
Scaling Peer-to-Peer Testing

with Linux Containers

Mircea Bardac, Razvan Deaconescu, Adina Magda Florea

POLITEHNICA University of Bucharest

9th RoEduNet International Conference

June 24-26, 2010, Sibiu, Romania

Contents

 Introduction & Context (P2P and LXC)

 Experiment design & discovered limitations

 Experimental evaluation of LXC scaling

 Scaling challenges

 Future work & Conclusions

RoEduNet 2010 – Scaling Peer-to-Peer Testing with Linux Containers2

Introduction

 Studying the peer performance and behaviour inside a

swarm

 Known and unknown protocols

 Real-life client implementations

 Approaches for studying P2P systems

 Simulators

 Real-deployments

 Virtualization

 BitTorrent as a P2P implementation

RoEduNet 2010 – Scaling Peer-to-Peer Testing with Linux Containers3

Virtualization

 Previously tested virtualized applications:

 tracking application interaction (Huang et. all)

 simulating BitTorrent swarms (Deaconescu et. all)

 BitTorrent on OpenVZ infrastructure (Deaconescu et. all)

 Limited number of virtualized peers (max. 5 peers/node)

 OpenVZ - No support in the Linux kernel mainline

 Known results: hrktorrent determined as the fastest client

 Solution: Linux Containers (LXC)

RoEduNet 2010 – Scaling Peer-to-Peer Testing with Linux Containers4

Linux Containers (LXC)

 Lightweight virtualization solution (Operating System level)

 isolated resources

 processes (~ process groups), memory, file system (~ chroot)

 Virtualization solution implemented in kernel mainline

 starting with kernel version 2.6.29 (March 2009)

 Node = Container

 Real BitTorrent clients running each node (= peers)

RoEduNet 2010 – Scaling Peer-to-Peer Testing with Linux Containers5

Linux Containers (2)

 Control Groups (cgroups) for:

 Process environment isolation

 Managing restrictions

 Created framework for managing the entire life-time of the

Peer-to-Peer swarm on top of LXC

 Description of the node topology and their attributes

 Description of the P2P clients

 Starting/Stopping/Destroying the nodes

RoEduNet 2010 – Scaling Peer-to-Peer Testing with Linux Containers6

Experiment overview

 Host system

 Intel(R) Core(TM)2 Duo CPU T7500 @ 2.20GHz

 1.5 GB RAM

 5.7 GB HDD partition

 Debian testing (“squeeze”) with stock 2.6.32 Linux kernel

 Bandwidth limitation: tc

RoEduNet 2010 – Scaling Peer-to-Peer Testing with Linux Containers7

Virtualization Limitations

 Uplink limitation can affect the downlink capacity

RoEduNet 2010 – Scaling Peer-to-Peer Testing with Linux Containers8

Virtualization Limitations (2)

 Switching capacity - CPU usage (peak 123 MB/sec – 172 % CPU)

RoEduNet 2010 – Scaling Peer-to-Peer Testing with Linux Containers9

Experiment details

 6 scenarios

 Containers:

 1 tracker

 0, 20, 40, 60, 80, 100 peers (10 % seeders, 90 % leechers)

 Node bandwidth limitations:

 Uplink: 32 KB/s

 Downlink: 128 KB/s

RoEduNet 2010 – Scaling Peer-to-Peer Testing with Linux Containers10

Experiment details – File system

 Baseline file system for all peers

 Read-only bind mount points for common file system

directories (/bin, /usr, /lib etc.)

 Per container directories:

 /root – container specific files, torrent data

 /var – logs, temporary files

RoEduNet 2010 – Scaling Peer-to-Peer Testing with Linux Containers11

Host analysis

 File system usage

 Baseline file system: 260.45 MB

 Node file system:

min 1 MB, max 1 MB + 20 MB torrent data + logs 100 KB

 Peak (100 peers): 2043.2 MB

 RAM

 Host RAM: 43 MB

 Container RAM: min 4 MB, max 13 MB

 Peak (Host + 100 peers): 1357 MB

RoEduNet 2010 – Scaling Peer-to-Peer Testing with Linux Containers12

Host analysis (2)

 CPU usage:

 Processes/node: lxc-start, init, gettty, sshd, hrktorrent/bttrack

 Peak node process count (100 peers): 500 processes

 Peak CPU usage: 90%

 Linear growth of resource usage

 File system (peak ~2 GB)

 CPU (peak 90%)

 RAM (peak 1357 MB - close to experiment limit)

RoEduNet 2010 – Scaling Peer-to-Peer Testing with Linux Containers13

Host analysis (3)

RoEduNet 2010 – Scaling Peer-to-Peer Testing with Linux Containers14

Swarm analysis

 Tracker logs vs. Peer logs

 Measuring the impact on performance for each peer:

 Average download speed (time)

 Standard deviation for the average download speed (time)

 Slowly increasing trend for the standard deviation

RoEduNet 2010 – Scaling Peer-to-Peer Testing with Linux Containers15

Swarm analysis (2)

RoEduNet 2010 – Scaling Peer-to-Peer Testing with Linux Containers16

Scaling challenges

 Switching leads to increased CPU usage

 Prevent CPU contention by traffic shaping

 Uplink limitations can affect downlink traffic

 Peer implementation details

 Example: hrktorrent favors local network peers

RoEduNet 2010 – Scaling Peer-to-Peer Testing with Linux Containers17

Scaling challenges (2)

 Host components might not scale properly - Network ARP cache

 ping command error - „connect: No buffer space available‟

 Logs: „Network table overflow‟ errors

 A normal host vs. 100 containers with less than 100 neighbours

 Solution: increase network caches by a factor of 256

RoEduNet 2010 – Scaling Peer-to-Peer Testing with Linux Containers18

Future work

 Linux Containers benefits from using cgroups

 CPU-set support – pinning containers to specific CPU cores

 CPU accounting

 Memory Resource Controller (adds overhead)

 Block I/O controller

RoEduNet 2010 – Scaling Peer-to-Peer Testing with Linux Containers19

Future work (2)

 Correlations between swarm resource consumption and swarm

performance

 initial switching capacity testing: 9.83 MB/sec uses 90% CPU

 100 peers swarm: 2.62 MB/sec uses 90 % CPU

RoEduNet 2010 – Scaling Peer-to-Peer Testing with Linux Containers20

Future work (3)

 Resource usage expectations:

 100 peers swarm: 2.62 MB/sec uses 90 % CPU

 2.62 MB/sec should use ~60 % CPU

 Overhead of 500 processes running at the same time:

context switches, I/O etc.

 Maximum switching capacity with the same overhead?

 172 % CPU usage has a maximum 123 MB/sec

 With the same overhead (~ 30%), switching should be the

equivalent of ~120 % CPU usage

RoEduNet 2010 – Scaling Peer-to-Peer Testing with Linux Containers21

Future work (3)

 Maximum switching capacity with the same overhead

 172 % CPU usage has a maximum 123 MB/sec

 ~120 % CPU usage has a maximum of 40-50 MB/sec?

RoEduNet 2010 – Scaling Peer-to-Peer Testing with Linux Containers22

Conclusions

 LXC – virtualization platform

 Advantages

 Real P2P clients (BitTorrent)

 Read-only bind mount points (extremely low disk footprint)

 Available in the kernel mainline

 Disadvantages

 Still in development (example: cgroups)

 Scarce documentation

RoEduNet 2010 – Scaling Peer-to-Peer Testing with Linux Containers23

Conclusions (2)

 Impact of scaling an LXC-based testing platform on

 Host resource utilization (File system, RAM, CPU)

 Swarm performance

 Virtualization in multiple-container scenarios

 Multiple scaling challenges

 Platform for testing real-life P2P applications

RoEduNet 2010 – Scaling Peer-to-Peer Testing with Linux Containers24

Scaling Peer-to-Peer Testing

with Linux Containers

Mircea Bardac, Razvan Deaconescu, Adina Magda Florea

POLITEHNICA University of Bucharest

9th RoEduNet International Conference

June 24-26, 2010, Sibiu, Romania

