.

For instance, an agent that only has one initial behavior would be defined as

(agent SimpleAgent ?destination
(behavior

(initial sender
(send ?destination (struct message hello))

)))

S-CLAIM uses structures as sole form of data structuring. A structure is
build by using parentheses, the keyword struct and the list of members of
the structure. Usually the first member of the structure represents the type
of the structure. Communication and knowledge management primitives, for
instance, assume that the structures that are received or passed as parameters
have the message, and knowledge type, respectively.

The syntax of primitive invocation is LISP-like as well. It is formed by the en-
closing parentheses, the name of the primitive or function, and the parameters.
While the language is not typed, each S-CLAIM primitive makes assumptions
about the type of its parameters. For instance, the send primitive assumes
that its second argument is a structure of type message.

The S-CLAIM language relies in a great measure on the use of patterns. For
instance, the receive primitive takes a set of parameters that are expected in
the received message, of which some may be bound to values and some may
not. While the bound parameters impose a certain form to the message, the
unbound parameters will be bound to the values in the message present at
those positions. In the same manner, the readK and forAllK primitives work
with patterns, on the one hand selecting only some of the agent’s knowledge
– the pieces that match the pattern – and on the other hand binding the
unbound variables to the specific values that correspond to the selected piece
of knowledge.

As an example of S-CLAIM code, take the sample in Figure 6.2. It is easy to
understand: initially, the agent registers by sending to its parent information
about what course is managed by the agent (the name of the course, as well
as the parent agent, are given as parameters). A reactive behavior for user
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registration is activated when a message with this purpose is received, and
in this case the agent stores the information in its knowledge base. Finally,
another reactive behavior is activating in case of a change of rooms, i.e. a
message about the room for the course is received, and the agent had already
been scheduled to a different room; consequently, the information is updated,
all the users that will participate in this course are notified, and the agent
becomes a child of the agent managing the room.

Java functions

While S-CLAIM is a programming language, it does not try to reinvent what
existing programming languages already do very well – it only proposes prim-
itives that are directly related to the agent, it’s components, and the other
agents in the system. These primitives can be used inside agent descriptions
that make it easy for the agent designer to focus on the agent-related features.

There are processes that cannot be easily performed with the default primi-
tives. For instance, algorithmic processing (e.g. list processing) or arithmetic
functions. This is why the developer can attach one or more Java class files
that contain the functionality, and call the functions in exactly the same way
as S-CLAIM primitives. For example, if arithmetic comparison is needed, a
very simple Java function will be attached, called gt. It will be invoked in
S-CLAIM as:

(if (gt ?number 5)
. . .
)

All S-CLAIM-attached Java functions have the same prototype: they take a
Vector of values, some of which may be unbound. When the function ends,
some of the unbound values may be bound, and in this way the function is
able to fill missing pieces in patterns. The function also returns a boolean
value, that can be used in the S-CLAIM code in if or condition statements.
This behavior is similar to predicates in Prolog.

6.2.3 Scenarios

One of the features that is central to being able to correctly test a platform
like Ao Dai is the possibility to execute scenarios easily and repeatedly. This
means, on the one hand, that once the test scenario is configured, running the
scenario can be done at the touch of a button. On the other hand, it means
that it is possible to run the exactly same scenario over and over again, with
the same results.

These requirements have been developed when building AmIciTy:Mi , and the
solution for Ao Dai is similar. The scenario is specified by means of an XML
file that contains information on the containers and agents to be created, on
the initial knowledge of agents, and on the events to generate. Part of the
specification of the scenario is presented in Figure 6.3. At this point, each
machine that should be part of the experiment should run its own scenario
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scenario.xml

1. <?xml version=”1.0” encoding=”UTF-8”?>
2. <scen:scenario . . .>
3. <scen:jadeConfig . . . />
4. <scen:adfPath>scenario/phase2</scen:adfPath>
5. <scen:initial>
6. <scen:container name=”Administration”>
7. . . .
8. <scen:CLAIMAgent name=”CourseCSAgent” type=”CourseAgent”>
9. <scen:parameter>
10. <pr:param name=”parent” value=”UniversityUPMCAgent” />
11. <pr:param name=”courseName” value=”CSCourse” />
12. </scen:parameter>
13. <scen:knowledge>
14. <kb:relation relationType=”hasUser”>
15. <kb:node>CSCourse</kb:node>
16. <kb:node>Alice</kb:node>
17. </kb:relation> </scen:knowledge>
18. </scen:CLAIMAgent>
19. </scen:container>
20.

21. <scen:container name=”RoomContainer”>
22. <scen:CLAIMAgent name=”Room04Agent” type=”RoomAgent” />
23. </scen:container>
24. . . .
25. </scen:initial>
26. <scen:timeline>
27. <scen:event time=”2000” >
28. <scen:CLAIMMessage>
29. <scen:to>SchedulerUPMCAgent</scen:to>
30. <scen:protocol>newSchedule</scen:protocol>
31. <scen:content>( struct message newSchedule

( struct knowledge scheduledTo CSCourse Room04 ) )</scen:content>
32. </scen:CLAIMMessage> </scen:event>
33. </scen:timeline>
34. </scen:scenario>

Figure 6.3: Sample of scenario specification, from the Ao Dai scenario.

file. On remote machines however, the only information in the scenario files
is the name of containers to be created on those machines. The features that
are specified in the scenario file are the following:

• JADE configuration – sets details like the name of the main JADE con-
tainer, the IP address and port of the platform and of the local machine,
and the id of the platform;
• path for the agent description files and packages with Java code attach-

ments;
• containers – names of the containers to be created on the local machine,

and, in the case of the machine with the main container, the names of
remote containers where agents will be created;
• agents – inside the description of each container, the agent creation in-

formation is specified: agent name, agent type (name of the description
file), initial knowledge of the agent, code attachment, agent parameters,
gui information;
• event information – timeline specifying what events to trigger at what

103



Figure 6.4: Sample visualization of agents in the Ao Dai scenario, before and after
the hierarchical movement of the CourseCS agent as a child of RoomA-
gent.

moments of time (in simulation time). Events are messages that will be
sent to the specified agents.

At the beginning of the simulation, the platform is booted on each machine,
and empty containers are created on the appropriate machines (according
to local scenario files). Then, a special agent called the Simulation Agent,
running on the main container, creates all agents that are specified in the
scenario, and instructs them to move to their assigned containers. Then, the
simulation timer is started, and events are generated by the simulation agent,
by sending messages to the specified agents, according to the scenario file.

6.2.4 Visualization

The visualization component of the platform offers three features: central-
ized logging, centralized visualization of the agent system, and an automated
window layout tool for the layout of windows across the screen. The window
layout feature is ported from the implementation of AmIciTy:Mi . The au-
tomated layout allows for the agents’ windows to be placed on the screen in
non-overlapping areas, saving the tester the time of moving the windows by
hand. An example of layout, shot during the running of the test scenario, is
presented in Figure 6.5.

Centralized logging is obtained by sending, from the visualization layer of
each agent, and through the wrapper for log4j, the logging messages of the
agent, to a specialized Visualization Agent that sorts the log messages by their
timestamp and displays them in order. The log messages are sent by chunks
at a fixed time interval, in order not to overload the network.

Centralized visualization of the system’s topology is obtained by sending from
each agent to the Visualization Agent messages that specify the location and
parent of the agent. This data is aggregated into a graph, that is then displayed
using the same algorithm that is used for the linear textual display of graphs
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Figure 6.5: Visualization of agent windows, layed out across the screen of the local
machine. The Visualization and Simulation agent use specific windows.
Some agents feature input or output areas, beside their agent log.

(as in the example in Section 5.2.3). For instance, the visualization of the
initial and final states of the system (considering the scenario from the previous
section) is presented in Figure 6.4.

6.2.5 Web Service Integration

A multi-agent system for Ambient Intelligence is only a component in a com-
plete AmI environment. It is necessary for such a system to interoperate with
other components, most importantly with perceiving and acting components,
and with user interfaces. While there are many means of communication be-
tween software components, one of the most used is web services. It allows very
loose coupling between the two parties, and is relatively easy to implement.

This is why we have chosen to integrate web services into the Ao Dai platform,
in two aspects. First, to make agents and their capabilities available to other
components, as web services. Second, to allow agents to contact other parties
by means of web services.

In order to keep the simple syntax and semantics that we have devised for
S-CLAIM, web service access was integrated using the same constructs, with
very slight modifications.

All S-CLAIM agents expose their reactive behaviors. This is done with the
help of the WSIG add-on for JADE. In the future, the agent will be able to
select which behaviors should be available as web services. The agent exposes
itself as one service, and each reactive behavior is available as an operation
associated with the service. If the behavior has been invoked as a web service,
the agent replies to the web service invocation with a message, just the same
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Figure 6.6: Internal layered structure of an Ao Dai agent.

as it would reply to a normal S-CLAIM message. In fact, there is no difference
in the S-CLAIM code between an activation of the behavior by means of a
message or an invocation by means of web services. For instance, the following
code will echo the parameter of the request:

(reactive echoService
(receive echoService ?echo)
(send (struct message echoing ?echo))

)

All S-CLAIM agents are also able to invoke web services, almost in the same
way as they would send and receive messages, with some differences, as web
services are synchronous. Web service invocation is done by means of the
WSDC add-on for JADE. For instance, the code snippet below invokes the
behavior defined above, from another agent, by means of web services instead
of S-CLAIM/JADE messages:

(send ?testAgent
(struct message echoService helloWorld)
http://localhost:8080/wsig/ws/
(struct message echoing ?echo)

)

The difference from a S-CLAIM message is that the URL of the service must
be specified, and a structure for receiving the immediate reply is included.
The last argument is not needed if the reply is not considered of use.

6.2.6 Agent Structure

In the Ao Dai platform, agents are internally organized on several layers. This
is useful for the modularity of the system, for the separation of concerns and
for the ease of debugging. Moreover, new layers of the agent can be added
without much effort.

At this point in the development of the platform, the agent consists of five
layered components, that are named after their corresponding Java classes in
the implementation (see also Figure 6.6):
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• JADE GuiAgent – the basic JADE agents that can have a Gui. This
layer manages agent movement and communication at the level of the
JADE platform, and is the base of the entire structure of Ao Dai agents.
• VisualizableAgent – it handles agent visualization from two points of

view: on the one hand, it offers to the upper layers the log objects that
gathers the agent’s logging data, and it reports the logging data and
movement / parent changes of the agent to the Visualization agent; on
the other hand, it manages the window of the agent, and integrates it in
the layout on the screen;
• WSAgent (or web service agent) – offers functionality that is used by the

S-CLAIM agent to expose its capabilities as web services, through the
WSIG JADE add-on, and also to access SOAP or RESTful web services,
through the WSDC JADE add-on;
• HierarchicalAgent – manages hierarchical mobility of agents, exposing

objects for hierarchical relations between agents, and implementing be-
haviors for both instructing an agent’s children to follow the agent, and
for an agent to receive movement orders from its parent; agent settings
allow agents to be fixed to their containers, this meaning they will not
follow their parent in the movement;
• S-CLAIM agent – the agent that executes using the provided S-CLAIM

description; contains the symbol tables for the agent, and also the set
of behavior descriptions that describe the agent’s capabilities; this layer
accesses the Knowledge Base component for adding, removing, or inter-
rogating knowledge.

6.2.7 AmI Agent Modeling in the Ao Dai Platform

The Ao Dai platform has been primarily designed for the testing and sim-
ulation of multi-agent systems for Ambient Intelligence. More precisely, for
the implementation of the agent topology and agent behavior presented in
the other chapters of this thesis. Because of this, there are many elements of
context-awareness that are already integrated in the foundation of the plat-
form.

The most important of these is the hierarchical movement of agents. By means
of the HierarchicalAgent layer of the Ao Dai agents, once a parent of the agent
is defined, the agent will move together with its parent. In some cases, this may
not be intended as the agent should be bound to a particular container, and
this is the reason for the fixed parameter of the agent. Hierarchical movement
means that an agent keeps (some of) its context when it moves, and is kept
in the parent’s context when the parent moves.

The way the S-CLAIM language is built leads to a tendency for agents to
communicate predominantly only with their parent and children. This is in
concordance with the principles set in Chapter 4, as this way information is
exchanged between agents that share some aspects of context.

Not least, S-CLAIM programming relies in a great measure on patterns. While
in the current implementation they are not graph patterns, but linear pat-
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Figure 6.7: Interface to Ao Dai agents, on Android OS. Screenshots by Marius-
Tudor Benea.

terns, the language constructs are oriented towards the use of structures with
incompletely bound values. For instance, a behavior specifies the pattern for
the message that activates it: if the pattern is completely specified, this only
restricts the form of the message; but if the pattern is incomplete, it both
restricts the message and it allows completing the pattern with new informa-
tion, from the message. Pattern orientation is also visible in the primitives
for knowledge management, especially in the case of the readK and forAllK
constructs.

6.2.8 Deployment on Mobile Devices

Ambient Intelligence is meant to interface with the users of the system mainly
by means of small devices with low capabilities. Such devices are, among
others, the present day smartphones. These devices have too low capabilities
to run fully fledged operating systems (and there is no need for that either).
This is why we have also looked into how to deploy Ao Dai agents on mobile
devices, more precisely on the Android operating system6, which is contin-
uously growing in market share. This has been done7 with the help of the
JADE-LEAP add-on. The fact that JADE uses Java also meant that most
components of the Ao Dai platform work on Android out-of-the-box.

Modifications that needed to be done mainly related to agent loading and
JADE-related operations, and to the interface. Given the reduced screen real-
estate, the agents were viewed using an interface for the selection of one agent
at a time. The friendly interface (visible in Figure 6.7) contains three tabs, in
which the user can connect to the platform, can select agents and view their
interface (for instance, their log).

6http://www.android.com/
7This work has been by Marius-Tudor Benea, a student of University Politehnica of

Bucharest, on his Master internship at LIP6.

108

http://www.android.com/


6.3 Experiments

As with any implementation, the Ao Dai platform needed to be experimented
with in order to test it and to validate the concepts that underpinned it.

The process of development and testing of the platform went through the
following phases:

• implementation and testing the original scenario of the Ao Dai prototype
using normal JADE agents;
• experiments with configuring the execution through XML-based scenario

files, including correct XML parsing and validation;
• usage of automatically generated events, using the scenario files;
• testing of the logging infrastructure and of primary visualization tools;
• implementation and testing of the representation of agent system struc-

ture in text, through linearized graphs;
• testing of the parsing of the first .adf2 files and transforming them to

correct agent description structures;
• testing of the execution of S-CLAIM constructs (control structures, mes-

sage sending and receiving, mobility);
• testing the correct creation and deployment of agents, based on the sce-

nario file; this means creating the agent in the correct container and
correct initialization of the agent with agent description, parameters
and initial knowledge;
• testing of correct management of S-CLAIM agents’ symbol table – vari-

able management, assignment and scope.
• testing the distributed deployment of the platform, using two machines,

and including creation of agents on a remote machine, movement of
agents during the scenario, etc; testing was done over a fairly restricted
network featuring firewalls and strict IP rules;
• testing the graphical representation of the topology of the multi-agent

system;
• testing the deployment of CLAIM agents on a mobile device; mobile

agents were deployed both on an Android emulator, as well as on an
actual Android device, using the network of the laboratory to commu-
nicate;
• testing and improvement of the logging and visualization infrastructure

in the context of using mobile devices, which are not compatible with
all the Java components in a PC environment;
• testing the platform with new scenarios, by new developers (internship

students); this validated not only the non-dependance of the platform
on a specific scenario, but also the relative facility of working with the
platform by developers that were not previously familiar with it;
• testing of the interoperation of the platform with both SOAP and REST-

ful web services;
• deployment and execution of the platform in a novel, distributed envi-

ronment, and interoperation with the components of the SmartRoom
(see Section 6.3.3).
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Figure 6.8: The agents in the scenario for the Ao Dai platform.

6.3.1 Scenario

It is in fact for the purpose of testing this platform that the reference scenario
presented in Section 1.3.4 was created, in collaboration with the team from
Honiden-Lab at the NII Institute in Tokyo. For the first tests of the Ao
Dai platform, we have used just some segments of this scenario. The tested
scenario is the following:

Scenario. Alice, Bob, and Carol are students in the Computer Science course.
Today, the course is not held in the usual room, but in the SmartRoom. Once
the scheduling system performs this change, the students are automatically
notified. When the first person enters the room, the lights are turned on, and
the main screen displays a welcome message. When all the students are in
the room, the course is ready to start and the first slide of the Professor’s
presentation is displayed on the screen. When the Professor signals the end
of the presentation, the room is reconfigured for the activities phase of the
course. The students divide into two groups, each going in front of one of
the large screens. The students write opinions regarding a subject in the
interface provided by their agents, and the opinions are shown on the screen
next to them. When the groups change and students move from one screen to
the other, the opinions they wrote move with them and are displayed on the
appropriate screen.
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6.3.2 Modeling the Scenario

We have agentified the presented scenario using several agents: Alice, Bob
and Carol are the agents that manage the activity of their respective users;
Course is the agent that manages the Computer Science Course; University
and Room are agents managing the smart places designated by their names;
Scheduler and Feedback are services that deal with the scheduling of courses,
and feedback for a specific course, respectively. The agentification of the
scenario is presented in Figure 6.8. The figure presents the final state of the
system. Initially, Course is not a child of Room, as the scheduling has not yet
been announced.

Several contexts were represented in the model of the scenario. Agents com-
municated and moved inside these contexts, in a hierarchical manner. The
existing contexts were:

• the spatial and organizational context of the University, in which the
communication between the Course and Room Agents took place;
• the spatial and computational context of the Room, in which all agents

entered, and in which agents could use the two available screens and
could configure the room’s lighting;
• the activity context of the CS Course, due to which the students were

notified of the change in the location of the course;
• the spatial context of the two screens, which displayed the opinions of

users situated in their vicinity.

6.3.3 Testing and Demonstration

A large number of experiments were performed with the Ao Dai platform, and
many more will follow. The platform has been tested on one machine, and
then in a distributed environment, and, thanks to JADE, agent mobility works
fine in spite of restrictions, for instance like firewalls. Centralized visualiza-
tion of the agents is extremely helpful in a distributed environment, and the
architecture allows the log of crashed agents to be visible even if the agents
have crashed on a remote machine.

The platform has also been tested using agents that moved to and from an
Android device, which means that the platform is now even more appropriate
for the development of AmI applications, as smartphones are fundamental in
the architecture and scenarios of AmI.

But most importantly, the platform has been tested in the SmartRoom of the
Honiden-Lab. The scenario described in Section 6.3.1 was used. The platform
was deployed on multiple machines, and the agents communicated with the
SmartRoom components by means of web services.

The SmartRoom offers two separate components: on the one hand, control of
the lights, microphones, and different screens in the room; on the other hand,
detection of the users in the room and of their locations, by means of RFID
technologies.
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Figure 6.9: Images from the testing of the Ao Dai platform in the SmartRoom.
The two last images show how opinions are moved to the back screen
after the student changes location. As further proof of the platform’s
flexibility, one of the machines (above) runs Apple OS X and the other
(below) runs Microsoft Windows 7.

While none of the developers of the Ao Dai platform was present at Honiden-
Lab before, or during the simulation, the team at Honiden-Lab successfully
deployed and experimented with the platform, at their first try, without any
significant incidents. Moreover, members of the team successfully made slight
modifications in the S-CLAIM code, without having any previous experience
or contact with the language. The experiments were recorded on video, and
some screenshots are presented in Figure 6.9. The video was subsequently
demonstrated at the 6th NII-LIP6 Workshop held in Paris, in October 20118.

The success of the experiments and of the demonstration show that the plat-
form is easy to use and to deploy. JADE offers interoperability and many
useful components and add-ons. S-CLAIM offers a simple, easy to understand
language for agent programming, that requires no prior experience. Web ser-
vice integration showed that the platform can interoperate with other compo-
nents and infrastructure, in a reliable manner, with almost no time spent on
integration.

8Workshop held in collaboration by the National Institute of Informatics in Tokyo and
the Laboratory of Computer Science of University Paris 6. Details at http://www-desir.

lip6.fr/~herpsonc/6workshopNii/index.htm
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6.4 Lessons Learned

Developing the Ao Dai platform has been an essential step in the development
of a multi-agent system for Ambient Intelligence. The existence of this plat-
form means that now Ambient Intelligence applications will be much easier
to implement. This is because the integration of context-awareness, but also
thanks to the fact that the S-CLAIM language is easy to use and understand.

Moreover, the Scenario and Visualization components make it easy to deploy
agents in a distributed setting, simulate events, and follow the evolution of
the system, all in a centralized manner (although decentralization is a priority
in our research, centralized control and visualization of agent simulations is
obviously an advantage).

Last but not least, like the Ao Dai prototype (see Chapter 4), the Ao Dai plat-
form has been an occasion for the reinforcement of the collaboration between
the universities to which the group that implemented it belong9, and a new
step in the collaboration with the Honiden Laboratory in Tokyo.

6.5 Perspectives

The Ao Dai platform is still in an early stage of development. Its modular
and general structure allows the easy addition of new components.

Among these, more support for the pro-active, goal-oriented behavior of agents
will be added. Other knowledge representation components may also be im-
plemented. New language primitives for S-CLAIM may be introduced. Also,
in order to become a more powerful language, S-CLAIM needs a library of
already implemented Java functions, that will facilitate the implementation of
the algorithmic aspects of S-CLAIM agents.

More experimentation with the platform is needed. Further extensions of the
tested scenario are envisaged, as well as the inclusion of mobile devices (for
which the platform is ready, from the implementation point of view). Further
collaboration with the team from the Honiden Laboratory will allow more
tests with the platform in the SmartRoom and potentially extensions beyond
the space of only one room.

9University Pierre et Marie Curie in Paris, University Politehnica of Bucharest, and the
IFI institute in Hanoi.
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Chapter 7

Conclusions

This chapter concludes the PhD thesis. In closing, the work that was presented
in the chapters will be summarized, in order to obtain a holistic view of this
research (Section 7.1). The contributions of this work will be presented as a
list, in Section 7.1.2.

This work yielded many results, many of which have good potential and de-
serve further improvement. The perspectives of this work as a whole, as well
as of the individual concepts, developments and implementations, is presented
in Section 7.2.

7.1 What Has Been Accomplished

The question that this research has answered is ”How to build a multi-agent
system for Ambient Intelligence?”. The requirements for this research were,
among others, system distribution, the use of cognitive agents, the use of mech-
anisms of self-organization, and last but definitely not least, the integration of
context-awareness.

The central idea that characterizes the result of this work is the integration
of context-awareness in a MAS for AmI, in a way that allows agents
to naturally manage and share context information, while being able
to perform, at the same time, application- and domain-specific tasks, and also
respecting the requirements that were set.

7.1.1 Building Multi-Agent Systems for Ambient Intelligence

Building a context-aware multi-agent system started with a close inspection
of Ambient Intelligence as a vision of the future of computing, in Chapter
1. Existing scenarios and applications have been presented, and the specific
AmI features have been extracted and classified (Section 1.1). We have dis-
cussed the challenges of AmI, especially regarding scale, flow, anticipation,
and security (Section 1.2).
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One important section of the chapter is Section 1.3. This is a part of our
contribution, and it is here that we present several novel scenarios for AmI,
which are directed less towards the hardware used and the interfaces displayed,
and more towards the functioning of the system as a whole, especially in
collaborative or public environments.

The fundamental elements that we have chosen for our work were Multi-Agent
Systems, Context-Awareness and the aspect of Self-Organization (Section 1.4).
The last section of the chapter sets the goals for the research. The rest of the
chapters show how these goals have been fulfilled.

In Chapter 2 of this work we have reviewed work in the related fields of study:
agent-based AmI environments, context-awareness and self-organizing agent
systems. The main conclusions that we have drawn were that agent systems in
AmI need more flexibility but at the same time more powerful representations
for context. Context-awareness is many times not a ”first-class citizen” in
the applications, and only some aspects of context are considered – notably
location.

The model for a context-aware MAS for Ambient Intelligence that we propose,
and that represents the main contribution of this work, is based on three as-
pects, presented in Chapters 3, 4 and 5, namely agent behavior, system
topology and context representation. A very important thing to remem-
ber is that these three aspects are integrated with one another, and form a
coherent, unitary model.

Agent behavior is based on local interaction and local knowledge. ”Local” not
only in terms of space, but of context – this can mean local in terms of social
relations, or within the same activity, etc. The central idea for agent behavior
is ”share interesting information with potentially interested neigh-
bors”. This behavior has been developed and validated in a first instance
through the AmIciTy:Mi prototype, using between 900 and 1000 agents in a
simulated environment that share information characterized by some simple
measures of context: pressure, specialty and persistence. For the
prototype we have also developed a simulation testbed directed towards ex-
ecution speed, a specification for the generation of randomized scenarios, as
well as visualization tools that allow the developer to follow the evolution of
the system as a whole. The agent behavior and the AmIciTy:Mi prototype
are presented in Chapter 3.

System topology is based on agent context. That is, neighborhood relations
form hierarchies that are mapped to the hierarchical structure of different
aspects of context. For instance, the agent managing an activity that is taking
place in a certain room will have as ”parent” the agent that manages the room,
which itself is a ”child” of the agent managing the building. But the agent
managing the activity may also have as ”parent” the agent managing the larger
course that the activity is part of. The basic principle is that two agents are
neighbors if they share context.

An initial prototype that validates this approach to system topology was Ao
Dai, that considered spatial and computational context, as well as user pref-
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erences. The project implemented a simple AmI-directed multi-agent-system
scenario in which the agents represented elements of context – places, devices,
services, and a user – which interacted in order to pro-actively help the user
navigate and find computational resources in a building where the user comes
for the first time. This project is presented in Chapter 4. The lessons learned
in this project lead to more aspects of context (spatial, temporal, activity,
computational and social) being considered, and the result was the more com-
plete model presented in Section 5.3.

Context representation internal to the agents is based on two factors: the
context graph – which stores the information that is currently relevant to the
activity of the agent, as a graph of concepts and relations between concepts –
and the context patterns – a set of graphs with generic elements that represent
situations that the agent is able to recognize. The context patterns can be
matched against the context graph in order to recognize the situation of the
agent. Partial matches may lead to problem solving by the addition of new
edges in the graph. Subgraphs that match context patterns are considered as
interesting, and are shared with other agents. Upon receiving information, the
interest of neighbor agents (in the context-based topology) can be computed
by matching the patterns against the newly received information. The basic
principle is that information is interesting (or relevant) if the graph
that represents it matches one of the patterns of the agent. The formal
model for a multi-agent system integrating context-awareness is presented in
Chapter 5.

The concepts, agents and context models that were developed in Chapters 3,
4 and 5 needed to be tested by means of a prototype unifying all of them.
This prototype is presented in Chapter 6. It has several layers: underpin-
nings for agent management, communication and mobility are assured by the
JADE Java Agent Development Framework; we have developed a visualization
layer that assures the centralization of agent logs, as well as the centralized
graphical visualization of the system topology (Section 6.2.4); we have adapted
and simplified the CLAIM agent-oriented programming language, having as
result the S-CLAIM language and the implementation of ClaimAgents, that
use the S-CLAIM specification to execute on top of JADE (Section 6.2.2);
finally, we have implemented Context Agents, that use the CLAIM language
coupled with a graph-based knowledge base and specific functionality in order
to share context information and act in a context-aware fashion. Moreover,
we have developed an XML-based format and associated agents for the auto-
mated simulation of the system, using scenarios, assuring easy and repeatable
experiments (Section 6.2.3).

The results of the work presented in this thesis have been published in 20 re-
search papers, of which 3 papers in ISI indexed journals (two of which awaiting
publication), 2 papers in B+ journals, 10 in ISI indexed conference proceed-
ings, 4 in the proceedings of international, peer-reviewed conferences, and 1 in
the proceedings of an international summer school student session. Of these
papers, 15 were published as first author. Two more articles (first author) are
awaiting acceptance.
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7.1.2 Contributions

The main original contributions of this work are the following:

• we have conceived several novel scenarios for Ambient Intelligence; the
focus of these scenarios was towards the functioning of the system as a
whole, toward adaptability and scalability of the system, towards prob-
lem solving, and towards collaborative and public environments, or set-
tings involving multiple users (Section 1.3);
• we have realized a state of the art of multi-agent systems for developing

Ambient Intelligence applications, observing the features that are offered
and the tendency to use either few and complex agents or many simple
agents, trading off powerful representations for flexibility (Section 2.1);
we have also investigated the integration of context-awareness in Am-
bient Intelligence applications, noticing the balance between complexity
and power of the context information representation, on the one hand,
and the decentralization of the system, on the other hand (Section 2.2);
a special mention is dedicated to algorithms for the matching of graphs,
with a focus on the matching of labeled graphs (Section 2.2.4);
• we have realized a state of the art of self-organizing multi-agent system,

noticing the relative lack of self-organizing systems formed of cognitive
agents; we have also had a focus on the mechanisms through which the
intended emergents are obtained (Section 2.3);
• we have proposed a model of distributed information spreading based on

a set of context measures that allow the developer to control the spread-
ing of information in a multi-agent system formed of a large number
of agents. These context measures are pressure – controlling the speed
of the spreading; specialty – controlling the direction and areas where
the information spreads; and persistence – controlling the validity of the
information; locality is also considered as an implicit measure (Section
3.2.1);
• we have developed an agent behavior that uses mechanisms of self-

organization (e.g. positive and negative feedback loops, a certain level
of randomness, etc), that results in a controllable spread of information
at the global level (the level of the system), although individual agents
only have local knowledge and communicate only with their immediate
neighbors (Section 3.2.3);
• we have designed and implemented a simulation testbed for multi-agent

systems formed of a large number of agents, directed toward quick,
repeatable simulations running on a single machine, and validated it
through several experiments in different settings (Section 3.3);
• we have developed an XML-based format for scenario files that allows

the repeatable testing of large multi-agent systems, and that specifies
the layout of agents and the time and nature of events; all parameters
can be random with a defined interval and deviation (Section 3.3.3);
• we have designed and implemented visualization tools for large multi-

agent systems, that allow the visualization of the evolution of the system
as a whole, as well as of the evolution of individual agents; the tools
include the visualization of instant value of one parameter for each agent
of the system, the visualization of the time evolution of an aggregated
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parameter over the whole system, selection and inspection of individual
agents, as well as centralized logging (Section 3.3.4);
• we have devised a model for context-aware multi-agent systems in which

the topology of the system (neighborhood relations) relates to the con-
text of the agents and to the structure of the context (Sections 4.1 and
5.3);
• we have validated the context-based system topology through the design

and development of the Ao Dai project, in which agents are assigned
to context elements (like places, services and devices) and hierarchical
relations between agents are mapped to the structure of the context;
the project was implemented in CLAIM and demonstrated at the 5th
NII-LIP6 workshop, held in June 2010 in Paris (Section 4.2);
• we have proposed a unified formalism for the representation of context

information, both inside and outside the agent; the formalism is original
and is based on a graph, in which different subgraphs represent the
knowledge of agents, the relations between agents, and the assignment
of agents to containers (or devices) (Section 5.1.1);
• we have conceived a formalism for graph patterns, that allows a pattern

to match a wider range of individual graphs, using nodes with unspecified
labels, as well as edges labeled with regular expressions (Section 5.2.2);
• we have developed an algorithm for the matching of a context pattern

against a context graph, that allows partial matches and outputs the
subgraph matching the pattern, the matched part of the pattern, and
a numeric measurement for the fraction of the pattern that has been
matched (Section 5.2.3);
• we have improved the agent behavior for the spreading of information

using local interaction (as presented in Section 3.2.3) to integrate the
context-aware system topology and the use of context patterns for the
recognition of relevant situations (Section 5.4);
• we have simplified the semantics of the CLAIM agent-oriented program-

ming language from the point of view of the number and categories of
primitives, and we have simplified its syntax to use fewer constructs
and special characters, having as result the S-CLAIM language which is
simpler, cleaner, easier to read and easier to interpret (Section 6.2.2);
• we have implemented functionality for hierarchical mobility of JADE

agents, in a similar fashion to the mobility of the original CLAIM agents
(Section 6.2);
• we have implemented classes and functionality that allows a JADE agent

to execute the agent description extracted from the S-CLAIM code, also
using the functionality for hierarchical mobility (Section 6.2.2);
• we have proposed a formalism for the linear representation of graphs,

and two algorithms for the linearization of a graph (for representation
in text) and for the extraction of linear components of a graph (for
graphical representation) (see the example in Section 5.2.2);
• we have implemented a visualization infrastructure that allows the cen-

tralization of agent logs, as well as the centralized visualization of the
dynamic topology of the system; the visualization uses the algorithm for
the linearization of graphs (Section 6.2.4);
• we have developed an XML-based format for the specification of sce-
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narios for distributed multi-agent systems, assuring easy and repeatable
simulation of JADE-based (and not only) multi-agent systems (Section
6.2.3);
• we have developed a MAS-based platform for AmI applications, focused

on the application layer of Ambient Intelligence, using a graph based rep-
resentation for context information, and underpinned by the S-CLAIM
agent-oriented programming language (Section 6.3).

7.2 Future Work

This work is only a phase, a beginning. Many paths for the development of the
concepts that we have introduced remain open and only too little explored.
The implementations that were realized deserve to be improved and extended,
and many concepts need further testing in applications and scenarios always
closer to real life. Some of these potential targets for the future are presented
in this last Section of the thesis.

There are many perspectives for the AmIciTy:Mi platform. It makes a great
platform to study complex systems formed of large number of agents with
similar behavior. Its advantages are speed – allowing for the realization of
many simulations – and the existing visualization tools.

AmIciTy:Mi can be extended to support agents of different sizes (being able to
store more or less information). Also, agents that move through space would
make a great addition. The scenario files would be improved to be able to
specify agent sizes and paths. The study of moving agents would allow more
insights in how information spreads, in a more realistic system,.

It could also be used to develop new measures for context, that would be as
simple, but also as effective as the ones already developed. Conversely, the
development of new measures for evaluating the evolution of the system, and
new tools for the visualization of the system.

The Ao Dai project has already lead to several followups, both in theoreti-
cal development as well as in the development of the platform, namely the
extension of the considered aspects of context, on the one hand, and the de-
velopment of the S-CLAIM language and the new MAS platform, on the other
hand.

But maybe more importantly, the Ao Dai project founded a collaboration
between students from several universities in Europe, Brazil and Asia – MAS
team from University Pierre et Marie Curie (Paris 6), AI-MAS from University
”Politehnica” of Bucharest, IFI institute from Hanoi and PUC-Rio University
from Brazil. This collaboration is likely to continue.

As for context-awareness (both inside and outside the agent), we believe that
our approach has a lot of potential, that has not yet been entirely explored.
Both context-awareness outside and inside the agent are new contributions,
therefore it is only intensive testing that will fully validate their adequacy to
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various applications.

Temporality has only been little explored. User’s (or agent’s) history, as well
as planned activities, could be formalized as special elements and treated as
such.

Another aspect that needs testing in practice and non-simulated applications
is the use of the characteristic and actionable features of patterns, which have
the power to greatly increase the possibilities of applying patterns.

Very much needed future work involves the implementation of more, and more
varied scenarios, using the context-aware system topology and context pat-
terns. It is only by experiment that the real power of these representations
will be understood.

The MAS platform for AmI is to be further developed and extended; its dif-
ferent enhancements will be easy as it relies on well-implemented components
that have a high degree of generality. It can prove to be not only an AmI ex-
periment, but also a very useful and simple to use platform for the deployment
and testing of multi-agent systems. The S-CLAIM agent-oriented language is
easier to use than CLAIM, and has a good chance of becoming a more widely
used agent language.
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