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Chapter 1. Introduction 
 

The main aim of this thesis is to conceive, design, implement, and evaluate 

different models of negotiation between autonomous agents, built to assist the users 

in automated negotiation for e-commerce. 

The negotiation process is a complex feature of traditional buying and selling. 

This process can be examined in the context of automated negotiation, as applied in 

the multi-agent based e-commerce. 

Creating and developing intelligent autonomous agents is an important issue 

nowadays. The agents could have different goals, constraints, capabilities and 

preferences. Negotiation between agents becomes a complex problem to be solved. 

The main approach for multi-agent bargaining is automated negotiation. 

Because of the technology development, the business world encountered new 

possibilities to exchange data by computer networks at reduced costs. So, computer-

based networking has created major changes in business activity. Therefore, these 

changes need a fundamental rethinking of the development of negotiation models. A 

business involves different processes, such as buying, selling, and services, which 

require the negotiation process. Software agents can be used in order to automate 

several of the most time consuming steps of the buying and selling processes. 

The thesis realizes the modeling and design of a multi-agent system for 

automated negotiation, in which every agent has a cognitive part, composed from a 

knowledge base and an inference engine. The agents negotiate, based on a 

negotiation language, which contains a set of primitives, and also based on 

negotiation criteria, represented as rules.  

The negotiation process is improved using learning algorithms. The use of 

learning techniques is investigated, in order to allow agents to reuse their negotiation 

experience for improving the final outcomes. The learning mechanism is used to 

improve the agent strategies in negotiation. Experimental results on four real world 

specific scenarios evaluate the performances of the multi-agent system for 

automated negotiation. 

 

1.1. Problem Description 

 

From the transactional point of view, there are the following types of electronic 

commerce: 

a) business-to-business (B2B) - commerce transactions between businesses, 

such as between a manufacturer and a wholesaler, or between a wholesaler and a 

retailer. About 80 % of e-commerce is of this type; 

b) business-to-consumer (B2C) – transaction that occurs between a company 

and a consumer; 
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c) consumer-to-consumer (C2C) – commerce between private individuals or 

consumers; 

d) consumer-to-business (C2B) - consumers create value, and companies 

consume this value. Consumers can offer products and services to companies and 

the companies pay them;  

e) business-to-government (C2G) – commerce between companies and the 

public sector; 

f) mobile commerce (m-commerce) – buying and selling of goods and 

services through wireless technology. 

Systems that use software agent technologies are proving to be effective in 

helping users make better decisions when buying or selling over the Internet. 

Software agents can also play an important role in providing automation and support 

for the negotiation stage of online commerce. 

Agent-based systems support various stages of online commerce: product 

brokering (determining what to buy), merchant brokering (determining whom to buy 

from), and negotiation, where all parties involved communicate in order to reach an 

agreement on the terms of transactions. An example of such system is called 

Kasbah, proposed in [Chavez A. and Maes P., 1996]. More sophisticated automated 

trading systems are proposed, which offer multi-attribute intelligent matching, such as 

Tete-a-Tete [Guttman R. H. et al., 1998] and ITA [Kowalczyk R. and Bui V., 2000]. 

Bazaar is an experimental system for updating negotiation offers between two 

intelligent agents during bilateral negotiations [Zeng D. and Sycara K., 1998]. It 

models negotiation as a sequential decision making task, and uses bayesian 

probability as the underlying learning mechanism. The price is used as the issue of 

negotiation. 

Most former studies on the negotiation are not for an automated negotiation 

system, but for a negotiation support system, that allows the negotiations between 

buyers and sellers. The reason is that in case of multi-issue negotiation, it is not easy 

to evaluate many negotiation issues, making the development of an automated 

negotiation system a complex problem. 

Under the current e-commerce environment, an automated negotiation system 

is critical in dealing with complex problems and different changes in business 

environment [Choi H.R. et al., 2005]. The multi-agent frameworks have simple 

functions, such as the generation of agents, support for the conversation between 

agents and agents’ management, but they don’t have the function to support 

negotiation attributes. 

Existing multi-agent frameworks have no function to define the category and 

relationship between products. These functions are necessary, if the conditions of a 

negotiation don’t coincide. Negotiation messages should be prepared and used to 

bring a better result of the negotiation. 

Negotiation can be viewed as a process of cooperative and competitive 

decision making between self-interested agents, in the presence of incomplete 
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information. It is a process in which competing agents decide how to divide the gains 

from cooperation [Fatima S. et al., 2007]. 

Machine learning is widely used in negotiation learning mechanisms. 

Negotiation parties use various learning techniques to improve and update their 

knowledge about environments and other parties, and the knowledge represents 

good support for their later decisions. The past negotiation records play an important 

role in all these learning techniques, because they compose the training data sets for 

the learning algorithms. As the larger training set implies more accurate learning 

results and increased profits, negotiation parties have the desire to obtain more 

related negotiation records. If several negotiation parties have the same negotiation 

learning objective and meanwhile they do not have any direct profit conflicts (for 

instance, a group of buyers conduct bilateral negotiations with a third party supplier), 

sharing their negotiation records will bring to all of them benefits [Lau R.Y.K., 2005]. 

Real-world negotiation scenarios, such as those found in B2B environments, are 

characterized by complex negotiation spaces, strict negotiation deadlines, limited 

information about the opponents, and different negotiator preferences. Therefore, 

practical negotiation systems must be equipped with effective learning mechanisms 

to acquire automatically domain knowledge, from the negotiation environments and 

continuously adapt to the dynamic negotiation contexts [Zhang S. and Makedon F., 

2005]. 

Rule-based approaches represent a technique to parameterize the negotiation 

design space in multi-agent systems. Rules can be used for describing both 

strategies and mechanisms of automated negotiations [Badica C. et al., 2006 a]. 

 

1.2. Research Objectives 

 

The main goal of the thesis is to develop a set of adaptive negotiation 

strategies, a model of autonomous entities that use these strategies and an 

associated implementation based on multi-agent system technology. The proposed 

model and implementation are aimed to support the development of advanced e-

commerce applications, in which the users are represented by autonomous agents, 

which can adapt their negotiation strategies to both context and user preferences. 

The framework is composed of a set of agents and a facilitator. The facilitator 

performs the function of exchanging messages and managing agents. The facilitator 

is in charge of a server function to exchange the messages between agents. The 

proposed strategies and models are validated by building an e-commerce 

environment that supports the development of several e-commerce scenarios. 

When the proposed models are designed, the requirements for the negotiation 

protocol specified in [Bartolini C. et al., 2005] are followed, namely:  

a) Be sufficiently formal that automated entities can interact using it; 

b) Support negotiation about simple and complex objects; 
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c) Be sufficiently general that a variety of different market mechanisms can be 

expressed as specific instances of it; 

d) Allow, but not require, the existence of a third party to arbitrate a given 

negotiation, for instance, a facilitator in an auction; 

e) Support existing ways of doing business, as well as permitting more 

approaches in the future. 

Regarding the negotiation strategies, some decision taking assistance 

techniques are used in the thesis, such as rule-based reasoning and machine 

learning techniques. The open environment allows automated negotiation, offering 

support for the use of various existing negotiation models, together with their 

respective negotiation strategies. In this manner, it is possible to integrate different 

models, approximating the automated negotiations to the way the real world 

interacts. 

Multi-attribute techniques for negotiation are introduced by the agents, in the 

evaluation of the exchanged offers and counteroffers, and an associated 

communication mechanism is developed to support the negotiation protocol. Agents 

use multi-issue negotiation by exchanging offers and counteroffers, until they either 

reach a consensus that satisfies each party's private preferences and constraints, or 

the agents run out of offers and the negotiation fails. The agents use multi-attribute 

utility theory and constraint based reasoning for the evaluation and generation of 

offers. Multi-attribute negotiation is important for agents to reach agreements on 

multiple issues, but it is more complex than single-attribute negotiation. 

The architecture for the negotiation environment is open and the number of 

buyers and sellers could be changed during execution time. In a flexible way, the 

negotiator agent could increase the number of negotiation strategies. These 

characteristics are designed in the environment using configuration files and rule-

based systems. A flexible and interoperable system, where knowledge, negotiation 

protocol and strategies are explicitly represented in rules is developed. 

The agents are rule-based and the rules express both the knowledge of the 

domain and the negotiation strategy. The rules are defined in JESS (Java Expert 

System Shell), for ensuring the interoperability among agents. 

An agent is modeled as a knowledge-based system and is composed from the 

knowledge base, the inference engine and the control part. The knowledge base has 

two components, one component to represent the rules and knowledge about the 

objects of the business domain, and also one component to represent explicitly the 

strategy through negotiation rules. 

In order to negotiate successfully, agents need to consider each others’ agents 

preferences and generate offers accordingly. Agents may find each others’ 

preferences over time and through interactions. As agents learn about each others’ 

preferences, they can provide better offers and enable faster negotiation. 
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1.3. Outline of the Thesis 

 

The thesis is composed of introduction, two parts with several chapters each of 

them, a chapter of conclusions and future work, bibliography and three annexes. The 

first chapter, Introduction, contains the problem description, the research objectives, 

and this section. 

The first part, Literature Overview on Automated Negotiation, organized in 

three chapters, contains an overview of the most important theoretical concepts and 

technological aspects on which the thesis is based, and also presents the state of the 

art research in the relevant fields for the thesis contributions. 

Chapter 2, Negotiation in Multi-Agent Systems, describes the negotiation 

process in multi-agent systems and presents the possible negotiation types. Then, it 

provides guidelines for the models used in automated negotiation, the negotiation 

protocol and the negotiation strategies. 

Chapter 3, Knowledge Representation and Learning, contains an overview of 

the representation methods and languages that are mostly used in automated 

negotiation systems. Then, it describes the basis of some learning algorithms used in 

automated negotiation. 

Chapter 4, Adaptive Negotiation Strategies, is an overview of the current 

state of art in negotiation, with a focus on adaptive negotiation strategies. This 

provides a background, on which the personal contributions are built, and 

emphasizes significant results obtained and challenges for future research. 

The second part, An Adaptive Negotiation Multi-Agent System, contains the 

presentation of the contributions of the thesis for the design and implementation of an 

adaptive negotiation multi-agent system for e-commerce applications. 

Chapter 5, Automated Negotiation using Profiles and Clustering of Agents, 

defines an automated negotiation model, based on profiles and clustering of agents. 

In this model, the agents develop a set of negotiation profiles: the preference profile, 

the partner cooperation profile and the group-of-partners’ negotiation profile. These 

profiles help the agents to conduct their negotiation. In the group-of-partners’ 

negotiation profile, individual agent profiles are clustered, according to commonly 

discovered features. 

Chapter 6, Automated Negotiation Model using Strategies and Tactics, 

presents a model of heuristic negotiation between self-interested agents, which 

allows negotiation over multiple issues and learns the agent’s negotiation strategy. 

The agents are using different strategies to negotiate and several models to adjust 

their decision during negotiation. The performance of the agents which use multiple 

tactics is compared to the agents having learning capabilities, based on 

reinforcement learning techniques. 

Chapter 7, A Negotiation Model with BDI Agents, describes a model of 

cognitive agents, based on the BDI (Belief-Desire-Intention) architecture, which takes 

into account different aspects of agent knowledge and behavior: abilities, history of 
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interaction with other agents, cooperation and negotiation options. This model 

defines the notion of utility for negotiation objects and for the roles the facilitator has 

in the negotiation process. The goal of the agents is to improve the negotiation 

strategy, using learning techniques and also to design negotiation environments. 

Chapters 8 and 9 present different automated negotiation scenarios, 

corresponding to distinct business models, and their implementation in the system, 

showing the results obtained for each of them.  

Chapter 8, Travel Agency Automated Negotiation Business Model, 

describes a travel agency scenario, gives a detailed analysis of the negotiation rules 

and of the different strategies the agents may use, and reports experimental results 

for several use cases. 

Chapter 9, Business Models Examples for Negotiation, implements three 

other scenarios: a real estate agency scenario, a car dealer business model, and an 

emergency hospital negotiation scenario. For each scenario, the business case is 

described, and the experimental results obtained by implementing the scenario in the 

system are presented.  

Chapter 10, Conclusions and Future Work, presents the conclusions of the 

thesis, the original contributions of the author, and points out directions of future 

work. 

The Bibliography contains 107 references, including publications of the author. 

The Annexes 1, 2, and 3 describe in details the set of negotiation rules for the 

scenarios defined in Chapter 9. 
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Part I. Literature Overwiev on Automated Negotiation 
 

Chapter 2. Negotiation in Multi-Agent Systems 
 

2.1. The Need for Negotiation in e-Commerce 

 

Negotiation represents the process aimed to change the plans, in order to reach 

an agreement among a subset of businesses. In other words, negotiation is a form of 

decision making, where two or more agents search together a space of possible 

solutions through interaction, with the goal of reaching a consensus. Negotiation 

usually has a series of rounds, with every agent making a proposal at each round. 

Negotiation is a process that appears in many aspects of our lives. Research in 

the field of automated negotiation has suggested the design and use of automated 

negotiators, on one hand to allow facilitation of the negotiation process by human 

negotiators and, on the other hand, to provide automated agents that can negotiate 

on behalf of humans [Lin R. et al., 2009 b]. 

Negotiation in electronic commerce is the process in which two or more parties 

multilaterally bargain goods or services for mutual intended gain, using the tools and 

techniques of electronic commerce [Beam C. and Segev A., 1997]. Automated 

negotiations take place when the negotiating function is performed by software 

agents. 

A software agent is a computer program that acts for a user or other program. 

It represents an entity with goals, capable of actions endowed with domain 

knowledge and situated in an environment. Multi-agent systems are distributed 

agents that do not have the capabilities to achieve a goal alone and should 

communicate for this. They are suitable for the domains that involve interactions 

between different people or organizations with different goals. 

In order to model automated negotiation, negotiation protocols and 

negotiation strategies should be differentiated. The protocol describes rules 

between negotiation participants, by specifying the requirements that enable their 

interaction. The strategy defines the behavior of participants, aiming to achieve a 

desired outcome. This behavior must be consistent with the negotiation protocol, and 

usually aims at maximizing individual gains of each of the negotiation agents [Badica 

C. et al., 2006 b]. 

A negotiation framework should specify a negotiation protocol, for constraining 

the use of the language. A protocol is a formal set of conventions governing the 

interaction among participants [Rahwan I. et al., 2003]. The negotiation protocol 

defines the formal interaction between the negotiators, whether the negotiation is 

done only once or repeatedly, and how the exchange of offers between the agents is 

conducted [Lin R. and Kraus S., 2010]. The negotiation strategy is an important 

issue. If one agent’s negotiation strategy is known to the other agent, the first agent 
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may be in a significant disadvantage. Strategy means an analysis of the 

counterpart’s negotiation strategy and an offer for a responding proposal. 

There are three major approaches to automated negotiation in the multi-agent 

domain: game-theoretic approach, heuristic-based approach, and argumentation-

based approach. 

Game-theoretic approaches of automated negotiation assume that agents have 

unbounded computational resources and that the space of outcomes is completely 

known. In most real environments, these assumptions fail, due to the limited 

processing and communication capabilities of the information systems. 

Heuristic-based approaches overcome the shortcomings of game-theoretic 

approaches, but they have a number of disadvantages. The models lead to 

outcomes that are sub-optimal, because they adopt an approximate notion of 

rationality and because they do not examine the full space of possible outcomes. 

Also, it is very difficult to predict how the system and the agents will behave. The 

heuristic negotiation strategies are domain dependent and time consuming. A 

reinforcement learning approach allows the negotiator to learn which negotiation 

primitive to use in a certain state of the negotiation [Florea A.M. and Kalisz E., 2008]. 

Argumentation-based approaches attempt to overcome the limitations of other 

approaches, by allowing agents to exchange additional information, or to argue about 

their beliefs and other mental attitudes during the negotiation process. In the context 

of negotiation, an argument is a piece of information that may allow an agent to 

justify its negotiation position or to influence another agent’s negotiation position 

[Rahwan I. et al., 2003]. 

The agents have limited information about the preferences and constraints of 

each other. They make decisions according to available information about private 

preferences, constraints and individual negotiation strategies. The agents exchange 

information in the form of offers. An offer is a complete solution, which is currently 

preferred by an agent, given its preferences, constraints and the negotiation history 

of offers and counteroffers. 

An agreement takes place when a particular offer is accepted by all negotiation 

parties. During the negotiation process, the range of possible offers of each agent 

changes, according to the current information available. These give finally an 

agreement, or, if a deal is not possible, the negotiation ends unsuccessfully. 

Therefore, negotiation is typically an iterative process of evaluating the offers, 

updating the available options, and making the counteroffers, according to the 

individual negotiation strategies. 

An automated negotiation system has three steps: the estimation step, the 

negotiation making step, and the negotiation concluding step. In the stage of an 

estimate, upon the buyer’s request for a written estimate, the seller reviews his 

process planning, performing cost accounting, and suggests his estimate to the 

buyer. During the stage of making negotiations and concluding negotiations, one 
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agent evaluates the other agent’s negotiation proposal, building one’s own 

negotiation strategy and sending his proposal to the other. 

The cooperation between agents should be made by means of a common 

message through which the request for a deal will be able to be made and the result 

to be sent. In general, messages between agents under the multi-agent environment 

are based on FIPA-ACL (Foundation for Intelligent Physical Agents - Agent 

Communication Language) and KQML (Knowledge Query and Manipulation 

Language). FIPA-ACL is a standard language for agent communications. KQML is a 

language and protocol for communication among software agents and knowledge-

based systems. 

Effective and efficient multi-issue negotiation requires an agent to have some 

indication of its opponent’s preferences. However, in competitive domains, such as e-

commerce, an agent will not reveal this information and so the best that can be 

achieved is to learn some approximation of it through the negotiation exchanges 

[Coehoorn R. and Jennings N., 2004]. 

For instance, if it is considered an organization that needs to order some 

products, it could have a buying agent that moves through all the stages of the 

buying process. An agent can be designed to automatically gather information on 

sellers and products, which may match the requirements of that organization. After 

the evaluation of various offers, a decision is made about which sellers and products 

to investigate. This is followed by negotiation on the terms of the transactions with 

these sellers. Following successful negotiation, orders are placed and payment is 

made automatically. 

The negotiation process appears in all electronic transactions at the time of the 

communication of agents in order to reach mutual beneficial agreements. The agents 

might have some common interest in cooperating, but might have some conflicting 

issues about how to cooperate, as shown in Figure 2.1 [Florea A.M., 2012]. Agents 

can mutually benefit in reaching agreement on a particular result from a set of 

possible outcomes, but might have some conflicting interests to overcome in 

achieving the result that they prefer. Before moving into any cooperation, they need 

to decide how to cooperate in order to obtain the associated benefits. On the other 

hand, each agent would like to reach an agreement that is favorable to itself as 

quickly as possible. Therefore, they need to make a series of offers and counteroffers 

before any agreement is reached. 

While software agents not only save the time of human negotiators, they also 

find solutions that are as beneficial as possible to all the parties. As a result, 

negotiation in an electronic environment increases the efficiency of negotiations 

through the assistance and automation of decision tasks. 

 This increase in efficiency provides the following benefits [Huq G., 2010]: 

a) The complexity and uncertainty of non-automated decisions in electronic 

negotiation can be reduced due to adequate information being provided; 
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Figure 2.1. Coordination in Negotiation [Florea A.M., 2012] 

 

b) Structured negotiation tasks with a well-defined solution approach can be 

applied; 

c) Increase the total number of potential transaction participants, which offers 

more options, flexibility and eventually attract more efficient agreements, when 

moving towards negotiation; 

d) More transparency can be enabled between participants; 

e) Reduce the total cost and time of negotiation. 

Possible scenarios for automated negotiation [Rahwan I. et al., 2002 b] are 

presented in the next paragraphs. 

In a telecommunications market, a software agent, representing the user and 

running on a smart phone, negotiates with other software agents representing phone 

companies. This is presented in Figure 2.2 (a). The user agent attempts to find a 

good quality phone connection for a reasonable price. Each phone company agent 

aims at maximising its company's profit. Conflict of interests exists because the user 

competes on money and bandwidth with various service providers, while service 

providers themselves compete over user's money.  

In dynamic supply chains, a software agent acting on behalf of a computer 

manufacturer negotiates with various supplier agents, in order to assure the deliver of 

various components. Each supplier agent might itself negotiate with subcontractors 

to get the components it needs. This is presented in Figure 2.2 (b). 

In this scenario, the negotiation mechanism involves allocating money and 

computer components. Each part aims at making more money and the different 

monitor and printer cartridge suppliers compete over contracts with the computer and 

printer manufacturers respectively. 

Agents may begin to negotiate without having complete and accurate 

preferences over alternative deals. This may be because agents have limited, 
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uncertain, or wrong information, due to imperfect sensing of the environment or 

because they lack the necessary time. As a result, agents may have incomplete or 

incorrect preferences over different deals. Negotiating on the basis of such 

preferences can lead to sub-optimal deals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Automated Negotiation Scenarios [Rahwan I. et al., 2002 b] 

 

For example, an agent organizing a trip from Bucharest to Wien on behalf of a 

user, as shown in Figure 2.3, might not know about all possible ways of travelling to 

Wien. Further, the user might have forgotten to request a hotel booking. Due to such 

incomplete and inaccurate information, the agent can make incorrect decisions as it 

negotiates with different travel agents. 

 

 

 
 

Figure 2.3. Travel Agent Scenario [Rahwan I. et al., 2002 b] 
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2.2. Modeling the Negotiation in e-Commerce 

  

Electronic commerce is one of the most important market places in today’s 

electronic environment, where buyers and sellers are involved in trading activities. 

Electronic commerce is expanding and becoming more popular to both business 

organizations and consumers.  

A multi-agent system has a set of agents, which have some interactions 

between them, in general by messages exchange. Agents in a multi-agent system 

represent or act on behalf of users or owners with a diversity of goals and 

motivations. Therefore, these agents require the ability to cooperate, coordinate and 

negotiate with each other for successful interaction. 

Negotiation is a process by which a group of agents communicate to try to 

come to a mutually acceptable agreement on some matter. It is one of important 

methods for establishing agent cooperation.  

Negotiation refers to the process by which a group of agents communicate with 

one another in order to reach a mutually acceptable agreement. If the negotiation 

spaces are large, even experienced human negotiators are overwhelmed. Under 

such circumstance, sub-optimal rather than optimal deals are often reached. 

Therefore, it is desirable to employ intelligent software agents to automatically search 

through the negotiation spaces to find potential agreements on behalf of the human 

negotiators. 

Negotiation between agents appears in different areas of research, like 

electronic commerce, distributed resource allocation or virtual enterprises. In open 

systems, agents are acting in an environment in which other agents may enter or 

leave, some of them known before, some others encountered for the first time. In this 

context, the design of intelligent agents with a complete pre-defined negotiating 

behavior represents a challenge for the designer, especially when the agents are 

conceived to be general purpose and not limited to a specified domain. To overcome 

existing difficulties, creating automatic negotiating agents is still a fertile area of 

research, despite the important amount of work in the domain. 

The environments of applications are open, as they are populated with self-

interested agents designed and/or owned by different people and there is no complete 

information about the preferences or decision-making processes of the participating 

agents. In order to be autonomous and achieve performance when conducting a 

negotiation, an agent should be able to anticipate both the outcome of the negotiation 

and the best potential partner with which to start a negotiation. Machine learning 

approaches can contribute to adapt the agent’s strategy during negotiation and 

trading, achieve improved outcomes and increased payoffs. 

Negotiation plays an important role in multi-agent systems. When one business 

organization wants to buy or sell goods or have services in an electronic environment 

[Huq G., 2010], then it always needs some processes that involve negotiation, as 

presented in Figure 2.4. 
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Figure 2.4. Negotiation Steps between Two Agents [Huq G., 2010] 

 

The components, which form the negotiation setting, are [Wooldridge M., 2009]: 

a) the negotiation set, representing the space of all possible proposals that 

agent can make; 

b) the negotiation protocol, describing the proposals that agents can make, 

with respect to the previous negotiation history; 

c) the negotiation strategy, determining what proposals the agents will make. 

In general, each agent has its own strategy. The fact that an agent is using a certain 

strategy is in general not visible to other negotiation participants; 

d) the rule which determines when a deal is obtained and what the agreement 

deal is. 

In general, negotiation has a series of rounds, with some proposal made at 

every round. The proposals that agents make are defined by their strategy, should be 

derived from the negotiation set, and should be correct, as defined by the protocol. If 

agreement is obtained, as described by the agreement rule, then negotiation ends 

with the agreement deal. 

The negotiation complexity increases, as the number of agents involved in 

negotiation increases. There are three negotiation types: 

a) one-to-one negotiation, in which one agent negotiates with another agent. A 

simple case of one-to-one negotiation is when the agents have symmetric 

preferences with respect to the possible deals;  
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b) many-to-one negotiation, in which many agents negotiate with one agent. 

Auctions are an example of many-to-one negotiation. Such a negotiation can be seen 

as a many one-to-one negotiations done in parallel; 

c) many-to-many negotiation, in which many agents negotiate with other 

agents simultaneously. If there are n agents involved in negotiation, it means that 

there can be up to n*(n-1)/2 negotiation threads. 

Also, the negotiation complexity increases in the case of multi-issue 

negotiations. An instance of a single-issue negotiation is when two agents are 

negotiating only the price of a certain good or service. In such a scenario, the 

preferences of the agents are symmetric, such that a deal, which is more preferred 

from one agent’s point of view, is guaranteed to be less preferred from the other 

agent’s point of view. Such a symmetric scenario is simple to be analyzed, because it 

is clear what represents a concession. For the seller to concede, it must decrease 

the price of its proposal, while for the buyer to concede, it must increase the price of 

its proposal. In multi-issue negotiation scenarios, agents negotiate not only the 

value of a single attribute, such as price, but the values of multiple attributes, which 

may be interrelated. In multi-issue negotiations, it is not clear what represents a true 

concession and when all the attribute values must be either increased or decreased. 

Multiple attributes give an exponential growth in the space of possible deals.  

There are five characteristics that are necessary for a negotiation mechanism: 

efficiency, stability, simplicity, distributivity and symmetry [Benameur H. et al., 2002]. 

These characteristics are found when considering a model for automatic negotiation: 

a) Efficiency - expressing the efficiency of a negotiation is a difficult task, 

because there must be taken into account restrictions; 

b) Stability - a possibility to get stability is to not allow an agent to ignore or 

reconsider offers, once they have been submitted; 

c) Simplicity - negotiation mechanisms should be simple to implement. Taking 

into account the set of messages to be exchanged, the communications needed are 

the offers and the answers from both parts; 

d) Distributivity - when many buyers are active, the seller is the main entity. 

But in a market, a lot of buyers and sellers could negotiate. The sellers could act 

independently or coordinate their activities. Multiple simultaneous negotiations can 

be performed in this way; 

e) Symmetry - the symmetry could be obtained by assuming that all agents 

could access all the available information.  

For conducting business efficiently, there is an interaction from one business 

organization to other business organization. The suppliers, manufacturers, retailers 

and consumers, are all in a related network, which needs proper, efficient and timely 

coordination, cooperation and negotiation processes. Therefore, in an electronic 

environment, when the above entities interact with each other, the system needs 

different automated software agents to perform tasks on behalf of real-world 
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business organizations. This can be achieved by applying multi-agent systems in an 

electronic environment, in order to improve the performance among software entities. 

New strategies are required for proper planning and managing the businesses. 

In order to develop these strategies, automation of business processes is required. 

The negotiation process is one of the most important processes in business 

communities. In addition, automation of negotiation, which corresponds to 

negotiation-based e-commerce, has received a lot of attention from the multi-agent 

community, because such topics have the important potential to reduce significantly 

the negotiation time and to remove some of the reticence of humans to engage in 

negotiation and to facilitate the intelligent agents that are able to perform negotiation 

on behalf of users. 

In market environments, business activities are coordinated through price, 

which is one of the values that is assigned to a negotiation object. Various 

businesses assign different values to negotiation objects, and for this reason, they 

need to bargain to reach mutually acceptable agreements. Therefore, it is important 

to enable businesses to engage in negotiation in an electronic business environment. 

There are many areas of research that studied negotiation in an electronic 

environment, like: the information systems field with negotiation support systems; the 

multi-agent systems field with searching, trading and negotiating agents, and the 

market design field with electronic auctions [Zlatev Z. et al., 2004]. 

The negotiation process can be decomposed into components, such as 

negotiation protocols, negotiation objects and agent’s decision-making models. 

Negotiation protocols describe the rules used in negotiation. Negotiation objects refer 

to the issues the agents are negotiating, that is, goods or services. Agent’s decision-

making models represent decision-making framework, which agents use to fulfill their 

goals with respect to the protocol. 

Real negotiation situations are characterized by complex negotiation spaces, 

which involve multiple parties and many issues. In addition, negotiators are bounded 

by limited computational resources, time, and limited information about the 

opponents. While classical game-theoretic negotiation models provide good 

theoretical analysis of the optimal outcomes, these fail to advise the course of actions 

that a negotiator can follow to reach the optimal outcome in real world negotiations. 

One main concern for the practical use of these theories is that the search space for 

considering all the possible strategies and interactions, in order to identify the 

equilibrium solutions grows exponentially. It means that the problem of finding an 

optimal strategy is in general computationally difficult. Another problem is that the 

classical game theories assume that complete information about every agent is 

available to a centralized decision making mechanism. It turns out that such an 

assumption does not hold in most real-world negotiation situations. 
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2.3. The Coordination Process in Negotiation 

 

As the number of electronic transactions increases, the interest for partial or full 

automation of these transactions also grows. E-commerce describes the changes 

that are transforming the way business is conducted, through the use of information 

technology. In order to understand the basic stages of an e-commerce procedure, it 

is examined a consumer’s buying behavior model [Guttman R.H. et al., 1998; Ye 

Y. et al., 2001]. 

In such a model, there are six steps, which appear during the buying process. 

Need identification is done by the buyer, so he needs a particular product. Product 

brokering is the information gathering by the buyer, so that he is able to decide what 

to buy. The buyer provides some criteria and a filtering mechanism is employed to 

provide him with a set of products. Merchant brokering combines the products set 

from the previous stage with information for specific merchants and gives the buyer a 

set of potential sellers. Negotiation is the stage during which both participants try to 

reach an agreement, over possible negotiation issues, such as the price, the volume 

or the delivery time of a product. Purchase and delivery follow the negotiation 

phase and payment or delivery options are examined. Finally, product service and 

evaluation is the evaluation of product and customer service, made by the buyer in 

order to estimate his utility. 

The main techniques used for product brokerage are: characteristics filtering, 

collaborative filtering and constrained-based filtering [Guttman R.H. and Maes 

P., 1998]. Characteristics filtering select the products based on associated keywords 

or characteristics. Collaborative filtering refers at sending personalized 

recommendations to an agent, based on similarities between different profiles of 

users’ preferences. Constrained-based filtering implies an agent, which specifies the 

imposed constraints upon the product. 

In the current negotiation environments, which represent the first
 
generation of 

e-commerce applications, buyers and sellers are humans who browse through a 

catalogue of well-defined goods and make fixed price purchases, usually by means 

of credit card transaction [He M. et al., 2003]. Humans appear in all the stages of the 

buying process, and this is time consuming. The research is conducted towards the 

realization of the second generation, which is the future state, of e-commerce 

applications, which will be done through the use of automated methods of information 

technology. Web users will be represented by software agents. Nowadays, there is 

an increasing use of software agents for all the aspects of e-commerce. 

However, as software agents start to engage in e-commerce, new issues arise. 

Information must be organized in a way that is accessible by both humans and 

machines. Additionally, machines must be able to access, process and interpret the 

information in the same way. This vision is consistent with the Semantic Web 

initiative, which enriches the current Web through the use of machine-processing 

information about the semantics of information content. This way, the meaning of 
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displayed information is accessible not only to humans, but also becomes accessible 

to software agents. The techniques of the Semantic Web are semantic annotations 

(meta-data) and ontologies, which organize terms in a conceptualization of a domain, 

thus connecting semantic annotations with each other and serving as a basis for 

interoperability. 

Electronic commerce is rapidly gaining acceptance nowadays, and it will 

become more widespread in the future. Current e-commerce systems, such as 

Amazon.com, allow a user to browse an online catalog of products, choose some, 

and then purchase these selected products using a credit card. However, agents can 

lead to the second-generation of e-commerce systems, where many aspects of 

consumer buying behaviors (in B2C systems) and business-to-business transactions 

(in B2B systems) are automated. The automation on both the buyer’s and the seller’s 

side can lead to applications that are more dynamic and personalized. Both buyers 

and sellers gain from these changes - the buyers can expect the agents to search for 

and retrieve the best deals available, while the sellers can have the agents that 

automatically customize their offerings to customers, based on various parameters, 

such as the customer type, current seller competition, and current state of the seller’s 

own business. This advanced degree of automation can be achieved by modeling the 

e-commerce systems as interacting agents. 

The agents should go through a coordination process involving negotiations 

over all possible agreements covering issues of common interest, eventually bringing 

them all to a consensus. There are three main issues in defining such a coordination 

process [Goradia H.J. and Vidal J.M., 2007]: 

a) Space of Possible Deals - this represents a finite set of candidate deals for 

the agents to consider. Possible proposals that the agents can make are restricted by 

this set; 

b) Negotiation Process - this is a negotiation protocol, which, given the set of 

possible deals, defines how the agents will find to an agreement on a single deal. It 

specifies the set of rules that govern the agent interactions, while they attempt to 

reach a consensus. The process explicitly defines the various negotiation states, the 

events that cause negotiation states to change, and the valid actions for the agents in 

particular states. The negotiation process also defines the rules that determine when 

a deal is obtained, and what this agreement deal is; 

c) Negotiation Strategy - given a set of possible deals and a negotiation 

process, a negotiation strategy represents a model that individual agents employ to 

make decisions and achieve their objectives. The negotiation protocol, as well as 

certain agent characteristics, whether the agent has complete knowledge of its 

environment, whether it is truthful, determines the complexity of the agent decision 

model. 

The above parameters lead to a rich and complex environment for analyzing 

negotiation problems. Negotiations typically involve a series of rounds, with each 

agent making a proposal at every round, before eventually converging to an 
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agreement. However, there are many attributes that can complicate this model in 

real-world negotiation settings. For example, the complexity of the model increases 

rapidly with the number of agents in the negotiation process. Not only the negotiation 

space increases, but also the negotiation strategies of the individual agents become 

more complex. Also, the agents in real-world settings typically have multiple issues 

over which agreement must be reached. Suppose there are n issues that the agents 

have to negotiate, where each issue can have m possible values. This leads to a set 

of m*n possible deals. To make matters worse, in many situations the number of 

issues in the negotiation process may itself vary based on other parameters. 

 

2.4. Types of Negotiation 

  
2.4.1. Negotiation based on Game Theory 

 

Game theory studies interactions between self-interested agents [Jennings N.R. 

et al., 2001]. Game theory is important in the automated negotiation research, 

because the agents in these negotiations are self-interested. In order for an agent to 

make the choice that optimizes its outcome, it must reason strategically. That is, it 

must take into account the decisions that other agents may make, and must assume 

that they will act so as to optimize their own outcome. In negotiation, this means, for 

example, taking into account the private valuations that agents have on the 

negotiation issues, their own deadlines for making a deal, and so on. Game theory 

gives a way of formalizing and analyzing such concerns. 

Game theoretic techniques can be applied to two key problems: 

a) The design of an appropriate protocol that conducts the interactions between 

the negotiation participants; 

b) The design of a particular strategy that individual agents can use while 

negotiating – an agent aims to use a strategy that maximizes its own individual 

welfare.  

There are a number of problems associated with the use of game theory when 

applied to automated negotiation [Jennings N.R. et al., 2000]: 

a) game theory assumes that it is possible to characterize an agent’ 

preferences with respect to possible outcomes. Humans, however, find difficult to 

define consistently their preferences over outcomes. In general, human preferences 

cannot be characterized even by a simple ordering over outcomes. In scenarios 

where preferences are obvious, game theoretic techniques may work well. With more 

complex preferences, it is much harder to use them; 

b) the theory has failed to generate a general model governing rational choice in 

interdependent situations; 

c) game theory models often assume perfect computational rationality, meaning 

that no computation is required to find mutually acceptable solutions within a feasible 

range of outcomes. Furthermore, this space of possible deals is often assumed to be 
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fully known by the agents, as the potential outcome values are. This assumption is 

seldom true in most real world cases. Agents know their own information space, but 

they do not know that of their opponent. 

In the negotiation based on game theory, criteria to evaluate negotiation 

protocols among self-interested agents are used. The agents are supposed to 

behave rationally, meaning that an agent prefers a greater utility or payoff, over a 

smaller one. When referring to payoff maximization, it is possible to have individual 

payoffs, group payoffs or social welfare. 

Social welfare deals with the sum of agents’ utilities or payoffs in a given 

solution. It measures the global well-being of the agents. The problem arises when 

comparing the utilities. 

A solution x, that is a payoff vector p(x1, …, xn) is called Pareto efficient or 

Pareto optimal, if there is no other solution x’ such that at least one agent is better 

off in x’ than in x and no agent is worst off in x’ than in x. It measures the global well-

being, it does not require utility. 

The individual rationality (IR) of an agent’ participation refers to the agent’s 

payoff in the negotiated solution, which should be no less than the payoff that the 

agent would get by not participating in the negotiation. A mechanism is IR if the 

participation is IR for all the agents.  

A protocol is called stable if once the agents arrived at a solution, they do not 

deviate from it. In a dominant strategy, an agent is best off using a specific strategy, 

no matter what strategies the other agents use. 

Suppose that r = f(ActA, ActB) is the result (state) of actions ActA of agent A 

and ActB of agent B. A strategy S1 = {r11, r12, …, r1n} dominates another strategy S2 

= {r21, r22, …, r2m} if any result of r∈∈∈∈S1 is preferred (better than) to any result of r’∈∈∈∈S2. 

Two strategies, S1 of agent A and S2 of agent B, are in a Nash equilibrium if: 

a) in case agent A follows S1, agent B can not do better than using S2 and 

b) in case agent B follows S2, agent A can not do better than using S1. 

The previous definition can be generalized for several agents using strategies 

S1, S2, …, Sk. The set of strategies {S1, S2, …, Sk} used by the agents A1, A2, …, Ak 

is in a Nash equilibrium if, for any agent Ai, the strategy Si is the best strategy to be 

followed by Ai, if the other agents are using strategies {S1, S2, …, Si-1, Si+1, …, Sk}. 

A mixed strategy pi of a player i is a probability distribution over actions Ai 

available to I. A pure Nash equilibrium is a Nash equilibrium using pure strategies. 

A mixed Nash equilibrium is a Nash equilibrium using mixed strategies. A mixed 

Nash equilibrium is a set of mixed strategies, one for each agent, so that no agent 

has an incentive to unilaterally deviate from its assigned strategy. 

In a transaction, when a buyer and a seller agent value a product differently, a 

surplus is created. A bargaining solution is a way in which buyers and sellers agree 

to divide the surplus. Trade would result in the generation of surplus, while no surplus 

is created in case of no trade. A bargaining solution provides an acceptable way to 
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divide the surplus among the two parties. The bargaining problem is described in 

Figure 2.5. 

Figure 2.5. Bargaining between Buyer and Seller Agents [Florea A.M., 2012] 

 

A bargaining solution is defined by F:(X,d)→→→→S, where X⊆⊆⊆⊆ℜℜℜℜ2 and S,d⊆⊆⊆⊆ℜℜℜℜ2. X 

represents the utilities of the players in the set of possible bargaining agreements 

and d represents the point of disagreement. For instance, if the price for a certain 

item is between 10 and 20 monetary units, then the bargaining set is x+y ≤≤≤≤ 10, x ≥≥≥≥ 0, 

y ≥≥≥≥ 0. A point (x,y) in the bargaining set represents the case when the seller gets a 

surplus of x, and the buyer gets a surplus of y, that is the seller sells the item at 

10+x, while the buyer pays 20-y.  

 

2.4.2. Heuristic based Negotiation 

 

A way of overcoming the limitations of game theoretic models is to use heuristic 

methods. Such models acknowledge that there is a cost associated with computation 

and decision making and seek to search the negotiation space in a non-exhaustive 

manner. This has the effect that heuristic methods aim to produce good, rather than 

optimal solutions. The methods themselves may either be computational 

approximations of game theoretic techniques or they may be computational 

realizations of more informal negotiation models. In heuristic negotiation, there is no 

central mediator and the messages are private between the negotiating agents. In 

general, the protocol does not prescribe an optimal course of action. The main 

concern is represented by the agent’s decision making heuristic model during the 

course of negotiation. 

In the heuristic approach, the models are based on realistic assumptions and 

they provide a more suitable basis for automation and they can, therefore, be used in 

a wider variety of application domains [Jennings N.R. et al., 2001]. 
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The space of possible agreements is quantitatively represented by contracts, 

having different values for each issue. Every agent evaluates these points in the 

space of possible outcomes, according to some preference structure, captured by a 

utility function. Proposals and counterproposals are offers over single points in this 

space of possible results. Search terminates either when the time to reach an 

agreement has been exceeded or when a mutually acceptable solution has been 

reached. 

In heuristic negotiation, the models often select outcomes that are sub-optimal, 

because they adopt an approximate notion of rationality and because they do not 

examine the full space of possible results. Also, the models need extensive 

evaluation, through simulations and empirical analysis, since it is almost impossible 

to predict precisely how the system and the agents behave in a wide variety of 

circumstances. 

In heuristic negotiation, a negotiation object (NO) can be defined as the range 

of issues over which agreements must be reached. For instance, the object of 

negotiation may be an action which the negotiator agent A asks another agent B to 

perform for it, a service that agent A asks to B, or an offer of a service agent A is 

willing to perform for B, provided that B agrees to the conditions of A [Florea A.M., 

2012]. The negotiation primitives used in such a scenario can be the following: 

a) Request NO – request of a negotiation object; 

b) Accept name(NO) – accept the request for the NO; 

c) Reject name(NO) – reject the request for the NO; 

d) ModReq name(NO) value(NO, X, V1) – modify the request by modifying the 

value of the attribute X of the NO to a different value V1. 

The protocol used by the agents for the primitives defined above is presented in 

the Figure 2.6. 

 

2.4.3. Argumentation based Negotiation 

 

This approach allows additional information to be exchanged. This information 

is of different forms, mainly arguments which explain the opinion of the agent. Thus, 

in addition to reject a proposal, an agent can offer a critique of the proposal, 

explaining why it is unacceptable.  

When evaluating an argument, the agent needs to assess the argument on its 

own merits and then modify this by its own perception of the argument’s degree of 

credibility, in order to work out how to respond [Mercier H. and Sperber D., 2011]. 

Using argumentation means handling the complexities of the agents’ mental 

attitudes, the communication between agents, and the integration of the 

argumentation mechanisms into a complex agent architecture. 

Suitable argumentation protocols should be defined, that is, set of rules that 

specify how agents generate and respond to arguments, based upon what they 

know.  
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Figure 2.6. The Protocol for the Defined Primitives [Florea A.M., 2012] 

 

Argumentation based negotiator agents have the ability to be persuasive and so 

achieve agreements, which non-argumentation based negotiators can’t reach. 

However, the problem is the overhead added to the negotiation process. 

The arguments are used to persuade the opponent to accept a negotiation 

proposal. There are different types of arguments. Each argument type defines 

preconditions for its usage. If the preconditions are met, then the agent may use the 

argument. The agents need a strategy to decide which argument to use. The 

following arguments can be used by the agents, presented together with the 

associated negotiation primitive [Florea A.M. and Kalisz E., 2008]: 

a) Appeal to past promise - the agent A reminds agent B of a past promise 

regarding the negotiation object (NO), that is, agent B has promised to the agent A to 

perform or offer the NO in a previous negotiation. Preconditions: A must check if a 

promise of the NO (future reward) was received in the past in a successfully 

concluded negotiation. Negotiation primitive: Remember NO; 

b) Promise of a future reward - the agent A promises to do a NO for the other 

agent B at a future time. Preconditions: A must find one desire of agent B for a future 

time interval, if possible a desire, which can be satisfied through an action that A can 

perform, while B can not. Negotiation primitive: Promise NO; 

c) Appeal to self interest - the agent A believes that concluding the contract 

for NO is in the best interest of B and tries to persuade B of this fact. Preconditions: 

A must find one of B desires, which is satisfied if B has the NO or, alternatively, A 
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must find another negotiation object NO' that is previously offered on the market and 

it believes NO is better than NO'. Negotiation primitive: CompareD NO Desire or 

CompareO NO NO’; 

d) Threat - the agent A makes the threat of refusing doing/offering something to 

B or threatens that it will do something to contradict B's desires. Preconditions: A 

must find one of B's desires directly fulfilled by a NO that A can offer or A must find 

an action that is contradictory to what it believes is one of B's desires. Negotiation 

primitive: TreatForbid NO or ThreatDo NO. 

 

2.5. Modeling the Negotiation in Multi-Agent Systems  

 

The agents should be designed and implemented such that to negotiate 

concurrently with other agents. Negotiating agents are developed to improve the set 

of possible agreements and the concession amount they are willing to do, like an 

answer to different situations and negotiation conditions. In this perspective, agents 

have a time-dependent negotiation strategy, in which the private value of each 

negotiation object is dynamically found by: the probability that the negotiation will not 

be successfully concluded, the expected agreement price of the negotiation object, 

and the expected number of deals [Silva S., 1996]. 

Agents’ negotiation strategies are performed in dynamic and complex 

negotiation environments, in which agents have conflicting objectives and 

preferences. Also, they have incomplete information about other agents and have 

multiple trading partners and trading competitors [An B. et al., 2010]. 

From a theoretical perspective, agents’ strategies in negotiation are analyzed. 

Game theoretic analysis provides insights and theoretical foundations for developing 

negotiation agents. For real complex dynamic negotiation involving multi-agents, it is 

impractical to compute agents’ rational strategies and heuristic based negotiation 

strategies are designed. 

 

2.5.1. Automated Negotiation Modeling 

 

In the negotiation theory, most work focuses on bilateral negotiation [Tamma V. 

et al., 2005; An B., et al., 2009; An B. et al., 2010]. One-to-many and many-to-many 

negotiations are also important and widely exist in many application domains. For 

one-to-many negotiation, an auction is widely used and, for many-to-many 

negotiation, market mechanisms like matching or two-sided auction are appropriate. 

Even if an agent interacts with many agents, a common assumption is that an agent 

can be involved in only one negotiation at a time. The result is that an agent may 

finish the current negotiation in disagreement, in spite of possible gains from 

bargaining, in order to find a more attractive alternative. Therefore, the idea that an 

agent is involved in only one negotiation at a time appears to be restrictive. 
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Agents’ strategic behavior in one-to-many and many-to-many negotiations are 

analyzed, in which agents are negotiating with multiple trading partners and, at the 

same time, are facing competition from trading competitors.  

The analysis shows that both negotiation order and market competition affect 

agents’ negotiation power. An agent’s negotiation power increases with the number 

of trading partners and decreases with the number of trading competitors. 

In e-commerce environments, in which self-interested agents act individually, 

agents should obtain different goods or services. Therefore, agents may need to 

engage in multiple negotiations. If these negotiations are not all successful, users 

gain decrease. From the perspective of the overall negotiation, goods or services are 

dependent, as an agent’s utility from the overall negotiation depends on obtaining 

overall agreements on all the transactions. The negotiation environment has the 

following three features [An B. et al., 2010]: 

a) When acquiring multiple goods, a buyer agent only knows the private value 

available for the set of items, that is the highest price the agent can pay for all the 

goods, rather than the private value of each separate item; 

b) Agents can decommit from tentative agreements at the cost of paying a 

penalty. Decommitment allows agents to profitably accommodate new negotiations. If 

these negotiations make some existing contracts less profitable or infeasible for an 

agent, that agent can decommit from those contracts; 

c) Negotiation agents are assumed to have incomplete information about other 

agents, for example, a buyer agent knows the distribution of the private value of a 

seller agent and the number of trading competitors. However, an agent’s negotiation 

status (the set of proposals it has received) and negotiation strategy are its private 

information. During negotiation, the agents can quit negotiation at any time, even 

without notifying their trading partners. When an agent wants to buy multiple goods 

or services, it concurrently negotiates with sellers to reach agreements for all the 

items. 

In order to evaluate the performance of negotiation agents, simulation 

environments consisting of agents negotiating goods and services, and a facilitator, 

are modeled and implemented. 

In the experiments, agents are using different negotiation strategies, deadlines, 

and objects to buy or sell. A number of performance measures, such as utility, gain, 

number of successful negotiations, learning capabilities, are determined. 

 

2.5.2. The Negotiation Protocol 

 

There are different types of protocols, which are developed for different types of 

negotiation. The main protocols are described below: 

a) Contract Net Protocol was introduced for distributed problem solving [Smith 

R.G., 1980]. It is used for task allocation problems. Using this protocol, agents 

negotiate about tasks. One agent, which is interested to perform a task, announces 
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other agents that a task is available. The agent might not be capable of performing 

the task on its own or it might try to find other agents that are able to perform the task 

more effectively. The agents that are interested in the task submit bids to the 

manager, which awards the task to the agent that sent the most satisfactory bid. 

Then, the agent starts the task. The bidding, bid processing and task processing 

phases are dependent on the problem. 

b) Rubinstein’s Alternating Offers Protocol [Osborne M.J. and Rubinstein A., 

1994; Osborne M.J., 2004], in which two agents negotiate by taking actions at 

discrete time steps. In each time step, one agent makes a proposal to the other 

agent, which can accept or reject the proposal. If it accepts, negotiation ends, 

otherwise, the other agent makes a proposal at the next time step. This protocol is 

illustrated by the state transition diagram in Figure 2.7. [Wooldridge M., 2009].  

c) Monotonic Concession Protocol [Rosenschein J.S. and Zlotkin G., 1994] is 

a particular case of Rubinstein’s alternating offers model. This protocol forces an 

agent to make a concession to the other agent at each time step. It is guaranteed to 

stop, but it requires that agents know each other’s utility functions, which is 

impossible in practice. 

d) Auctions are particular negotiation protocols used for multilateral 

negotiations. Agents bid for items and special agents called auctioneers evaluate 

bids and allocate items. There are many types of auctions, the most important 

auction types being the English auction, the Dutch auction, first-price sealed-bid, 

second-price sealed-bid, and combinatorial auctions. 

 
Figure 2.7. Alternating Offers Protocol [Wooldridge M., 2009] 

 

In the evaluation of the results for negotiation protocols, there are certain 

parameters that can be used to measure different protocols [Kraus S., 2001]: 
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a) Negotiation Time - negotiations which end without delay are preferred over 

negotiations which are time-consuming. It is assumed that a delay in reaching an 

agreement causes an increase in the cost of communication and computation time 

spent on the negotiation. It is necessary to prevent the agents from spending too 

much time on negotiations resulting in deviation from their schedules for satisfying 

their goals; 

b) Efficiency - an efficient outcome of the negotiations is preferred. An outcome 

increases the number of satisfied agents from the negotiation results. So, it is 

preferred that the agents reach Pareto optimal agreements. A deal is Pareto optimal 

if there is no other agreement that dominates it, for instance, there is no other accord 

that is better for the same agents and not worse for the others. In addition, if there is 

an agreement that is better for all the agents than terminating the negotiation, then it 

is preferred that the negotiation will end with an accord; 

c) Simplicity - negotiation processes that are simple and efficient are better 

than complex processes. A simple strategy means that it is feasible to be built into an 

automated agent. A simple strategy supposes also that an agent will be able to 

compute the strategy in a reasonable amount of time; 

d) Stability - a set of negotiation strategies are stable if, given that all the other 

agents included in the set are following their strategies, it is useful for an agent to 

follow its strategy. Negotiation protocols which have stable strategies are more useful 

in multi-agent environments than protocols which are unstable. If there are stable 

strategies, it is recommended to all agent designers to build relevant strategies into 

their agents;  

e) Money transfer - money transfer may be used to solve conflicts. For 

example, a server may “sell” a data item to another server when relocating this item. 

This can be done by providing the agents with a monetary system and with a 

mechanism for secure payments. Since maintaining such a monetary system 

requires resources and efforts, negotiation protocols that do not require money 

transfers are preferred. 

The main characteristics of the negotiation protocol are [Zlatev Z. et al., 2004]: 

a) Each agent is making proposals corresponding to its own goal. A proposal 

contains an offer corresponding to the negotiation object, for instance a specific 

price, together with supporting information representing conditions under which this 

offer is made. Different offers have different supporting information, for example a 

goal to buy at a low price can contain several prices as possible offers, each of them 

being supported by the appropriate information. So, the negotiation object may be 

extended and may cover several issues related to the initial issue, for example terms 

and conditions under which an agent could accept a specific price; 

b) The first of the two negotiating agents, which is unable to produce a new 

offer with supporting information for its goal, cancels it and searches for supporting 

information, if any, under which it can accept the counterproposal of the other agent. 

For example, a seller agent unable to find another way to support offers with high 
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prices considers selling at a low price and looks for supporting information under 

which it may be able to do so; 

c) In such a case, the negotiation enters a conciliation phase and if the receiver 

agent can sustain the proposed supporting information, the negotiation ends with 

agreement on this offer and the supporting information accumulated so far. 

Otherwise, the sender takes this into account and tries again to find another way to 

support the goal of the agent. If this is not possible, then the negotiation ends in 

failure. 

In automated negotiation, the combination of the software agents, representing 

the parties in the negotiation, and the negotiation protocol, establishing the 

interactions between these software agents, forms the automated negotiation system 

[Tamma V. et al., 2005]. The preferences over the negotiation object and the 

negotiation object itself are only input to this system and are not object to choices of 

the system user. The configuration of the automated negotiation system, which is the 

choice of software agents and interaction protocol used to perform automated 

negotiation, can be determined by the system users. So, while the negotiation object 

and the preferences of the users over this negotiation object are taken as they are, 

users can decide about the configuration and parameterization of the system 

employed to handle this negotiation problem by means of automated negotiation. 

The interaction protocol builds the basis for the communication between 

software agents in an automated negotiation system. In some cases, the negotiations 

are finished earlier, most often by the protocol, if a deadline, in terms of a maximal 

number of turns, is reached before agents come to an agreement. Only in some of 

these cases, the agents have the choice to quit negotiations, and this decision is 

often based on whether or not a specified deadline is reached. Continuous 

concession strategies are applicable for automated negotiation in an open 

environment, as they can easily adapt to new problems and are independent of the 

opponent agent. Therefore, the idea is to apply protocols that are suitable for a 

population of software agents that follow these strategies. Such protocols should 

exhibit features that enable the software agents to interrupt their continuous 

concession strategy, if they think it is in their interest, which is to avoid exploitation or 

unfavorable outcomes [Filzmoser M., 2010]. 

When the negotiation begins, the protocol calls the agents in their initiation 

mode. The protocol provides the software agents, registered with the system as 

representing their parties, with the negotiation object indicated by the parties as 

input, as well as utility values for possible solutions. The agents create private 

storage variables, where they keep this information, together with information on the 

negotiation process. After this initiation of the software agents, the negotiation 

protocol chooses one agent and sends to him a call for proposals. 

The software agent that receives the call for proposals from the interaction 

protocol is the first to make an opening offer and the one sending messages at odd 

turns during the negotiation process. The other software agent sends his opening 
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offer in the second turn and thereafter sends messages in the even turns of the 

negotiation process. As the messages are not exclusively offers, this protocol is 

called an alternating turn protocol, in which the agents alternate in taking their turns. 

Software agents can send one out of a set of messages determined by the protocol: 

offer, reject, agree, or quit. While a message of the type offer proposes one of the 

possible settlement of the negotiation object as agreement, which the opponent can 

accept or not, the other three message types are necessary for controlling the 

negotiation process. 

An offer message constitutes a proposal for settling the negotiation. In human 

negotiations, there are many different kinds of messages besides offers, like threats, 

provision of or request for information, all aiming to influence the final outcome of the 

negotiation. However, it is argued that, while other messages are important, offers 

are the main type of messages in negotiations, as they promote proposals for the 

settlement. In order to be a proposal for settling the negotiation, an offer has to 

provide options for all issues of the negotiation object. The interaction protocol not 

only demands full package offers due to this, there are other protocols that work on 

an issue-by-issue basis or allow partial package offers, but the emphasis is on the 

opportunities to reach mutually beneficial agreements through package offers, which 

allow to tradeoff issues of lower importance against issues of higher importance. 

If a software agent sends a reject message, it means that in this turn it does not 

propose a new offer, or make any other changes to the current state of the 

negotiation, but insist on its last offer. This message represents a strategy to avoid 

unfairly small concessions and exploitation by the opponent. Sending a reject 

message enables the software agent to discontinue the offer generation strategy it 

normally follows, according to which it would make some predetermined offer, for 

some reasons, without necessarily terminating the negotiation [Lin R. et al., 2009 a]. 

Several bargaining games in non-cooperative game theory do not require the 

explicit acceptance of an offer, but to terminate the negotiation, if the offers of the 

parties are compatible, that is if for both agents the demanded utility of their offer is 

lower than or equal to their utility of the offer proposed by the opponent. If the offers 

do not coincide, division rules can be used to split the surplus or choose one of the 

compatible offers as agreement. For this purpose, equal division of the surplus or 

some kind of arbitration, where either offer is chosen with equal probability, is usually 

applied. The problem of taking one out of two compatible offers by some arbitration 

rule mainly arises from the fact that in the above mentioned bargaining games agents 

have to make offers simultaneously. A software agent in the situation to send a 

message will first compare the opponent’s last offer with his own offer to be sent 

next. If the opponent’s offer affords higher or equal utility, the software agent accepts 

it, rather than proposing its next offer. So, the software agents in the sequential 

interaction protocol detect and use compatible offers themselves, rather than relying 

on the interaction protocol to do so. On the other hand, splitting procedures are only 

applicable if the zone of possible agreements is an area, rather than a set of points, 



 34 

furthermore splitting does not definitely specify the actual outcome of the negotiation, 

as more than one of these possible settlements may afford the same utility to the 

parties. Therefore, splitting procedures, without additional refinements, are actually 

only applicable in a single-issue negotiation with continuous options for this single 

issue. Sending an agree message means that the agent accepts the last offer of the 

opponent as agreement. This clearly determines what the negotiation was settled for, 

as the last offer of the opponent is required to be a full package offer with options for 

all issues of the negotiation object. 

Like in negotiations between humans, which do not need to end with an 

agreement [Beam C. and Segev A., 1997], an interaction protocol can allow the 

software agents to send a quit message. Sending this message fulfills one of the 

termination criteria of the interaction protocol and negotiations will end without 

agreement. Therefore, quit messages can be used by the software agents to break 

off negotiations, if they decide this is in their interest in the given context. For 

software agents following continuous concession strategies, the quit message is a 

mean to permanently interrupt the offer generation strategy the agent normally would 

follow, in not only denying to propose the next offer, as in case of the reject message, 

but in aborting to negotiate at all. 

The interaction protocol terminates the negotiation either if: 

a) a software agent sends an agree message, accepting the last offer of the 

opponent;  

b) a software agent sends a quit message, breaking off the negotiation;  

c) two subsequent messages of the two software agents were reject messages.  

This last termination criterion is applied to avoid an infinite negotiation without 

progress towards an outcome, if this is an agreement or a break off for negotiation. 

When a software agent sends a reject message, this does not change its internal 

state, and means that the same message will also be sent in its next turn. If a 

message of the opponent causes state changes and, due to a different situation, the 

message of the software agent could be different from that of the previous round. If 

both agents send reject messages subsequently, there will be no state changes that 

lead to either agreement or break off of the negotiation anymore, but only an infinite 

number of alternating reject messages and the protocol terminates negotiations if this 

would occur. Repeating the same offer would have the identical effect as sending a 

reject message, representing no changes in the state of the negotiation. The offer 

generation strategies are designed in a way that they do not repeat offers, but send 

reject messages to interrupt concession making. However, this repetition of offers 

could easily be detected by the interaction protocol and treated the same as if a 

reject message was sent, or software agents could be allowed to repeat the previous 

offer, rather than to propose a new offer and the interaction protocol terminates 

negotiations if the two software agents subsequently repeated their last offers. 
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2.5.3. Automated Negotiation Agent Strategies 

 

The strategies of most software agents, used in automated negotiation, are 

based on evolutionary computing, learning mechanisms, or time-dependent 

concession functions. These software agents are not readily applicable to actual 

automated negotiation, for an implementation in operative systems, for various 

reasons. First, time-based concession functions are not suitable due to the fast 

proceeding and therefore time insensitivity of automated negotiation, and the aim to 

improve outcomes over those reached by the human negotiation behavior these 

strategies imitate. The impatience of the negotiator or the costs associated with the 

mechanism of negotiation are good arguments for the decrease of the utility level 

demanded over time, which is the way time-based strategies are actually modeled. 

The possible variety and complexity of negotiation problems and opponent 

strategies in automated negotiation causes problems for software agent strategies 

based on evolutionary computing or learning mechanisms. Software agents for 

automated negotiation can easily be programmed by or for human users. The media 

openness for automated negotiation, for new software agents acting on behalf of 

users with various preferences and for many different negotiation problems, has to 

be considered, when designing decision making algorithms. Software agent 

strategies based on evolutionary computing or learning algorithms are not flexible 

and generic enough to cope with this variety of possible new opponents, negotiation 

objects, and therefore transaction problems, determined by the various preferences 

over various objects. Evolutionary computing-based strategies, especially those 

implementing sequential threshold rules, might not have the chance to have the large 

number of interactions with the same opponent and for the same negotiation 

problem. These software agents need to reach good agreements by means of co-

evolution [Beam C. and Segev A., 1997; Tu M.T. et al., 2000], and models of the 

opponent held by learning strategies might be inadequate for the variety of new 

opponent strategies. 

Due to these concerns about existing approaches to determine the software 

agents’ decision making algorithms, the focus is on the class of continuous 

concession strategies. These rule-based and rather deterministic algorithms, neither 

model their opponent, nor try to learn something about the opponent’s preferences or 

strategy, but are reusable for various negotiation problems with different opponents. 

 

2.6. Syntactic Interoperability 

 

XML (Extensible Markup Language) standards are used as a way of providing a 

common syntax for exchanging heterogeneous information. So, in order to 

interchange information between both trading partners, it is necessary to define 

documents based on XML.  
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XML is the basis for integrating data within an enterprise and across supply 

chains, substantially reducing the cost of information interchange. In B2B area, there 

are different standards for describing interchanged business documents based on 

XML standard. 

XML is a self-describing, text-based structured data format. The power of XML 

lies not so much with XML itself, but with the set of available tools for working with it. 

Web browsers can visualize it and commercial XML editors are available. The XSLT 

(Extensible Stylesheet Language Transformations) pattern language can be used to 

write simple scripts that transform an XML document into a new XML document in a 

different format, or into a non-XML document. Many high quality parsers and APIs 

are available for working with XML from Java programs [Friedman-Hill E., 2003]. 

XML is not a replacement for HTML (HyperText Markup Language). XML and 

HTML were designed with different goals. XML was developed to transport and store 

data, with focus on what data is, while HTML was designed to display data, with 

focus on how data looks. HTML refers at displaying information, while XML focus on 

carrying information. 

The tags in XML are created by the author of the document. XML language has 

no predefined tags and allows the author to define the tags and the document 

structure. The tags used in HTML are predefined. HTML documents can only use 

tags defined in the HTML standard.  

XML documents must contain a root element. This element represents the 

parent of all other elements. The elements in an XML document form a document 

tree. The tree starts at the root and branches to the lowest level of the tree. All 

elements can have sub-elements. Parent elements have children.  Children on the 

same level are called siblings. All elements can have text content and attributes, as 

in HTML.  

XML is extensible because, unlike HTML, the markup symbols are unlimited 

and self-defining. XML is a simpler subset of SGML (Standard Generalized Markup 

Language), the standard describing how to create a document structure. HTML and 

XML can be used together in many Web applications. XML markup may appear in a 

HTML page. 

While many syntactic problems associated to the information interchanged in 

B2B have been solved using the XML standard, the notion of semantic 

interoperability still has problems. The difficulties associated to semantic 

interoperability occur due to the context dependency, therefore, it can only be 

understood in the context of its original source and purpose. A way to overcome this 

problem is to employ an explicit context model that can be used to re-interpret 

information in the context of a new information source and a new application. The 

use of ontologies is a promising approach, in order to show contextual information 

and to make a semantic preserving translation possible.   
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An ontology is a way of categorizing objects, such that they are semantically 

meaningful to a software agent. Ontology defines the relationship between similar 

products [Kholief M. et al., 2012]. 

To  face  the  new  global  market,  enterprises  need  to  carry  out collaborative 

relationships with  their  suppliers  and  customers  on the  Internet. However, the 

main obstacles are the syntactic and semantic interoperability at information level. 

XML technologies allow the syntactic interoperability.  

An effective collaborative relationship between trading partners will not be 

successfully, until an environment to support the semantic integration will be 

developed. Some ontology based tools for solving the semantic interoperability 

between heterogeneous information systems could help. However, these tools do not 

support the entire ontology lifecycle or do not provide a collaborative environment. A 

support for collaborative engineering to maintain the shared ontology is the basic 

requirement. Furthermore, the ontology environment has to support the language 

interoperability. 
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Chapter 3. Knowledge Representation and Learning 
 

3.1. Knowledge Representation for Negotiation Strategies 

 

3.1.1. Knowledge Representation Using Rules 

 

A framework for agent negotiations should contain the negotiation 

infrastructure, the generic negotiation protocol, and the negotiation rules and 

strategy. 

The negotiation infrastructure defines roles of negotiation participants and of a 

facilitator. Participants negotiate by exchanging proposals. Depending on the 

negotiations type, the facilitator can also play the participant role. 

The negotiation protocol defines the three phases of a negotiation: admission, 

exchange of proposals, and agreement formation, in terms of how and when 

messages should be exchanged between the facilitator and the participants. 

Negotiation rules are used for enforcing the negotiation mechanism. Rules are 

organized into a taxonomy [Badica C. et al., 2005]:  

- rules for participants’ admission to negotiations; 

- rules for checking the validity of negotiation proposals; 

- rules for protocol enforcement; 

- rules for updating the negotiation status and informing participants; 

- rules for agreement formation; 

- rules for controlling the negotiation termination. 

In a rule-based system, the inference engine controls the process of applying 

the rules to the working memory, in order to get the results of the system. An 

inference engine works in cycles, as described below [Friedman-Hill E., 2003]: 

a) All the rules are compared to the working memory to decide which ones 

should be activated during this cycle. This unordered list of activated rules, together 

with any other rules activated in previous cycles, forms the conflict set. 

b) The conflict set is ordered to form the agenda, which is the list of rules whose 

right-hand sides are executed. The process of ordering the agenda is called conflict 

resolution. This strategy for a given rule engine depends on many factors, only some 

of which are under the programmer’s control.  

c) In order to complete the cycle, the first rule on the agenda is fired, possibly 

changing the working memory, and the entire process is repeated. This repetition 

implies a large amount of redundant work, but many rule engines use different 

techniques to avoid most or all of the redundancy. In particular, results from the 

pattern matcher and from the agenda’s conflict solver can be preserved across 

cycles, so that only the essential, new work needs to be done. 
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3.1.2. JESS and RuleML 

 

JESS (Java Expert System Shell) is a rule-based system, implemented in Java 

language. It was developed starting from the expert system CLIPS (C Language 

Integrated Production System), but it evolved into a complete and distinct rule-based 

system [Florea A.M. et al., 2008].  

Using Jess, it is possible to write applets and Java applications, which have the 

capacity to reason, using the knowledge from the declarative rules. Jess offers easy 

integration with other Java based software. 

An expert system has a set of rules, which could be applied many times on a 

set of facts. Jess uses a very efficient algorithm, called Rete, in order to unify rules 

and facts. 

An expert system based on Rete algorithm constructs a set of nodes, where 

each node, with the exception of the root, refers to a pattern, which is present in the 

left hand side of a rule. The path from the root node to a leaf node defines completely 

the left hand side of a rule. Each node memorizes the facts which satisfy that pattern. 

When new facts are added or modified, these are propagated along the network, 

labeling the nodes when the fact matches with that pattern. When a fact or a 

combination of facts does all the patterns for a given rule to be fulfilled, a leaf node is 

reached and the respective rule is executed. 

So, Jess uses the fast and efficient Rete algorithm for pattern matching. The 

strength of Rete is that it uses a set of memories to keep information about the 

success or failure of pattern matches during previous cycles. The Rete algorithm 

involves building a network of pattern matching nodes. Jess uses many different 

kinds of nodes to represent the different kinds of pattern matching activities 

[Friedman-Hill E., 2003]. 

Jess offers the basic elements of an expert system [Florea A.M. et al., 2008]: 

a) the list of facts and the list of instances – the global memory for data; 

b) the knowledge base – contains all the rules, that is the rule base; 

c) the inference engine – controls the rules’ execution. 

A program written in Jess can contain rules, facts and objects. The inference 

engine controls which rules should be executed and when they should be performed. 

A rule-based expert system, written in Jess, is a data driven program, in which facts 

and objects represent data which generated the execution, using the inference 

engine. 

Jess executes always the actions from the right hand side of a rule with the 

highest priority. After that, the rule is removed and the next rule is executed, in 

decreasing order of priorities. 

Jess offers two different ways to solve the conflicts: depth-first (LIFO – Last In 

First Out) and breath-first (FIFO – First In First Out). In the case of depth-first 

strategy, the most recently activated rules are used, before the rules activated not so 

recently and which have the same priority. In the case of breath-first strategy, the 
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rules with the same priority are applied, in the order in which they have been 

activated. It is difficult to decide which strategy is better, without considering the 

specific application. 

In Jess, modules allow a knowledge base to be partitioned. Every construct 

defined must be placed in a module. The programmer can explicitly control which 

constructs in a module are visible to other modules and which constructs from other 

modules are visible to a module. The visibility of facts between modules can be 

controlled in a similar manner. Modules can also be used to control the flow of 

execution of rules. 

Jess stores the contents of the working memory using a set of customized 

indices that make looking up a particular piece of information very fast. Even though 

Jess uses a data-centric index internally, the view of the working memory looks like a 

simple list. Each item in the working memory appears on this list in the order in which 

it was added [Friedman-Hill E., 2003]. 

The combination of forward-chaining inference rules and backward-chaining 

infrastructure rules is a powerful and common pattern in Jess systems. 

RuleML (Rule Markup Language) is an open language, based on rules 

XML/RDF (Extensible Markup Language / Resource Description Framework). This 

allows the exchange of rules between different systems, including distributed 

software components on the Web and heterogeneous client-server systems. RuleML 

offers the XML syntax for interoperable knowledge rules representation between the 

main rules systems. 

RuleML contains a hierarchy of rules, starting from reaction rules (event-

condition-action rules), integrity constraint rules, derivation rules, up to facts 

(derivation rules without premises). 

The rule hierarchy in RuleML constitutes a partial ordering, on the first level 

being the reaction rules. The second level contains the integrity constraint rules and 

the derivation rules. The third level specialises the derivation rules into facts, as 

shown in Figure 3.1. 

 

 
 

Figure 3.1. RuleML Rules Hierarchy 
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3.1.3. Knowledge Representation using Ontologies 

 

An ontology can be viewed as a formal representation of a set of concepts from 

a certain domain, and also of the relations between these concepts. 

The main reasons for using ontologies are [Noy N.F. and McGuinness D.L., 

2001]: 

a) to have a common understanding about the information structure – suppose 

that a set of Web sites contains medical information and delivers medical services of 

e-commerce type [Serbanati L.D. and Radu S., 2013]. If these sites have as basis 

the same ontology for their terms, then the Web agents can extract and compose the 

information from these different sites. The agents can use this compound information 

to answer the user queries or as input data to other applications; 

b) to allow the knowledge reuse from the domain – the models from different 

domains must have a representation for the notion of time, which includes the 

notions of time interval, moments in time, time measurement units. If such an 

ontology is already developed, it can be reused in different domains. If it is necessary 

to develop a complex ontology, then it is possible to integrate the existing ontologies, 

which describe parts of the domain; 

c) to express the hypotheses used in that domain – it is possible to easily 

change these hypotheses, when the knowledge of the domain is changing; 

d) to separate the knowledge of the domain from its implementation; 

e) to analyze the domain knowledge – the formal analysis of terms is very 

useful when reusing or extending ontologies.  

Developing an ontology is like defining a data set and its structure, in order to 

be used by a program. An ontology in an explicit formal description of the concepts 

from a domain: classes of the properties of each concept, which describe different 

features and attributes of the concepts (also called roles), and attribute 

characteristics or restrictions (implications, also called role restrictions). 

   

3.1.4. OWL Language 

 

OWL (Web Ontology Language) is a language used to represent ontologies. 

OWL is an extension of RDF Schema. Data described by an OWL ontology are 

interpreted as a set of figures and a set of properties, based on which the figures are 

related.  

An OWL ontology consists of a set of axioms, based on which constraints are 

associated to the group of figures and types of relations allowed between them. 

These axioms give the semantics which permits the system to deduce the additional 

information, based on data given explicitly. 

OWL specification includes the definition of three OWL components [Horrocks I. 

et al., 2003]: 
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a) OWL Lite was developed to support hierarchical classifications and simple 

constraints. The restrictions cardinality could be 0 or 1, and it is possible to specify a 

part or all the values of the property upon which the restriction is applied. Also, it is 

possible to specify classes or properties which are equivalent (it is very useful to 

specify the fact that two concepts in different ontologies represent the same thing), 

and the fact that the properties could be functional, symmetric, transitive or inverse; 

b) OWL DL is a more advanced language, based on a decidable subset of 

description logic. There are possible relations on disjunctions of classes or union, 

intersection or complement between classes. Also, it is possible to specify 

cardinalities for restrictions in the form of any natural number; 

c) OWL Full is based on the semantics of OWL Lite and OWL DL and was built 

to keep some compatibilities with RDF Schema. OWL Full allows an ontology to 

develop the meaning of the predefined vocabulary (RDF or OWL). 

Each of these sub-languages is a syntactic extension of its predecessor, that is 

every OWL Lite ontology is also an OWL DL valid ontology, and every OWL DL 

ontology is also an OWL Full valid ontology. 

Domain ontologies describe the vocabulary related to a generic area. These 

model a certain domain or a part of the world. They represent the particular sense for 

the terms which are applied to the respective domain. 

Level ontologies describe very general concepts, such as: space, time, matter, 

object, event, action, which are independent from a particular problem or from a 

domain. Such an ontology is a model regarding the common objects which can be 

applied in different domain ontologies. 

 

3.2. Learning Algorithms 

 

3.2.1. ID3 Algorithm 

 

In decision tree learning, ID3 (Iterative Dichotomiser 3) is an algorithm used to 

generate a decision tree [Murthy S.K., 1998]. It prefers smaller decision trees 

(simpler theories) over larger ones. However, it does not always produce the smallest 

tree, and is therefore a heuristic. 

Each level of the tree is associated to one attribute. Alternate branches starting 

from one node are labeled with the values of the attribute associated to that level. 

The leaves of the tree are tagged with the classes associated to the objects to be 

classified. 

First, the decision tree is built and then it is used on unknown instances, in 

order to classify them. 

Each branch associated to a value of the attribute is labeled with all the 

examples that have the same value for the attribute. This process continues on each 

level associated to an attribute, until a node is obtained, for which the associated 
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examples are all in the same class. This node becomes a leaf and is labeled with that 

class. 

Suppose there is a set of training instances C. The ID3 algorithm performs the 

following steps: 

Step 1: If all the instances in C are positive then create Yes node and stop; 

If all the instances in C are negative then create a No node and stop; 

Else, select an attribute A, with values v1, …, vn and create a decision 

node. 

Step 2: Partition the training instances in C into subsets C1, C2, …, Cn, 

according to the values of A. 

Step 3: Apply the algorithm recursively to each of the sets Ci. 

Each attribute of an instance is considered to have a certain informational 

contribution for classifying that instance. The heuristic of the ID3 algorithm measures 

the informational gain brought by each attribute and chooses to test in the root of the 

decision tree the attribute A, which maximizes the informational gain.  

In order to measure the informational content from a message, the information 

theory is used. A message is regarded as an instance from a set of all possible 

messages. Sending a message is equivalent with selecting a certain message from 

this set. The informational content of a message depends on the set size and the 

frequency of each message. The informational content of a message is defined as 

the probability of occurrence for any possible message. Having a set of messages: M 

= {m1, m2, …, mn} and a probability p(mi) of occurrence for each message, the 

informational content of a message from M is defined by: 
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The ID3 algorithm uses the information theory in order to select the attribute, 

which gives the highest informational gain, when classifying the instances from the 

training set. A decision tree is considered as having information about the 

classification of the examples from the training set. The informational content of the 

tree is computed using the probabilities for different classifications.  

For a certain attribute A, the informational gain obtained by selecting this 

attribute as the root of the decision tree is equal to the total informational content of 

the tree minus the informational content necessary to finish the classification 

(building the tree), after selecting the attribute A as the root of the tree: 

)()()( AETIAG −=                          (3.2) 

The informational quantity needed to finish constructing the tree is the weighted 

average of the informational content from all the subtrees. The weighted average is 

computed by multiplying the informational content for each subtree with the instances 

percent from that subtree, and then summing up these products.  

Suppose that there is a set of training instances C. If the attribute A with n 

values is put in the root of the tree, this determines the partition of the set C into the 
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subsets {C1, C2, …, Cn}. The estimation of the informational quantity needed to 

construct the decision tree, after the attribute A was chosen as the root, is given by: 
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3.2.2. C4.5 Algorithm 

 

C4.5 algorithm represents an extension of the ID3 algorithm, which takes into 

account the possible input and output noise, works with inadequate attributes, and 

could have unknown values for an attribute [Mazid M.M. et al., 2010].  

C4.5 algorithm constructs decision trees from a set of training data in the same 

manner as ID3. Any correct decision tree will classify the objects proportionally with 

their representation in the set of training instances. When a decision tree is used to 

classify unknown objects, it will return a certain class. 

In the case when there are no objects which has a certain value for an attribute, 

the ID3 algorithm labels the leaves with null or failure, so it is not possible to make 

the classification. As an improvement, the C4.5 algorithm generalizes and assigns to 

the leaf the class which appears most frequently in the set of training instances. 

The errors which could appear in the training set give raise to inadequate 

attributes and to decision trees with higher complexity than necessary. If there are 

missing attributes in the training set, it is assigned the value, which appears with the 

highest frequency, or there are used probabilities to determine the distribution 

probability for the values of the attribute A in the training set C, depending on the 

membership to a class: 
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and it is chosen the value with the highest probability.  

Another solution used by the C4.5 algorithm, when evaluating the informational 

gain, is to assign to unknown value objects, values distributed over the values of the 

attribute, proportional with the relative frequency of these in the training set. The 

unknown values will decrease the informational gain. 

When the attribute A has many symbolic values, the separation information is 

used. This is the information quantity necessary to determine the value of an attribute 

A in a learning set C. Let be PAC the distribution probability for the values of the 

attribute A: 
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The separation information (SI) measures the informational content of the 

answer of the value for the attribute A: 
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The improvements of the C4.5 algorithm with respect to the ID3 algorithm refers 

at dealing with continuous and discrete attributes, processing training data which 

have missing attribute values, taking into account attributes with different costs, and 

pruning trees after creation. 

 

3.2.3. Reinforcement Learning 

 

Reinforcement learning (RL) is the problem faced by an agent that learns 

behavior through trial-and-error interactions with a dynamic environment [Kaelbling 

L.P. et al., 1996]. 

There are two main strategies for solving reinforcement learning problems. The 

first is to search in the space of behaviors in order to find one that performs well in 

the environment. This approach has been taken in genetic algorithms and genetic 

programming. The second strategy is to use statistical techniques and dynamic 

programming methods to estimate the utility of taking actions in states of the world. In 

the standard reinforcement learning model, an agent is connected to its environment 

via perception and action, as presented in Figure 3.2 [Kaelbling L.P. et al., 1996]. 

 

 
Figure 3.2. Standard Reinforcement Learning Model [Kaelbling L.P. et al., 1996] 

 

On each step of interaction, the agent receives as input, i, some indication of 

the current state, s, of the environment. The agent then chooses an action, a, to 

generate as output. The action changes the state of the environment, and the value 

of this state transition is communicated to the agent through a scalar reinforcement 

signal, r. The agent's behavior, B, should choose actions that tend to increase the 

long-run sum of values of the reinforcement signal. 
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The RL model consists of a discrete set of environment states, S, a discrete set 

of agent actions, A, a set of scalar reinforcement signals, R, an input function I, which 

determines how the agent views the environment state; it is assumed that it is the 

identity function (that is, the agent perceives the exact state of the environment), and 

an environment transition function, T. 

The value of a state is the total sum of a reward, which an agent hopes to gain 

in the future, starting from a certain situation. The value of a state can be seen as the 

long run reward prediction. States with high values are searched, not with high 

rewards. The reward is given directly from the environment, but the value should be 

estimated by the agent, through experience. The agent should find a policy ππππ: S →→→→ A, 

which is a function connecting states with actions, maximizing a measure of the long 

run reward. The agent should learn an optimal behavior, which is a policy that 

produces the maximum estimated value. The optimal policy is denoted ππππ
*. 

There are different behavior models for the agent. In the finite horizon model, 

the agent go through a number of n states and reaches the final state, this 

representing an episode, then the process is repeated. The estimated reward U is 

computed with respect to the reward received in the state St in the future: 
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In the infinite horizon model, the agent lives forever and optimizes the long 

run reward: 
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The discounted infinite horizon model optimizes the long run reward, but 

future rewards are decreased with a discount factor δδδδ, where 0 ≤≤≤≤ δ < 1: 
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3.2.4. Q-Learning 

 

Q-learning is a reinforcement learning technique that works by learning an 

action-value function that gives the expected utility of taking an action in a certain 

state and then following a fixed policy [Manju S., Punithavalli M., 2011]. One of the 

strengths of Q-learning is that it is able to compare the expected utility of the 

available actions, without requiring a model of the environment.  

The model consists of an agent, states S and a set of actions per state A. By 

performing an action a∈∈∈∈A, the agent can move from a state into a next state. Each 

state provides the agent a reward. The goal of the agent is to maximize its total 

reward. It does this by learning which action is optimal for each state. 

In Q-learning, instead of utilities, action-value pairs are learned. The function Q 

assigns an estimated utility, when executing an action in a certain state: Q: A*S →→→→ U. 
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Q(a,s) represents the discounted estimated sum of the future rewards, obtained 

starting from state s, choosing action a and following an optimal policy: 

)),()','(max)((),(),( ' saQsaQsRsaQsaQ a −∗+∗+← δα                (3.10) 

This is computed after each transition from state s to state s’, where δδδδ is the 

discount factor and αααα is the learning rate. The formula can be rewritten as: 

))','(max)(()1(),(),( ' saQsRsaQsaQ a∗+∗+−∗← δαα                (3.11) 

 

3.2.5. Learning Classifier Systems 

 

Learning classifier systems are a kind of rule based systems, which have 

general mechanisms for parallel processing rules, for adaptive generation of new 

rules and for effectively testing the existing rules [Bull L., 2004]. Learning classifier 

systems are machine learning systems, which are based on reinforcement learning 

and genetic algorithms. 

Learning classifier systems can be divided into two types, with respect to the 

way in which the genetic algorithms are applied. The first type is represented by 

Pittsburgh learning classifier system, which has a population of separate set of 

rules, in which the genetic algorithms recombine and give the best from the sets of 

rules. The second type is described by the Michigan learning classifier system, in 

which there is only one population and the algorithm action is concentrated on 

selecting the best classifiers from the rules set. The Michigan type learning classifier 

systems has two possibilities to define the fitness: strength-based (ZCS) and 

accuracy-based (XCS). 

A strength-based classifier (ZCS) could be represented as a triple <c,a,p>, 

where c is the condition, a is the action, and p is an estimation of the expected 

reward, which an agent could receive if it uses this classifier. In this classifier type 

there is no message list and the Q-learning algorithm is used in the learning process. 

An accuracy-based classifier (XCS) has a different form of rules, instead of 

condition → action, the rules has the form condition, action → effect. By effect it is 

understood the expected effect (the next state) corresponding to the action. 

A learning classifier system is an adaptive system, which learns to perform the 

optimal action, which will receive the best reward from the environment. The rules 

evolve based on a match set, which is the set of classifiers satisfying the current 

state. Using a mechanism based on fitness, the action to be executed is selected.  
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Chapter 4. Adaptive Negotiation Strategies 
 

4.1. The Negotiation Mechanism 

 

Designing a negotiation mechanism means defining a negotiation protocol and 

a negotiation strategy for the agents in the system. The choice of the negotiation 

protocol in conjunction with the negotiation strategies adopted by the agents 

determines the type of outcome that is produced by the mechanism. A protocol used 

for bilateral negotiations is the monotonic concession protocol [Rosenschein J.S. and 

Zlotkin G., 1994]. 

A buyer agent can negotiate over multiple issues in parallel and, for each issue, 

the agent concurrently negotiates with its trading partners. If the buyer doesn’t know 

how to set the price of each of the issues, one approach is to negotiate over all the 

issues in parallel [An B. et al., 2010]. For each issue, there are multiple trading 

partners and the agent concurrently negotiates with all of them. Generally, a buyer 

obtains more desirable negotiation outcomes, when it negotiates concurrently with all 

the sellers in competitive situations, in which there is information uncertainty and 

there is a deadline for the negotiation to complete. Inefficiency may arise in 

sequential negotiation, when considering the overall time cost to complete all the 

necessary negotiations [Fatima S.S. et al., 2006]. 

As agents can choose to decommit from agreements, negotiation consists of a 

bargaining stage and a decommitment step for each negotiation thread. A pair of 

buyer and seller agents negotiates by making proposals to each other. At each 

round, one agent makes a proposal. Many buyer-seller pairs can bargain 

simultaneously, since each pair is in a negotiation thread. If the seller accepts the 

proposal of the buyer, negotiation terminates with a tentative agreement. If the seller 

rejects the proposal of the buyer, negotiation terminates with no agreement. If the 

seller makes a counterproposal, bargaining proceeds to another round and the buyer 

can accept the proposal, reject the proposal, or make a counterproposal. 

Bargaining between two agents terminates: when an agreement is reached or 

with a conflict (no agreement is made), when one of the two agents’ deadline is 

reached or one agent quits the negotiation. After a tentative agreement is made, an 

agent has the opportunity to decommit from the agreement and it pays the penalty to 

the other party involved in the decommited agreement [Sandholm T. and Lesser V., 

2001]. 

The multi-agent system involved in negotiation should have the following 

properties [Kumar S., 2012]: 

a) The individual agents in the system are autonomous, rational, and self-

interested. These agents might be owned by different organizations, and therefore, 

they make independent decisions and attempt to maximize the expected utilities for 

their owners; 
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b) The agents encounter situations where they cannot satisfy their goals by 

themselves. They have to cooperate with other agents and arrive at mutually 

beneficial agreements in order to further their own selfish interests; 

c) The agents have to cooperate in situations where there is a conflict of 

interest. Multi-agent interactions in the system can be modeled as constant-sum 

games, where an agent’s gain is always at the expense of others in the system; 

d) There can be an arbitrarily large number of agents in the system. However, 

each agent can interact with only a small subset of other agents in the system. 

In a negotiation mechanism there are many desirable properties [Goradia H.J 

and Vidal J.M., 2007]. Efficiency is the most important property for a mechanism. By 

economic efficiency it is understood that the agreement mechanism yields should be 

close to optimal. Optimality can be measured in many ways, and is domain-specific. 

It is desirable a mechanism to be computationally efficient for an obvious reason: 

faster the agreement is reached, less time is consumed in negotiation. A mechanism 

that involves less communication between the agents during the negotiation process 

would be preferred in a real-world setting. 

Another desirable property in a mechanism is stability. A mechanism is stable 

if it provides all agents with a desire to behave in a particular way. Even for many 

settings with cooperative agents, it is assumed that the agents work towards 

improving their individual utilities.  

Distribution of command and decision-making are essential in certain settings, 

where the nature of the problem makes it infeasible to aggregate all the necessary 

data. Distribution is desirable also for systems that are not inherently decentralized, 

as it avoids a single point of failure and minimizes performance bottleneck. 

Scalability is another important issue in settings where there are a lot of 

agents. The mechanism should not be affected by the increasing number of agents in 

the system. 

Suppose there are many businesses in an electronic marketplace, each 

specializing in offering certain goods or services for a price [Wellman M.P. and 

Wurman P.R., 1998]. Their concern is maximizing their profits by asking the highest 

possible price for the goods or services they offer. These businesses may not be 

able to complete a task alone, because they do not possess all the capabilities 

needed to handle the task completely. In such cases, they have to collaborate with 

each other to fulfill customer requests in the marketplace.  

 

4.2. Negotiation using Decision and Game Theory 

 

A framework for one-to-many negotiation by means of conducting a number of 

concurrent coordinated one-to-one negotiations is presented in [Rahwan I. et al., 

2002 a]. In this framework, a number of agents, all working on behalf of one party, 

negotiate individually with other parties. After each negotiation cycle, these agents 

report back to the facilitator, which evaluates how well each agent has done, and 
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issues new instructions accordingly. Each individual agent conducts reasoning by 

using constraint-based techniques. It is outlined that two levels of strategies can be 

used, the individual negotiation type, and the coordination level. It is also showed that 

the one-to-many negotiation architecture can be directly used to support many-to-

many negotiations. In the prototype Intelligent Trading Agency (ITA), agents 

autonomously negotiate multi-attribute terms of transactions in an e-commerce 

environment tested with a trading scenario. 

A multi-agent framework for a negotiation system that supports the evaluation of 

messages, the management of the negotiation messages, and the messages 

exchange among the negotiation agents is designed in [Choi H.R. et al., 2005]. It is 

dealing with a simple problem, where the agents exhibit common attributes that do 

not need a complex classification scheme. It means that their study focuses on 

strategy, rather than ontology, in the development of an automated negotiation 

system. 

An adaptive bilateral negotiation between software agents in e-commerce 

environments is studied in [Narayanan V. and Jennings N. R., 2005]. The research 

supposes that the agents are self-interested, the environment is dynamic, and both 

agents have deadlines. Such dynamism assures that the agents’ negotiation 

parameters depend on the state of the encounter and the environment. The study 

presents an algorithm, which the agents can use to adapt their strategies to 

modifications in the environment, to get a deal with respect to their deadlines and 

before the available resources for negotiation are exhausted. An adaptive negotiation 

model is defined as a Markov Decision Process. Using a value iteration algorithm, a 

possibility to find optimal policies for the negotiation problem is described, without 

explicit knowledge of the dynamics of the system. A representative negotiation 

decision problem using this technique is described and it is showed that it is a 

promising approach for analyzing negotiations in dynamic settings. With empirical 

evaluation, it is concluded that the agents using this algorithm learn a negotiation 

strategy that adapts to the environment and allows reaching agreements. 

An adaptive approach in agent-based negotiation involving on-line prediction of 

the opponent behavior based on the parametric non-linear regression analysis is 

proposed in [Brzostowski J. and Kowalczyk R., 2006]. A decision-making 

mechanism, using the information obtained by the regression mechanism, is also 

proposed. The predictive decision-making mechanism for the negotiation agent is 

based on the history of offers in the current negotiation encounter. The approach 

proposed allows the negotiation agents to predict more complex behavior of the 

negotiation opponent, in terms of the mixture of its time-dependent and behavior-

dependent tactics. They perform experiments in order to validate the proposed 

approach. The results show that the predictive decision-making gives better results in 

terms of the utility gains for the adaptive negotiation agent, as compared with a range 

of non-predictive negotiation strategies. 
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A multi-issue negotiation between self-interested autonomous agents is 

analyzed in [Fatima S.S. et al., 2007]. The agents have time constraints in the form of 

both deadlines and discount factors. There are n issues for negotiation, where each 

issue is viewed as a pie of size one. The issues are indivisible, that is the individual 

things cannot be split between the parties and each issue must be allocated entirely 

to an agent. The problem is for the agents to decide how to allocate the issues 

between themselves, such that to maximize their individual utilities. For such 

negotiations, the equilibrium strategies are obtained, for the case where the issues 

for negotiation are known a priori to the parties. Then, it is analyzed their time 

complexity and showed that finding the equilibrium offers in an NP-hard problem, 

even in a complete information setting. In order to overcome this computational 

complexity, approximately optimal negotiation strategies are presented, which are 

computationally efficient, and it is shown that they form an equilibrium. 

Bilateral multi-issue negotiation is analyzed in [Fatima S.S. et al., 2010]. In this 

framework, the issues are divisible, there are time constraints in the form of deadlines 

and discount factors, and the agents have different preferences over the issues. The 

objects are negotiated using the package deal procedure. The set of issues to be 

negotiated represent a choice variable, that is the agents can decide what issues to 

bargain. This set is called the negotiation agenda. Since the negotiation outcome 

depends on the agenda, it is important to determine which agenda maximizes an 

agent’s utility and is therefore the optimal one. In this approach, polynomial time 

methods are presented, for finding an agent’s optimal agenda. 

A comprehensive reasoning model for service-oriented negotiation is described 

in [Sierra C. et al., 1997]. This determines which potential servers are contacted, 

whether negotiation proceeds in parallel with all servers or whether it runs 

sequentially, what initial offers are sent out, what is the range of acceptable 

agreements, what counteroffers are generated, when negotiation is canceled, and 

when an agreement is reached. 

A formal account of a negotiating agent’s reasoning component is presented. 

The focus is on the processes of generating an initial offer, evaluating incoming 

proposals, and creating counterproposals. The model specifies the key structures 

and processes involved in this setting, and defines their inter-relationships. The 

model was shaped by practical considerations and insights, starting from the 

development of a system of negotiating agents for business process management. 

The main contributions of this work are: a) it allows flexible bargaining schemes to be 

defined; b) it is based on assumptions which are realistic for autonomous 

computational agents; and c) it presents some initial results on the convergence of 

negotiation. 
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4.3. Learning Algorithms used in Negotiation 

 

A multi-agent system for supply chain management is described in [Chen Y. et 

al., 1999]. In this framework, functional agents can join in, stay, or leave the system. 

The Supply Chain Management System (SCMS) functionality is implemented through 

agent-based negotiation. When an order arrives, a virtual supply chain may emerge 

from the system through automated or semi-automated negotiation processes 

between functional agents. A framework is presented and a number of negotiation 

performatives are described, which can be used to construct pairwise and third party 

negotiation protocols for functional agent cooperation. It is also explained how to 

formally model the negotiation process by using Colored Petri Nets (CPN) and it is 

provided an example of establishing a virtual chain by solving a distributed constraint 

satisfaction problem. 

The multi-agent meeting scheduling problem in defined in [Crawford E. and 

Veloso M., 2005], in which distributed agents negotiate meeting times on behalf of 

their users. While many bargaining approaches have been proposed for scheduling 

meetings, it is not well understood how agents can negotiate strategically in order to 

maximize their users’ utility.  

In order to negotiate strategically, agents need to learn choosing good 

strategies for bargaining with other agents. The playbook approach, introduced for 

team plan selection in small-size robot soccer, can be used to choose strategies. 

Selecting strategies in this manner offers some theoretical guarantees about regret. 

The experimental results prove the effectiveness of the approach. The space of 

negotiation strategies is huge, and thus it is not possible for an agent to learn how to 

negotiate in the complete space. The plays-based approach cuts the strategy space 

down to a set of procedures that are effective in different situations, allowing an 

agent to learn which of these strategies work best with different fixed-strategy agents. 

An adaptive one-to-many negotiation strategy for multi-agent coalition formation 

in dynamic, uncertain, real-time, and noisy environments is proposed in [Soh L.K. 

and Li X., 2004]. The strategy focuses on multi-issue negotiations, where each issue 

is a request from the initiating agent to the responding agent. The initiating agent 

conducts concurrent negotiations with responding agents and in each negotiation it 

employs a pipelined one-at-a-time approach, or a confidence-based, packaged 

approach. In the first case, lacking knowledge on the responding agent, it negotiates 

one issue at a time. In the second case, with confident knowledge of the past 

behavior of the responding agent, it packages multiple issues into negotiation. This 

adaptive strategy is incorporated into a multi-phase coalition formation model 

(MPCF), in which agents learn to form coalitions and perform global tasks. 

The creation of effective and efficient negotiation mechanisms for real-world 

applications is a challenging problem, because negotiations in such a context are 

characterized by combinatorial complex negotiation spaces, tough deadlines, very 

limited information about the opponents, and volatile negotiator preferences. So, 
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practical negotiation systems should have effective learning mechanisms to obtain 

dynamic domain knowledge from the possibly changing negotiation contexts. 

Adaptive negotiation agents are presented in [Lau R.Y.K. et al., 2006], which have 

robust evolutionary learning mechanisms to deal with complex and dynamic 

negotiation contexts. The experimental results show that genetic algorithms-based 

adaptive negotiation agents outperform a theoretically optimal negotiation 

mechanism that guarantees Pareto optimality. This allows the development of 

practical negotiation systems for real-world applications. Genetic algorithm-based 

adaptive negotiation agents are empowered by the effective evolutionary learning 

mechanisms, such that these agents can learn the opponents’ preferences gradually 

and continuously adapt to the changing negotiation contexts. The design of genetic 

algorithm-based adaptive negotiation agents fulfills all the requirements of practical 

negotiation systems, because these agents can simulate a wide spectrum of 

negotiation attitudes, identifying near optimal solutions, based on limited information 

about the negotiation spaces, continuously learning the opponents’ preferences, and 

adapting to the changing negotiation contexts. 

A negotiation model, which contains a set of self-interested cognitive agents, 

capable to reason on different issues about the object to be negotiated is proposed in 

[Florea A.M. and Kalisz E., 2008]. A model of heuristic negotiation between self-

interested agents is presented, which allows the use of arguments, negotiation over 

multiple issues of the negotiation object, single and multi-party negotiation, and 

learning of the agent’s negotiation primitives. This model uses negotiation objects 

and negotiation frames to separate the object of negotiation from the negotiation 

process. In order to negotiate strategically, the agents use a reinforcement learning 

algorithm applied on a specific state space representation of the negotiation process. 

A Belief-Desire-Intention model of agents, required in order to support the 

extended set of primitives, is presented in [Bratman M.E., 1999]. In a BDI model, the 

agents are endowed with beliefs about the environment and the other agents in the 

environment, with intentions to execute actions structured into plans and desires, 

which represent the outcomes the agents want to achieve. A consistent subset of 

desires forms the agent goals, towards which plans should be developed. It is 

proposed a reinforcement learning approach that may permit the negotiator to learn 

which negotiation primitive to use in a certain state of negotiation. 

 

4.4. Negotiation Systems using Argumentation 

 

A model of negotiation between self-interested agents is described in [Florea 

A.M., 2002], that captures different negotiation situations and objects, including 

arguments in favor of successful contracts. The negotiation protocol is specified 

using two alternate representations: negotiation trees and negotiation definite clause 

grammars. A reinforcement learning algorithm is proposed, that can be used by the 

negotiator to learn its negotiation strategy, when faced with multiple negotiation 
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primitives. The reinforcement learning approach is based on utilities of negotiation 

objects and negotiation states. 

The negotiation technique used is a combination of a heuristic approach with an 

argumentation-based negotiation. The negotiator A issues a request for action, or 

service to be performed, or service to be offered, the request being directed to agent 

B. The agent B may accept the request, may reject it, may modify the request by 

changing the value of an attribute of the negotiation object or by adding a new 

attribute. Negotiation may continue by performing several consecutive steps, in which 

one or the other agent modifies the negotiation object, a successful contract has 

been concluded or the negotiation failed. 

A multi-agent system, in which agents are able to negotiate in order to satisfy 

their goals and desires, is presented in [Carabelea C., 2002]. The system is open, 

the agents in the system are self-interested and are using argument-based 

negotiation to reach agreements regarding cooperation and goal satisfaction. 

Negotiation is performed using different types of arguments, varying from quantitative 

ones, such as money or trade objects, to qualitative arguments, such as promises, 

appeal to past promises and past examples. 

The objects being negotiated are virtual objects, which may represent physical 

objects, actions performed on their behalf, desires of other agents, other agents’ 

preferences, or money. The argument-based negotiations are covering both 

economic type negotiations and symbolic daily life ones. The agents are adapting 

their negotiation plans according to an evolved model of the other agents in the 

system. 

An argumentation based negotiation protocol is proposed in [Kakas A. and 

Moraitis P., 2006], in which offers of the negotiating parties are linked to different 

arguments they can build, according to their individual negotiation strategy. This 

protocol is able to take into account the different roles of agents and the context of 

interaction, where the strength of the arguments supporting an offer can depend on 

these factors. The agents can adapt their negotiation strategies and offers, as their 

environment changes, in particular during the course of the negotiation, as they 

exchange information. In addition, using abduction alongside with argumentation, 

agents can find negotiating conditions to support an argument for an offer, thus 

extending the negotiation object in order to help finding an agreement. To illustrate 

further the advantages of the approach, the negotiation strategies are extended with 

another negotiation mechanism, that is bargaining with multiple parties. 

 

4.5. Negotiation Systems with Ontologies 

 

In a multi-agent system, presented in [Dong H. et al., 2008], a business may 

start by two agents that have the desire of trading, and negotiation is an inevitable 

procedure for building the business relationship. In the context of e-business, agents 
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that represent humans have the potential ability to start automated negotiation 

activities. 

Traditional negotiation research focuses on providing approaches for generating 

negotiation strategies and protocols to enhance the ability of agents. However, there 

are some issues in this field – the inadaptability of agents to evolving negotiation 

protocols, and agents’ negotiation term ambiguity.  

Ontology is a semantic web technology for defining domain knowledge and 

solving semantic ambiguity, which can be extended into the field of automated 

negotiation research. A survey of the existing negotiation ontologies is performed, 

and the current status of the negotiation ontology research is explored. 

Semantic web technology to automated negotiation is applied in [Tamma V. et 

al., 2005]. In this approach, agents could negotiate in any type of marketplace, 

irrespective of the negotiation mechanism. Protocols are described in terms of a 

shared ontology, which is an explicit and declarative representation of the negotiation 

protocol. The ontology is used to change agents’ strategies to a certain protocol 

employed. 

An agent entering an interaction should acquire the negotiation protocol, which 

controls the interaction, from the marketplace itself, through an advertisement of the 

type of protocol used. In order to allow interoperability, the protocol is defined like a 

shared ontology of negotiation, which gives the basic vocabulary that agents must 

share, in order to discuss the participation terms in the negotiation. 

Regarding the use of the ontology as input for changing the agent strategy to a 

certain type of protocol, it is described the complexity of the protocol defined by a 

given mechanism and recommends a potential solution technique. For some 

mechanisms, it is possible to find an optimal strategy using computational 

techniques. For more complex mechanisms, this approach can be used to 

recommend a strategy, based on a class of learning algorithms. 

 

4.6. Negotiation Systems in Auctions 

 

The multi-agent paradigm and its application to multi-item auctions is discussed 

in [Benameur H. et al., 2002]. It is proposed a formal model for auction based 

automatic negotiations. This model is implemented using multi-agent systems and is 

tested and evaluated with simulation experiments.  

Multi-item auctions have addressed the combinatorial issue that allows bids on 

combinations of items, as opposed to only single items. These approaches suppose 

two simplifying conditions: the quantity of items to sell is fixed, as well as the 

quantities requested by the buyers. These two hypotheses do not meet the 

requirements of many situations, where auctions are used. In some auctions, it is 

desirable that the available quantity is not fixed. In this way, quantities can change 

during the auction, as it is for example the case for stock values. A model based on 
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an English auction is presented, with multiple items with private valuations and 

variable quantities requested. 

 

4.7. Heuristic Negotiation Systems 

 

The design and implementation of an environment for automated negotiations, 

offering support for the use of various existing bargaining models, together with their 

respective negotiation strategies, is presented in [Silva A. et al., 2007]. It is possible 

to integrate different models, approximating the automated negotiations to the way 

the real world works. 

An open architecture for the negotiation environment is proposed, where the 

number of buyers and sellers, or the offer and demand for services or products, can 

be changed during execution time. In a flexible way, the negotiator agent can 

increase the set of negotiation strategies and also the number of business domains. 

These characteristics were implemented in the proposed environment with ontology 

concepts and production rules. 

The use of ontology enabled the negotiator agents to be implemented, a priori, 

for any type of business domain. The fact is that the environment supplies a protocol 

for the agents to interact on the same ontology, allowing an agent to be detached 

from the various business domains it may be possible to negotiate. The individuality 

of each negotiator agent is therefore tied to the rules it possesses. 

Price negotiations are one of important aspects of e-commerce transactions 

[Badica C. et al., 2007]. A rule-based implementation of automated price 

negotiations, used in a multi-agent system that models an e-commerce environment, 

is presented. A brief description of the conceptual architecture of the system and a 

simplified scenario that involves multiple buyer agents participating in multiple 

English auctions performed in parallel are described. 

Dominant-strategy mechanisms in allocation domains, where agents have one-

dimensional types and quasilinear utilities, are studied [Naroditskiy V. et al., 2013]. 

Considering as input an allocation function, an algorithmic technique for finding 

optimal payments is presented, for a class of mechanism design problems. Optimality 

of payment functions is linked to a geometric condition. When the condition is true, 

an optimal payment function that is piecewise linear in agent types is described. 

Mechanism design problems that have no objective functions, but seek 

payments fulfilling a combination of constraints, are reduced at solving a system of 

linear inequalities. These reductions give solutions of mechanism design problems 

that are otherwise difficult to solve. 

In Table 4.1 are presented the types of research on automated negotiation and 

the authors.  
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Table 4.1. Types of Research and Authors 

 

Types of Research Authors 

Negotiation using 

Decision and Game 

Theory 

Kraus S., 1997 

Sierra C., Faratin P., Jennings N.R., 1997  

Kraus S., 2001 

Rahwan I., Kowalczyk R., Pham H.H., 2002 

Osborne M.J., 2004 

Narayanan V., Jennings N.R., 2005 

Choi H.R., Kim H.S., Hong S.G., Park Y.J.,   Park Y.S., Kang M.H., 

2005 

Brzostowski J., Kowalczyk R., 2006 

Fatima S., Wooldridge M., Jennings N.R., 2007 

Fatima S., Wooldridge M., Jennings N.R., 2010 

 

Learning Algorithms 

used in Negotiation 

Chen Y., Peng Y., Finin T., Labrou Y., Cost S., 1999 

Soh L.-K., Li X., 2004 

Lau R.Y.K., 2005 

Crawford E., Veloso M., 2005 

Lau R.Y.K., Tang M., Wong O., Milliner S.W., Chen Y-P.P., 2006 

Florea A.M., Kalisz E., 2008  

Negotiation using 

Argumentation 

Florea A.M., 2002 

Carabelea C., 2002 

Kakas A., Moraitis P., 2006 

Rahwan I., Ramchurn S.D., Jennings N.R., McBurney P., Parsons 

S., Sonenberg L., 2002 

Negotiation 

Ontologies 

Dong H., Hussain F.K., Chang E., 2008 

Negotiation in 

Auctions 

Benameur H., Chaib-draa B., Kropf P., 2002 

 

 

Table 4.2 describes the main characteristics of each negotiation model 

developed in the researches presented in this chapter. 

 

Table 4.2. Main Characteristics for Negotiation Models 

 

Research Authors Name/ 

Language 

Adaptation Learn Single/ 

Multi  

Sierra C. et al., 

1997 

CLIPS and 

PROLOG 

Fuzzy Control 

Techniques 

No Multi 

Bratman M.E., 

1999 

Theoretical 

Framework 

Heuristic Strategies Reinforcement 

Learning 

Single 

Chen Y. et al., 1999 Supply Chain 

Management 

System 

Colored Petri Nets  Distributed 

Constraint 

Satisfaction 

Problem 

Multi 
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Benameur H. et al., 

2002 

Java Finite State Machines No Multi 

Carabelea C., 2002 Jade Argumentation 

Strategies 

Reinforcement 

Learning 

Multi 

Florea A.M., 2002 Java Argumentation 

Strategies 

Reinforcement 

Learning 

Multi 

Rahwan I. et al., 

2002 

Intelligent Trading 

Agency (ITA) 

Constraint-based 

Techniques 

No Multi 

Soh L.K. and Li X., 

2004 

Java Multi-Phase Coalition 

Formation  

Form Coalitions, 

Perform Global 

Tasks 

Multi 

Choi H.R. et al., 

2005 

Server Sales Agent 

System / Java 

Scheduling Agent / Price 

and Due Date Agent 

No Multi 

Crawford E. and 

Veloso M., 2005 

Java Playbook Approach Experts Problem / 

Regret 

Multi 

Narayanan V. and 

Jennings N.R., 

2005 

Java Markov Decision 

Process 

Non-Stationary 

Value Iteration 

Algorithm 

Multi 

Tamma V. et al., 

2005 

DAML + OIL / 

Protege 

Semantic Web 

Technologies 

Q-learning Multi 

Brzostowski J. and 

Kowalczyk R., 2006 

Java Non-linear Regression Predictive Decision 

Making 

Multi 

Kakas A. and 

Moraitis P., 2006 

Java Argumentation 

Strategies 

Abduction Multi 

Lau R.Y.K. et al., 

2006 

Web Service 

Description 

Language (WSDL) 

Genetic Algorithms Evolutionary 

Mechanisms 

Multi 

Badica C. et al., 

2007 

Jade and Jess  Multiple English 

Auctions Performed in 

Parallel 

No Multi 

Fatima S.S. et al., 

2007 

Theoretical 

Framework 

Equilibrium Strategies Approximately 

Optimal 

Multi 

Silva A. et al., 2007 Java Neural Networks Q-learning Multi 

Dong H. et al., 

2008 

Protege and Jade Semantic Web 

Technologies 

No Multi 

Florea A.M. and 

Kalisz E., 2008 

Java Heuristic Strategies Reinforcement 

Learning 

Multi 

Fatima S.S. et al., 

2010 

Theoretical 

Framework 

Time Constraints Polynomial Time 

Methods 

Multi 

Naroditskiy V. et 

al., 2013 

Theoretical 

Framework 

Dominant Strategy 

Mechanisms 

Optimal Payment 

Function 

Single 
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Part II. An Adaptive Negotiation Multi-Agent System  
 

Chapter 5. Automated Negotiation using Profiles and 

Clustering of Agents 
 

This chapter presents a model of self-interested agents acting in an open 

environment, which capture the most relevant elements of agents’ behavior related to 

negotiation with other agents. The agents’ behavior is mainly motivated by the gain 

they may obtain while fulfilling their goals and negotiating, but their behavior can 

change during negotiation, according to previous interactions with other agents in the 

system. 

  

5.1. Multi-Agent System Description 

 

A series of negotiation strategies and studies already exist in the literature, for 

example [Jennings N.R. et al., 2001; Ito T. et al., 2007; Jonker C. et al., 2007; Lin R. 

et al., 2008; Lin R. et al., 2009 a], in which the agents are able to choose different 

strategies. The automated negotiation process usually takes place in open 

environments. These environments don’t have a way to control the agents’ behavior, 

and it is also possible to have humans in these environments, whose behavior is 

unpredictable [Florea A.M. and Radu S., 2007; Lin R. et al., 2008]. Some negotiation 

strategies are based on agent profiles, which can define statically or develop 

dynamically agents’ preferences. There are advantages for creating agents’ 

negotiation profiles. This allows the agents to build good strategies. Using these 

profiles, agents obtain better results than those in case of fixed negotiation strategies, 

that is increase the agents’ gain from negotiation [Florea A.M. and Kalisz E., 2007; 

Radu S. and Florea A.M., 2012]. 

Changing the behavior of the agents may refer to either the use of different 

negotiation strategies or to concessions made for other agents, with which they have 

successfully negotiated in the past. Sometimes, the agents are also motivated by the 

necessity to cooperate with other agents for achieving their goals. The key element in 

the agent behavior is their capability to develop a set of negotiation profiles. These 

profiles help the agents to conduct their negotiation [Radu S. et al., 2013 a]. Different 

approaches to the development of these profiles are presented in this chapter. 

The set of negotiation profiles the agents are able to evolve consists of:  

(1) the preference profile, defining the agent negotiation strategy; 

(2) the partner cooperation profile, which takes into account the agent 

interaction with the other agents in the system;  

(3) the group-of-partners’ negotiation profile, which clusters the profiles of 

several agents. 
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The first two profiles characterize individuals, while in a group negotiation profile, 

several agent profiles are clustered according to commonly discovered features. 

The outcome of negotiation is evaluated for different strategies, encoded in the 

preference profile. In the system there are different agents and a facilitator, which 

can be used by the agents, either to register or, to register and facilitate negotiation. 

The three types of negotiation profiles are described and discussed, as well as 

the uninformed and informed negotiation strategies. Negotiation strategies are 

implemented in the form of production rules. In this approach, preference 

coefficients can be assigned to these rules and dynamically modified, according to 

the negotiation situation. 

The proposed model of negotiation is tested in the framework of a multi-agent 

system, for different business models. The results are presented in detail in Chapters 

8 and 9. 

 

5.2. Overview of the Approach using Profiles and Clustering of 

Agents 

 

A model of heuristic negotiation between self-interested agents is described in 

[Florea A.M. and Kalisz E., 2007]. The system allows bargaining over multiple issues 

of the negotiation object, comprises different types of negotiation primitives, including 

argument based ones, and a set of rules to conduct negotiation. In order to negotiate 

strategically and to adapt bargaining to different partners, the agents use rewards 

associated to negotiation objects and the notion of regret to compare the achieved 

outcomes with the best possible results that could have been obtained both in a 

particular negotiation and in selecting the partner agent. 

The decision process during the negotiation is modeled as an adversarial bandit 

problem with partial information and uses the computed probabilities of negotiation 

rules to select the best rule to be used at a certain moment during bargaining. 

Rewards were defined depending on the attributes of the negotiation object at a 

given negotiation round or, in case adaptation of partner selection is sought, 

depending on the negotiation object with which the negotiation is concluded. 

Moreover, it is shown how the problem can be modeled if not all rules can be 

selected at a given decision point (equivalent with not all experts being available for 

consultation).  

The Q-learning algorithm is applied to analyze and learn customer behaviors 

and then recommend appropriate products in [Srivihok A. and Sukonmanee P., 2005]. 

As compared to the current approach, the user profile is not used for negotiation, but 

to personalise the information to the customer interests. There are used weighting 

features to recommend products to the user. In this chapter, weights to represent the 

preference coefficients are employed. 

A software framework for negotiation, in which the bargaining mechanism is 

represented by a set of rules, as in the current chapter, is proposed in [Bartolini C. et 
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al., 2005]. The rules are organized in a taxonomy and can be used in conjunction 

with a simple interaction protocol. The negotiation language is based on OWL-Lite. 

Although the rules allow flexible definition of several negotiation strategies, there are 

no negotiation profiles and the possibility to modify the negotiation, according to 

these profiles, as in the current chapter.  

An implementation of automated negotiations in an e-commerce modeling multi-

agent system is described in [Badica C. et al., 2006 b]. A specific set of rules is used 

for enforcing negotiation mechanisms. An experiment involving multiple English 

auctions performed in parallel is discussed. 

A system for automated agent negotiation, based on a formal and executable 

approach to capture the behavior of parties involved in a negotiation is shown in 

[Skylogiannis T. et al., 2007]. The negotiation strategies are expressed in a 

declarative rules language, defeasible logic, and are applied using the implemented 

system Dr-Device. 

The system GENIUS (General Environment for Negotiation with Intelligent 

multi-purpose Usage Simulation) is presented in [Lin R. et al., 2008]. It supports the 

design of different strategies for agent negotiation, and the evaluation of these 

strategies in a simulated environment. The system allows the negotiation between 

automated agents, but also between agents and humans. The designer of a strategy 

can select from a repository a negotiation domain and a preference profile for the 

agent. Both are represented in a tree-like structure, which enables to specify 

priorities related to outcomes of negotiation. As compared to this system, in the 

current chapter, there are several negotiation profiles, which are evolved during 

interactions, and the negotiation domain is specified by the agent rules.  

 

5.3. Framework for Automated Negotiation 

 

The negotiation agent behavior is defined in a framework of a multi-agent 

system in an open environment. The system includes the facilitator, which can be 

used or not by the agents during negotiation, depending on the preference profile. 

Because the environment is open, other agents can enter or exit the system 

dynamically, as presented in Figure 5.1. When entering the system, the agent has to 

register with the facilitator, and the facilitator will inform other agents about the new 

agent arrival. 

There are two interaction possibilities, each one with its advantages and 

disadvantages. When an agent wants to negotiate, it either sends a broadcast 

message to all the agents in the system, or sends a single message to the facilitator, 

asking it to find other agents appropriate to negotiate with. 

In the first approach, in which the agent sends messages to all the other agents 

in the system, the agent waits for answers from possible partners. Some of the agents 

will answer with proposals and others will not answer at all. The advantage is that the 
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facilitator has fewer messages to process, but the disadvantage is that there are too 

many messages sent over the network, which can slow down the transaction.  

 

 
 

Figure 5.1.  The Multi-Agent System Open Environment 

 

In the second approach, the agent will send to the facilitator two types of 

messages: a message presenting its abilities, and a message asking help for a 

negotiation, for instance, to buy or sell an item. It is the facilitator which will query the 

agents with the required abilities, and will inform the agent about the outcome. The 

advantage of this approach is that not all the agents are queried, but the disadvantage 

is that the facilitator has a lot of messages to process and can become a bottleneck in 

the system.  

The negotiation between agents is a single-issue negotiation, where the price of 

the products is bargained. The type of negotiation implemented is a heuristic 

negotiation, in which the agent computes the gain, as compared to its private value for 

an object. The agents negotiate following the Iterated Contract Net protocol. Each 

agent takes into account a private value for any item (product or service) to trade (sell 

or buy). Also, there is a deadline for the number of negotiation rounds. In a buying 

negotiation, an agent will look for a lower value than its private one, while in a selling 

negotiation, its main goal is to obtain more than the item’s private value. 

The agent behavior is mainly motivated by the gain, but also, depending on a 

specific context, by the desire to achieve cooperation with other agents. For example, 

as a general rule, the agent will not accept a price lower than its private value. 

However, when the agent wants to cooperate, it can accept a lower price. The agent 

behavior is set up by the negotiation strategy. 

The negotiation model proposed in this chapter can be easily extended to multi-

issue negotiation, as described in Chapter 6. In this case, the agent will trade the 

   Communication between Agents 

                    Communication with Facilitator 

Agent 

Facilitator 

Agent 1 

Agent 3 

Agent 2 
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negotiation object (NO). A negotiation object is the range of issues over which 

agreements must be reached, as defined in [Jennings N.R. et al., 2001]. The object of 

a negotiation may be an action which the negotiator agent A asks another agent B to 

perform for it, a service that agent A asks to B, or, alternatively, an offer of a service 

agent A is willing to perform for B, provided B agrees to the conditions of A. The agent 

A may have a plan to achieve one of its desires, but may be unable to carry out some 

of the necessary actions, therefore it will ask B to execute these actions for it, if it 

believes the actions belongs to B's abilities. 

The agents are mainly designed according to the BDI model, and have a set of 

goals, selected from the set of desires. In order to achieve their goals, they develop 

plans, as a sequence of actions to be performed, or they provide services or ask for 

services from the agents, such as buying or selling objects. Some actions can not be 

executed by the agent itself, and they also become, together with the services, 

objects to be negotiated by the agents. To unify these two cases, the agents are 

using negotiation objects, which can wrap up one or several negotiation attributes.  

Each agent has an associated set of rules, divided in two: behavior rules, 

which implement the way the agent fulfills the goals assigned to it, and negotiation 

rules, which describe the negotiation strategy. In Figure 5.2 is presented the 

structure of a BDI negotiating agent.  Agents based on models different from BDI 

may enter the system, providing that they use the same negotiation protocol. During 

negotiation and interaction with other agent, a BDI agent develops a set of 

negotiation profiles. 

 

 

Figure 5.2. BDI Negotiation Agent Structure 

 

The agents have different reasoning capabilities, designed to conduct successful 

negotiation and the fulfillment of agents’ goals. During negotiation, the agents gather 
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information about the partner agents, and store it in the associated cooperation 

profiles [Radu Ș. et al., 2013 a]. 

 

Figure 5.3. The Agent Main Components 

 

Each agent is endowed with a set of negotiation profiles, outlined in Figure 5.3: 

- the preference profile, which specifies the agent negotiation strategy; 

- the partner cooperation profile, which keeps track of the agent interactions 

with the other agents in the system;  

- the group-of-partners’ negotiation profile, which deals with a group of 

negotiation partners. 

The partner cooperation profile describes the preferences regarding the agents 

with which an agent prefers to cooperate. The partner cooperation profile of an agent 

is implemented as a structure which evolves dynamically. For each agent 

encountered during the negotiation process, knowledge about the outcome of different 

negotiations is stored in this structure. 

The partner cooperation profile is a characteristic of each agent and is stored as 

a matrix. Each line contains the agent name and a set of associated attributes, upon 

which the agent dynamically changes its preferences. The cooperation profile is 

updated during the negotiation process, at the end of each negotiation. Table 5.1 

presents an example of a partner cooperation profile for an agent. 

An entry in the matrix, defining the partner cooperation profile for an agent, has 

the fields presented below, representing the cooperation attributes. 

1. The first field represents the name of the partner agent, stored as a string of 

characters.  

2. The second field contains how many times the agent negotiated with its 

partner, and is represented as a natural number. 

3. The third field stores the number of successful negotiations, as an integer 

number. 
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Table 5.1. Partner Cooperation Profile of an Agent 

 

1. Partner Agent Name Agent 1 Agent 2 

2. No. of  Negotiations 7 5 

3. Successful Negotiations 4 3 

4. Total Gain 3 2 

5. Gain Ratio 80 60 

6. Negotiation Rounds 6 4 

7. Interesting Degree 3 2 

8. Partner Classification very cooperative cooperative 

 

4. The fourth field points out the connection between the outcome of negotiation 

and the private value of the agent for the negotiation object, showing the total gain 

obtained. This is stored as a positive or negative integer number. 

Each agent has two prices, the minimum price (MinPrice) and the maximum 

price (MaxPrice), between which it accepts offers. The buyer computes its gain as 

the difference between the maximum price it is willing to pay and the price of the 

current offer. The seller computes its gain as the difference between the price of the 

current offer and the minumum price it is willing to accept. 

Based on heuristic criteria, an agent can accept a price greater than its private 

value in order to buy a product, or can sell a product at a price lower than its private 

value. These decisions are based on the information stored in the preference profile of 

the agent and are specified by the strategy rules. 

5. The fifth field shows the gain percentage, namely how much is the gain 

obtained while negotiating with the partners, as a percentage of the agent total gain. 

6. The sixth field is the number of negotiation rounds, during the last 

negotiation, and is an integer number. 

7. The seventh field tries to capture the agents’ beliefs about the partner abilities 

and/or credentials. This attribute is called the interesting degree of the partner, 

which is quantified as: very interesting, interesting, moderately interesting, and 

not interesting (4…1). For example, if the partner has an ability to perform a task, 

which is lacking to the agent, then the partner is interesting or very interesting to the 

agent. Moreover, if the negotiation is successfully concluded in a small number of 

steps, and the gain is positive, then the partner is very interesting.   

8. The eighth field contains the classification of the partner agent, which 

represents the current agent belief about the cooperation potential of the partner. The 

partners are classified in six cooperation classes: highly cooperative, very 

cooperative, cooperative, slightly cooperative, non cooperative, and unknown.  

The attributes from 1 to 7 described above are updated by the agent after each 

negotiation with a specific agent. The last attribute (8) will be filled in by a more 

elaborate process, to be described further on. 

The representation of the agents’ cooperation profiles as a set of attributes is 

able to characterize the cooperation potential of a partner, with a high degree of 
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granularity. It is necessary to describe the cooperation potential of a partner agent in a 

broader sense. To this aim, it is proposed the clustering of partners into cooperation 

classes, specified in field 8 [Radu S. et al., 2013 b]. This classification is achieved by 

using the C4.5 learning algorithm [Quinlan J.R., 1993], in which the fields from 2 to 7 

are used as classification attributes and field 8 represents the class. There are two 

methods to generate training examples for the learning algorithm. In the first 

approach, the system run and collect gathered information. In the second approach, a 

training set of virtual agents is generated, with which an agent has virtual negotiations. 

After these negotiations are performed, the matrix is filled with the results, according 

to the fields described before.  

The information stored in this way in the matrix will allow the classification of real 

negotiations. The classification is improved, as more negotiations take place and the 

matrix is filled with the correct real values. After that, the C4.5 algorithm will classify 

correctly the negotiation instances. 

 

5.4. Agents Classification and Strategies 

 

The characterization of the cooperation potential of a partner agent is done by 

classifying the partners into cooperation classes, which divides the cooperation ability 

of the partner into six classes. The classification is done using the C4.5 learning 

algorithm, in which a decision tree is a classifier for the cooperation degree, 

expressed as a recursive partition of the instance space. In the decision tree, the 

attributes are represented by the first seven fields of the partner cooperation profile 

and the class by the partner classification field. 

Decision trees are capable of handling datasets that may have errors. Also, 

they can handle datasets that may have missing values, like the gain value in the 

current case. 

A tree is either a leaf node labeled with a cooperation class, or a structure 

containing a test for an attribute, like the number of successful negotiations, linked to 

two or more nodes (or sub-trees). So, to classify some instance for the cooperation 

potential, first it is obtained its attribute-vector, and then this vector is applied to the 

tree. The tests are performed with these attributes, like the number of successful 

negotiations, the gain, the gain percent, reaching one or other leaf, to complete the 

classification process. 

Through a top-down decision tree and a heuristic selection criterion, the 

process chooses the best test to split the data, creating a branch. 

In order to build the classification tree, a set of training instances is necessary, 

with associated attributes, and a corresponding class. There are two possibilities to 

obtain the set of training instances. The first possibility is to let the system run and 

collect information, based on agent interaction. The tree is built after a number n of 

negotiations, and then rebuilt at successive times, n+1, n+2, increasing thus the 

accuracy of the classification.  
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The other possibility is to create a set of training instances, and run the C4.5 

algorithm on this set. An initial classification tree will be thus obtained, which may be 

later on rebuild and refined, after the actual negotiation will take place. 

The C4.5 algorithm should work with inadequate attributes and should obtain 

correct results. Also, it should decide if testing some supplementary attributes will 

increase or not the predictive accuracy of the decision tree. Considering an attribute 

A with random values, choosing this attribute will give a high informational gain. The 

benefit should be greater than a given threshold, in order to eliminate the non 

relevant attributes. 

There are cases when the classification can’t be done. This happens when a 

leaf is obtained, in which not all the objects belong to the same cooperation class. In 

this case, the notion of membership to a cooperation class with a certain probability 

is used or the leaf is labeled with the cooperation class with the largest number of 

instances. If the classification ends in a leaf with an equal number of instances from 

two cooperation classes, the decision about the correct classification in a cooperation 

class is done randomly.  

When there are missing attribute values in the training set, for instance, the 

interesting degree of a partner, it is assigned the value of that attribute, which appear 

most often. A different approach for missing attributes is to assign values distributed 

over the values of the attribute A proportionally to the relative frequency of these 

values in the set of objects. 

Figure 5.4 presents a part of the decision tree used for classifying the instances. 

While interacting with the partners, the agents are classified in the right class. At 

the end of negotiation, an agent can change its cooperation class. There is a tradeoff 

between how often the agent cooperation class is updated, which may be time 

consuming, and the accuracy of the classification. 

The group-of-partners’ negotiation profile is defined by grouping into classes the 

partner agents, with which the agent interacted in the system. For each of the six 

values of the cooperation classes (highly cooperative, very cooperative, cooperative, 

slightly cooperative, non cooperative and unknown), the group-of-partners’ negotiation 

profile contains the list of all agents that belong to a given class.  The agents, for 

which no class was found out yet, belong to the unknown class. 

The preference profile of an agent describes its strategy. This is represented as 

a set of negotiation rules. These can be heuristic negotiation rules, which refer to 

partner cooperation profiles, or rules which encode certain negotiation strategies. 

The negotiation strategy of an agent may show how much and how quickly the 

prices are decreased and if the price is lower than the agent’s private value. An agent 

can use a tradeoff in negotiation. In the case of cooperative agents, an agent can gain 

more once, and then can sell cheaper. This is a kind of global evaluation on previous 

deals.  
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Figure 5.4. Classification using the Partner Cooperation Profile 

 

The negotiation strategy is implemented in the form of production rules, each 

agent keeping a history of its interactions. If in a given situation, several rules are 

eligible, then the negotiation strategy decides which rule, from the conflict set, to be 

applied. A possible approach to solve the conflicts is to assign priorities between 

rules. The solution is to apply the rule with the highest priority. Using a feedback, it is 

possible to apply the same rule or another rule.   

The rule’s priorities are dynamically modified, and the preference coefficients are 

not built-in, they are dynamically changed, according to the negotiation situation. 

Each rule has an associated preference coefficient, which indicates, in case two 

or more rules apply in a given situation, which rule should be preferred. In this way, 

the strategy can be explicitly set up when designing the system, and can be changed 

from one use of the system to another, simply by changing these coefficients. Another 

use of the coefficients is that they can be dynamically modified by a reinforcement 

learning algorithm, in a similar manner to a learning classifier system [Butz M.V., 

2010]. Learning classifier systems are a machine learning technique that may be 

categorized between symbolic production systems and sub-symbolic connectionist 

systems. 

It is possible to have more than one strategy in the system, for instance, at each 

negotiation step, the price is decreased by 1, or is decreased by 3. Another strategy 

rule tells what happens when the price increases with 10 % above the private value, if 

the offer is instantly accepted or not. 

In order to show an example of strategy rules, the following Contract Net 

protocol is considered: 
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1) cfp(A, X, NO, P) is the communication primitive, which represents a call for 

proposals from agent A to all the acquaintances X, regarding a negotiation object NO, 

with an associated cost P 

2) propose(X, A, NO, P, Step) is the communication primitive, which represents 

the response of agent X to the cfp, with the negotiation object NO, price P and 

negotiation step Step 

3) accept(X, NO) indicates the acceptance of a proposal issued by X, for the NO 

4) reject(X, NO) indicates the rejection of a proposal issued by X, for the NO 

5) counterpropose(A, X, NO1, P1, Step) defines a communication primitive, 

which represents the counterproposal of agent A to the proposal of agent X,  with the 

negotiation object NO1, price P1 and negotiation step Step 

A Prolog-like language [Florea A.M. et al., 2007] is considered and also a set of 

predicates, defined as follows: 

• propose(X, A, NO, P, Step) defines a predicate, which is true when agent A 

receives the response (2) of agent X to the cfp, with the negotiation object NO, 

price P and negotiation step Step 

• accept(X, NO) defines a predicate which, when true, triggers an acceptance 

message (3) of a proposal issued by X, for the NO 

• reject(X, NO)  defines a predicate which, when true, triggers a rejection 

message of a proposal issued by X, for the NO 

• counterpropose(A, X, NO1, P1, Step) defines a predicate which, when true, 

represents the counterproposal (5) of agent A to the proposal of agent X, with 

the negotiation object NO1, price P1 and negotiation step Step 

• tp(Ag_Name, Atr_Name, Value) is a predicate which selects from the partner 

cooperation profile, for a given agent name (Ag_Name), the value (Value) of 

the attribute (Atr_Name) in the associated field. 

Considering the above described predicates, some examples of strategy rules of 

an agent are given in Table 5.2. 

During negotiation steps, the C4.5 learning algorithm can classify the partner in 

another cooperation class, if the criteria used as attribute in the algorithm are 

changed. 

So, instead of having a negotiation strategy which applies all the rules that 

match at a certain moment, the classification with the C4.5 learning algorithm 

decreases the number of eligible rules.    

At a higher degree of granularity, instead of writing negotiation rules for a 

partner cooperation profile, we can write negotiation rules for a group-of-partners’ 

negotiation profile. Moreover, the group-of-partners’ negotiation profile can be used 

in other ways to tailor the agent behavior. 
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Table 5.2. Example of Strategy Rules 

 

Id Rule 

r1 propose(John, Tom, House, 1000, S), 

tp(John, No_Successful_Negotiations, v1),  

tp(John, No_Negotiations_with_Partner, v2), v1 > v2 – 2, 

tp(John, Interesting_Degree_of_Partner, v3), v3 > 3, tp(John, Gain_Percent, v4), v4 > 20 →→→→  

accept(John, House) PC1 

r2 propose(John, Tom, House, 1000, S),  

tp(John, No_Successful_Negotiations, v1), v1 > 5,  

tp(John, Gain, v2), v2 > 100, 

tp(John, Interesting_Degree_of_Partner, v3), v3 = 4 →→→→ accept(John, House) PC2 

r3 propose(John, Tom, House, 1000, S),  

tp(John, No_Successful_Negotiations, v1),  

tp(John, No_Negotiations_with_Partner, v2), v1 < 0.5 * v2 ,  

tp(John, Interesting_Degree_of_Partner, v3), v3 < 2 → reject(John, House)  PC3 

r4 propose(John, Tom, House, 1000, S),  

tp(John, No_Successful_Negotiations, v1),  

tp(John, No_Negotiations_with_Partner, v2), v1 < 0.5 * v2 ,  

tp(John, Interesting_Degree_of_Partner, v3), v3 > 3 →→→→ 

counterpropose(Tom, John, Car, 500, S1) PC4 

r5 propose(John, Tom, House, 1000, 1),  

tp(John, Classification, v1), v1 = ‘highly cooperative’ →→→→ accept(John, House) PC5 

r6 propose(John, Tom, House, 1000, S), 

 tp(John, Classification, v1), v1 = ‘unknown’, Price > private_value(House) →→→→ 

reject(John, House) PC6 

r7 propose(John, Tom, House, 5000, 1),  

tp(John, Classification, v1), v1 = ‘unknown’,  private_value(House) = p, p < 5000,  

tp(John, Gain, v2), v2 = 5000 - p →→→→ accept(John, House),  

tp(John, No_Negotiations_with_Partner, 1),  

tp(John, No_Successful_Negotiations, 1) PC7 

 

5.5. Preference Coefficients Determination 

 

The preference profile implements the negotiation strategy using rules, with 

the associated preference coefficient [Radu S. et al., 2013 b]. 

There are two types of rules used in the strategy. The first category of rules is 

used when the negotiation begins and is called uninformed strategy rules. The 

second category is employed when there is enough information about the partner 

and is called informed strategy rules. When negotiation begins, uninformed 

strategy rules can be applied. According to the success or failure of the 

negotiation, the preference coefficients are changed accordingly.   

In order to update the preference coefficients, it is established a formula, 

which makes the connection between the preference coefficients and how much 

the agent gains using the rules associated to these coefficients. It is supposed that 
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all the rules applied during negotiation have an equal contribution to gain or to 

loss. For a certain agent acting in different negotiations, if there are n possible 

rules to be applied, a priority between the rules will be established, according to 

the preference coefficients. Suppose that NR represents how many times the rule R 

was applied in a negotiation and M is the number of negotiation steps. Denote by α 

the ratio between NR and M. 

MNR /=α                                    (5.1) 

The preference coefficient is updated according to the situation, if the 

negotiation ends with a deal or not. If a deal is reached at the end of the 

negotiation, then the preference coefficient is updated by the formula (5.2): 





>÷∗+

∈∗+
=

12)1(

]10[)1(

oldold

oldold

new
PCPC

PCPC
PC

α

α K
                           (5.2) 

If a negotiation is ending without a deal, then the preference coefficient is 

updated by the formula (5.3): 

 
newPC =

oldPC∗− )1( α                                (5.3) 

Some predefined values for the preference coefficients are put in the 

beginning. Also, there is a mechanism used to adjust the coefficients and to realize 

a combination between the initial preferences of the user for the rules and the 

change in time of the coefficients, according to the result of the negotiation.  

A second approach used to update the preference coefficients is a 

reinforcement learning algorithm. In reinforcement learning, agents revise their 

strategies based on observed failure or success. In Q-learning [Tesauro G. and 

Kephart J., 2002], a reward function provides feedback on actions taken in order to 

estimate a ranking of state-action pairs. 

To apply the Q-learning algorithm in this situation, it is considered that each 

preference coefficient is indexed on a state and an action, for taking into account 

the preference coefficients. The actions from the Q-learning algorithm are 

represented by the rules applied by an agent when negotiating. The states from 

the Q-learning algorithm represent now the internal states of the agents. For each 

tuple (s, a), where s is the internal state of the agent and a represents the rule 

applied during negotiation, the preference coefficients are updated using a 

formula, in a similar manner to the Q-learning algorithm:  
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where: 
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a

 is the expected preference coefficient of the next internal state of 

the agent s’, when applying the action a’; 

α is the learning rate representing the impact of the update value; 

r(s) is the immediate reward for the internal state of the agent s. 

The immediate reward in this case is the gain obtained during negotiation. 

The factor γ specifies how much the values of the preference coefficients are 
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discounted at each stage.  

The internal state of the agent is characterized by several parameters: the 

partner agent, the negotiation object, the utility of the current offer, the number of 

negotiation parameters, the number of negotiation rounds with the partner agent, 

how much the agent gained in a previous negotiation. 

To adequately update the preference coefficients using the Q-learning 

algorithm, the agent must encounter repeatedly the same pair (s, a), therefore the 

negotiation must be performed several times with the same agent and for the same 

object. 

It is important to consider that the matrix PC(s, a) is huge, because it is 

possible to have many internal states of the agent, for each possible combination 

of the parameters for its internal states. For instance, if there are ten negotiation 

rules possible to be applied in a certain state, then the matrix will have ten columns 

and the lines represent different combinations of state parameters. One line can 

represents the following internal state: the name of the partner agent, the 

negotiation round and the gain obtained in a previous negotiation. It is clear that 

there are too many internal states, for each possible combination of state 

parameters and the number of lines of the matrix increase exponentially, as the 

number of state parameters grows. That’s why the learning algorithm used for 

updating the preference coefficients will converge in a very long time.  

An idea to reduce the matrix dimensions of PC(s, a) and to improve the 

convergence time of the learning algorithm is to group the internal states of the 

agent, according to the k-means algorithm [Pena J.M. et al., 1999]. Specifically, 

clusters of internal states are created and the number of lines of the matrix will 

significantly decrease, because each line will represent a cluster of states. In this 

way, the learning algorithm will converge in a reasonable time and the values of 

the preference coefficients are updated at the end of the learning algorithm 

application. An example of clustering for the internal states of an agent, according 

to the parameters of its internal state, is presented in Figure 5.5 [Radu Ș. et al., 

2013 b]. 

 
 

Figure 5.5. Clustering the States of the Agent 
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Each state representing the output of a negotiation is a point in a 

multidimensional space. The algorithm classifies the data set through a certain 

number of k clusters. The idea is to randomly define k centroids, one for each cluster. 

It is better to put the centroids as much as possible far away from each other. A 

better way to initialize the centroids is to use the k-means++ algorithm [Arthur D. 

and Vassilvitskii S., 2007], in which the first centroid is randomly choosen from the 

initial data set. Then, each centroid is picked out from the remained objects, with a 

probability: 
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                                     (5.5) 

for each object Xxi ∈ , where )(xD  is the smallest distance between the point x and a 

centroid already chosen. 

The next step is to take each point which belongs to a certain data set and 

associate it to the closest centroid. When no point is pending, the first step is 

completed and an early clustering is done. At this point, it is necessary to compute 

again k new centroids as centers of the clusters resulting from the previous step. 

After these k new centroids are computed, a new binding is done between the same 

data set points and the nearest new centroid. A loop has been created. As a result of 

this loop, it is observed that the k centroids change their location step by step, until 

no more changes could be done. In other words, centroids do not move any more. 

Using the k-means algorithm, it is possible to group the internal states of an 

agent into clusters. If the preference coefficients should be updated and improved, 

the same negotiation must be performed in the same conditions several times. The 

clusters decrease significantly the number of negotiations performed. Therefore, in 

order to update the coefficients, a smaller number of negotiations are performed. 

The time in which the preference coefficients are updated is reduced and the 

negotiation time is decreased. The coefficients are adjusted in a shorter time, when 

using clusters, than in the case of individual negotiations. 

 

5.6. Conclusion 

 

In this chapter, it is presented a model of negotiating agents that aimes to 

combine the agents beliefs about the other agents in the system, with the possibility to 

explicitly represent and modify the negotiation strategy, expressed in a set of rules. In 

order to achieve this, there are defined three negotiation profiles: the preference 

profile, the partner cooperation profile and the group-of-partners’ negotiation profile. 

The last two, partner and group-of-partners, are profiles developed during interactions 

and they are gradually built, as the agent is taking part in more and more negotiation 

rounds. The group profile is obtained by applying the C4.5 algorithm, and allows the 

classification of negotiation partners in different classes. Once these classes are 
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available, the agent can decide much quicker on the behavior to adopt, regarding a 

partner agent, than in case of the single preference profile.  

The negotiation strategy is explicitly represented as a set of rules, together with 

the preference coefficients, associated to the rules. The preference profile is formed 

by these rules with coefficients, which can be fixed statically or can evolve 

dynamically, using a reinforcement learning algorithm. The behavior of the agents is 

motivated by the gain they obtain when realizing their goals or by the necessity to 

cooperate with other agents, in order to achieve these goals. During negotiation, the 

agent’s beliefs on the other agents are updated, as the agent comes to know more 

about the others. 

Because the agents’ preferences are based on their interests, the preference 

coefficients can be modified in time. The agents can modify their preferences over 

negotiation outcomes, when receiving new information.  

The system works in open environments, in which there is no previous 

knowledge about the other agents. Therefore, an agent tries to learn, little by little, 

during interaction, features characterizing the behavior of other agents, in a set of 

partners’ profiles. The behavior of the agent takes into account these profiles. Also, 

two different approaches for updating the preference coefficients are proposed.   
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Chapter 6. Automated Negotiation Model using Strategies 

and Tactics 
 

This chapter describes a model of heuristic negotiation between self-interested 

agents, which allows negotiation over multiple issues and learns the agent’s 

negotiation strategy. The agents are using different strategies to negotiate and 

several models to adjust their decision during negotiation. They are capable of 

increasing their performance with the experience, by adapting to the environment 

conditions. The agents’ performance, using multiple tactics, is compared to the 

agents having learning capabilities, based on reinforcement learning techniques. 

Several tests are performed, in a scenario similar to the TAC-SCM environment.  

 

6.1. Environment Description for Automated Negotiation 

 

The first part of this chapter presents the negotiation framework, which consists 

of self-interested cognitive agents, which use a set of negotiation primitives. The 

environment is open and the agents are able to enter and leave the environment at 

any time. A facilitator belongs to the system and is informed about agents’ identities 

and abilities. 

The facilitator improves agent interactions and is involved in the negotiation 

between agents. The facilitator can be used by the agents only to register or, 

additionally, to facilitate negotiation. When an agent wants to negotiate, it sends a 

broadcast message to all the agents in the system (first approach – as in Figure 6.1), 

or sends a single message to the facilitator, asking it to find other agents appropriate 

to negotiate (second approach – as in Figure 6.2). 

 

 

 

 

 

 

 

 

 

 

Figure 6.1. Communication between Agents – First Approach 

 

In what follows, it is described a model of heuristic negotiation, which takes into 

account multi-issue negotiation, tries to adapt to the bargaining strategy of the other 

agent and use tactics to adapt to different situations. 
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Figure 6.2. Communication between Agents – Second Approach 

 

The approach to achieve a good behavior in a heuristic negotiation is to use 

utility functions, which enable an agent to generate offers and counteroffers at each 

step, based on different factors, such as the time, the state of a resource in the 

environment or the concession behavior of the opponent. The use of utility functions 

allows the creation of different decision strategies, which take into account the 

deadline of an agent, or allow the adaptation to the behavior of the negotiation 

partner. A tactic is applied for one issue and determines the concession behavior of 

an agent for this issue. A tactic is modeled as a function mapping a mental state of the 

agent to the domain of issues. 

The negotiation framework proposed contains a multi-agent system in an open 

environment. The system contains buyer agents, seller agents and the facilitator, 

which can be used or not by the agents during negotiation. Due to the open 

environment, new agents can join or leave the system. An agent registers in the 

system when it enters, and the facilitator informs other agents regarding the new 

agent capabilities. 

 

6.2. Different Approaches using Strategies and Tactics 

 

A model of heuristic negotiation between self-interested agents, which allow 

bargaining over multiple issues of the negotiation object, comprise different types of 

negotiation primitives, including argument based ones, and a set of rules to conduct 

bargaining, is developed in [Florea A.M. and Kalisz E., 2007]. In order to negotiate 

strategically and to adapt negotiation to different partners, the agents use rewards 

associated to negotiation objects and the notion of regret to compare the achieved 

outcomes with the best possible results that could have been obtained both in a 

particular negotiation and in selecting the partner agent. In the current research, it is 

developed a set of strategies, based on weighted combination of tactics, which could 

be improved in time using reinforcement learning techniques. 
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A model of heuristic negotiation between self-interested agents is presented in 

[Florea A.M. and Kalisz E., 2008]. The model used negotiation objects and 

negotiation frames to separate the object of negotiation from the bargaining process. 

In order to negotiate strategically, the agents use a reinforcement learning algorithm 

applied on a specific state space representation of the negotiation process. The 

current approach has a different view upon learning, using the Q-learning algorithm 

in order to learn which weighted combinations of tactics used in the process of 

negotiation gives the highest reward and the best outcome for an agent. 

A model of self-interested agents, which captures the most relevant elements of 

agents’ behavior related to negotiation with others, is described in [Radu S. et al., 

2013 a]. The agents’ behavior is mainly motivated by the gain they may obtain while 

fulfilling their goals and negotiating. The current approach uses strategies and tactics 

in order to increase the agents’ utilities during negotiation. 

Bilateral multi-issue negotiation between self-interested agents is studied in 

[Fatima S.S. et al., 2006]. Three procedures are used for this process: package deal 

procedure, simultaneous procedure, and sequential procedure. Because of different 

results for each procedure, it is the system designer in charge with choosing which 

technique to employ in a given scenario. These procedures are used in the current 

approach, but the research is enhanced with different strategies.  

A formal model of negotiation between autonomous agents is described in 

[Faratin P. et al., 1998]. This develops a set of strategies and tactics that agents 

could use for creating requests, evaluate proposals, and offer counterproposals. The 

model describes certain tactics, which agents could employ during negotiation and 

shows how an agent could change in time these tactics to give different forms of 

strategic behavior. In the current approach, combinations of tactics are used, 

improved in time using the Q-learning algorithm. 

A negotiation strategy that describes a method to learn a model of opponent 

preferences in a single negotiation session is presented in [Hindriks K. et al., 2009]. 

The strategy should be efficient, transparent, maximizing the chance of an 

agreement and should avoid exploitation. In the current research, the negotiation 

strategy is enhanced with tactics and it is applied a learning algorithm to improve the 

final outcome. 

A model of iterative reasoning process is developed in [Wunder M. et al., 2011], 

by widening the notion of a level in a hierarchy from one single strategy to a 

distribution over strategies, leading to a more general framework of multi-agent 

decision making. The current approach combines strategies and tactics, in order to 

learn the best possible outcome. 
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6.3. Negotiation Model using Negotiation Primitives 

 

In this part, a set of negotiation primitives is presented, which are used in the 

negotiation model and refers to the agent x1, initiating a bargaining with agent x2, 

about a negotiation object NO. The proposed set of primitives are based on the ones 

developed in [Florea A.M. and Kalisz E., 2007], but are enhanced to deal with multi-

issue negotiation objects.  

A negotiation object is the range of features and issues over which agreements 

must be reached. The object of negotiation may be either a unique item, for example 

a good that the agent x1 wants from x2 or a service that agent x1 offers to x2, in case 

of single-issue negotiation. In case of multi-issue negotiation, the object is replaced 

by a negotiation package, composed of a set of negotiation objects.  

The negotiation primitives are: 

� REQUEST
1x
 x2 NO - agent x1 requests to agent x2 a negotiation object (NO) 

� ACCEPT
>< 21, xx
 < x2,x1> NO - agent x1 (x2) accepts the request of x2 (x1) for the 

NO 

� REJECT
>< 21, xx
  < x2,x1> NO - agent x1 (x2) rejects the request of x2 (x1) for the 

NO 

� MODREQ
>< 21, xx
 < x2,x1> NO1 - agent x1 (x2) modifies the request of x2 (x1) by 

changing some values of attributes and/or adding attributes to the NO to obtain NO1 

� PACK
1x
 x2 NO - agent x1 offers agent x2 a NO package to be negotiated, 

where the NO package is composed by a set of objects (NO1, NO2, …, NOj) 

� SIMULTAN
1x
 x2 NO - agent x1 asks agent x2 for a multi-issue simultaneous 

negotiation regarding the negotiation objects NO, where the NO is composed by a 

set of objects (NO1, NO2, …, NOj) 

With respect to each object NOi belonging to the set of the negotiation objects 

NO, the answer of the other agent could be either ACCEPT, REJECT or MODREQ, 

but these answers are received simultaneously from the other agent. 

� SEQUENTIAL
1x
 x2 NO - agent x1 asks agent x2 for a multi-issue sequential 

negotiation regarding the negotiation object NO, where the NO is composed by a set 

of objects (NO1, NO2, …, NOj) 

Regarding each object NOi belonging to the set of the negotiation objects NO, 

the answer of the other agent could be either ACCEPT, REJECT or MODREQ, but 

these answers are received sequentially from the other agent. 

The buyer agent has a strategy expressed in the form of rules. The predicates 

used to express this strategy are: 

a) Round – represents the negotiation round. When a buyer or seller sends a 

message and then receives another, the round is increased by one; 

b) Counterproposal – the proposal, which a buyer or seller receives from the 

other agent;  
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c) Gain – the gain of the buyer if he buys the product or the gain of the seller if 

he sells the product;  

Some examples of strategy rules are presented below, where the lowercase 

letters denote constants and the uppercase letters represent variables: 

R1: Round(r) ∧ Counterproposal(x2, c, NO) ∧ Gain(x1, g, NO) ∧  c  ≥ g → 

ACCEPT
1x
 x2 NO 

The rule R1 states that in the current negotiation round r, when the agent 

received a REQUEST
1x
 x2 NO message and the opponent’s counterproposal is 

greater than or equal to the agent desired gain, then the offer is accepted. 

R2: Step(s) ∧ Counterproposal(x2, c, NO) ∧ Gain(x1, g, NO) ∧ c < g → REJECT
1x
 

x2 NO 

The rule R2 describes the case in which opponent’s counterproposal is lower 

than the agent desired gain and the offer is rejected. 

These rules can be changed, to take into account the multi-issue negotiation. 

For instance, denoting by allj the situation when the negotiation is performed for all the 

negotiation issues included into the negotiation object, the rules R1 and R2 become: 

R1m: Round(r) ∧ allj Counterproposal(x2, c, NOj) ∧ Gain(x1, g, NO) ∧ c ≥ g → 

ACCEPT
1x
 x2 NO 

R2m: Round(r) ∧ allj Counterproposal(x2, c, NO) ∧ Gain(x1, g, NO) ∧ c < g → 

REJECT
1x
 x2 NO 

In what follows is described an approach to design automated negotiating 

agents, based on a modified alternating offers protocol, which is improved in time 

using a combination of tactics and reinforcement learning techniques. 

The current approach refers to multi-issue negotiation. There are three 

possibilities to negotiate multiple issues [Fatima S.S. et al., 2006]:  

a) Package deal – this approach puts together all the issues and discusses 

them together; 

b) Simultaneous negotiation – this involves settling the issues simultaneously, 

but independently of each other; 

c) Sequential negotiation – this involves negotiating the issues sequentially, 

one after another. 

The package deal gives the possibility to make tradeoffs between issues. These 

can be made when agents have different values for the issues. For instance, if there 

are two issues and one agent values the first more than the second, while the other 

values the second issue more than the first, then it is possible to make tradeoffs and 

to improve the utility of both agents with respect to the situation without tradeoffs. For 

the simultaneous and sequential approaches, the issues are settled independently 

and it is not necessary to have tradeoffs between agents.  

The multi-issue negotiation is done with respect to the three possibilities 

mentioned before: package deal, simultaneous and sequential negotiation.  
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In the negotiation model proposed, instead of an agent that learns in the whole 

space of negotiation strategies, the agent is focused on a set of useful strategies 

[Radu S., 2013 a]. These could be learned in time, such that to choose the best 

strategy for negotiating with a certain agent. There are a lot of factors which can 

influence the result of a negotiation strategy. These factors refer to the strategies of 

other agents, their constraints and preferences and other characteristics of the 

negotiated issues. 

The negotiation model contains three parts: the negotiation object, the decision 

making module and the negotiation protocol, as described in Figure 6.3. The 

negotiation object is characterized by a number of attributes for which the agents can 

negotiate.  

 

 
 

Figure 6.3. Negotiation Model Components 

 

The decision making module consists of an evaluation part, which estimates an 

offer received and determines an appropriate action, and an action part, which 

generates and sends a counteroffer or stops the negotiation. The evaluation part is 

based on the fact that different values of negotiation issues have different values for 

negotiating agents. The value of the negotiating issues is modeled using evaluation 

functions. The higher the value of an evaluation function for a certain value of an 

issue is, the more suitable is that value for a negotiating agent. 

An agent tries to identify the strategy, preferences and constraints of other 

agents. But learning a model of another agent is a complex task. Although an agent 

could have correct information regarding the current negotiation situation, it is 

necessary to find which strategy would best match the situation. It is necessary to find 

an approach in which agents learn what strategies to select by observing their own 

gains, as opposed to trying to model other agents and the state of the system. 

There are two types of strategies used by the agent. The first type is similar to 

the alternating offers protocol and it is a built-in strategy for the agent, which doesn’t 

use rules in it. The second one uses rules, in order to establish the best way to 

behave in the negotiation. These rules are stored in the internal knowledge base of 

the agent and are expressed in the form of first order logic predicates. 
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The built-in strategy is similar to the alternating offers protocol. It is supposed 

that the disagreement is the worst outcome, that is the agents prefer any outcome at 

least as much as disagreement. The agents try to maximize their utility and also the 

time is valuable, that is, for any outcome x and times t1 and t2, with t1<t2, the outcome 

x at time t1 has a higher utility than outcome x at time t2 for both agents. 

The agents’ offers are computed using a negotiation decision function, which 

determines an agent’s strategy. There are linear and non-linear strategies. The 

non-linear strategies can be divided in: conceder strategy, if the agent is willing to 

concede a lot in the first steps of negotiation, and boulware strategy, if the agent is 

willing to concede considerably only when the time deadline is close. In Figure 6.4 is 

presented the boulware and conceder strategies from the point of view of the seller 

agent and in Figure 6.5 the same techniques are illustrated from the point of view of 

the buyer agent. In these figures, the price and the time are displayed in a normalized 

manner. 

 

 
Figure 6.4. Seller Agent Strategies [Wooldridge M., 2009] 

 

 

 
Figure 6.5. Buyer Agent Strategies [Wooldridge M., 2009] 

 

The agent has the possibility to choose between four strategies: linear, 

conceder, boulware, and rule-based. For each negotiation round in which it is 

involved, the agent will have to compute the utility of the strategy used and will have 
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to fill in the values of the utility in a three dimensional matrix M, stored in its internal 

memory [Radu S. and Lungu V., 2013]. These values are used as references in future 

strategies. The attributes of the matrix are: the agent with whom the negotiation is 

performed, the utility of the strategy, the negotiation round, as presented in Figure 6.6. 

 

 
 

Figure 6.6. Utility Values Matrix Space 

 

When entering the negotiation process, the short-run goal of the agent is to fill in 

the utilities’ values in the matrix M. The long-run goal of the agent is to maximize its 

gain. For each agent xi, with which a negotiation is performed by agent a in n rounds, 

using a certain strategy Sk, the utility matrix is filled with the utility values gained by the 

negotiation, ua, of agent a. The overall utility gained after a negotiation is defined by:  
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If the negotiation is performed again with the same agent a, but now using 

another strategy, then the strategy which will be selected in a future negotiation will be 

the one that maximizes: 
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There are two research challenges in this approach. In the first one, there is an 

agent, which uses four types of strategies: linear, conceder, boulware and rule-based. 

The agent should learn in time which strategy will give the maximum utility. For doing 

this, the agent builds the matrix M and computes the sums mentioned before, and 

chooses the strategy which maximizes its utility. The second challenge refers to the 

case in which the opponent agent knows that the other agent uses one of the four 

strategies previously mentioned. The goal of the opponent agent is to find which is 

exactly the strategy used by the other agent and how to behave in such a situation. 

A possibility to identify the opponent agent strategy is to mirror each offer by 

making a similar one, which would implement a Tit-for-Tat like tactic. The idea of a 

Tit-for-Tat strategy in a multi-issue negotiation situation is to answer to the opponent 

offer with a symmetrical one. The rational negotiation strategies try to make 
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concession moves in a certain moment during negotiation. Using observations about 

the opponent agent’ strategy, it is estimated and used the suitable strategy for the 

agent. 

Suppose that b,s represents two negotiator agents: buyer and seller, and let N 

be the set of all possible outcomes. Each agent a ∈ {b,s} has an utility function ua 

which maps the outcomes to positive real numbers, that is ua:N→ℜ+. In the case of 

conflict, the utility is zero for both agents. In the first step, each agent has the 

possibility to offer, but in the next steps each agent has three options: to accept the 

opponent’s offer, to make a new offer xa, which is preferred by the other agent or to 

refuse and make a new concession and insist on its previous offer. The utility 

function is computed at the end of a negotiation, when a deal is obtained. Also, at 

each negotiation step, for each issue j, the buyer computes an evaluation function, 

which is defined on the set of current offers and takes values in the set of positive 

real numbers, that is +ℜ→PE
b

j : . The evaluation function computes the value, which 

agent b assigns for issue j, between the ranges of acceptable values. The evaluation 

function has higher values when the agent’s utility increases. The weight b

jw  

represents the relative importance of the issue j with respect to the negotiation 

process. Supposing that the weights are normalized (∑j 
b

jw =1), the agent’s evaluation 

function for a certain proposal x = (x1, …,xn)  combines the evaluation of different 

issues with respect to the issues’ value ranges:  

)()( j

b

jj

b
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b
xEwxE ∑=                         (6.3) 

For each issue j, the evaluation function associated to that issue )( j

b

j xE  is 

defined.  

 

6.4. Negotiation Model using Tactics 

 

A tactic is a function used to create a proposal value, for a certain object, based 

upon a given criterion. Tactics are the set of functions which determine how to 

compute the value of an attribute variable. Tactics can be mixed using different 

weights, showing the relative importance of each criterion in the strategy. The values 

that will be part of the proposal are computed by weighting the values proposed by 

each one of the tactics employed. Offers and counteroffers are generated by 

combinations of tactics. These generate an offer or a counteroffer for a single 

component of the negotiation object, using a single criterion. Different weights allow 

changing the importance of the criteria. For instance, when finding the values of the 

negotiation object, it could be more important initially to take into account the other 

agent’s behavior than the remaining time. In this case, the tactics which enhance the 

behavior of other agents are preferred with respect to the ones which compute their 

value on the amount of the remaining time. However, because the agents are 

adaptive, they could change in time the importance associated to different criteria. 
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For instance, the remaining time could become more important than the other agent 

behavior, when the deadline in which an agreement should be made is close. The 

strategy refers to the way in which the agent changes the weights of different tactics 

in time.  

For each object j∈[1,…,n] in negotiation, each agent has a range of acceptable 

values ]max,[min a

j

a

j , and a scoring function ]1,0[]max,[min: →a

j

a

j

a

jV , which gives the 

score the agent a has to the value of the object j, in the range of its acceptable 

values. The higher the score, the better the agent’s utility. Agents assign a weight 
a

jw  to each negotiation object, which represents its relative importance. Supposing 

that the weights are normalized, that is ∑
=

=
n

j

a

jw
1

1 , the agent’s scoring function for a 

given proposal x=(x1,…,xn) combines the scores of different objects defined by the 

objects’ value domain: 
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The tactics are adopted from [Faratin P. et al., 1998]:  

1) time-dependent tactics, in which agents change their proposals when the 

deadline is close. If an agent has a time deadline in which an agreement should be 

concluded, these tactics model the fact that the agents concludes more rapidly, as 

the deadline approaches; 

2) resource-dependent tactics, in which agents change their proposal with 

respect to the amount of available resources. These tactics model the necessity to 

reach an agreement, when there are limited resources. The functions for these 

tactics are similar to the time dependent functions, except that the domain of the 

function represents the quantity of resources available, instead of the remaining time; 

3) behavior-dependent tactics, in which agents try to simulate the behavior of 

their opponents. The agent may choose to use imitative tactics that protect it from 

being exploited by other agents. In this case, the counterproposal depends on the 

behavior of the negotiation opponent. 

Because the agents may want to consider more than one criterion to compute 

the value for a single issue, the generation of counterproposals is modeled as a 

weighted combination of different tactics defined upon the set of criteria. The values 

computed for different issues are the elements of the counterproposal. Suppose that 

an agent wants to counterpropose, taking into account two criteria: the remaining 

time and the previous behavior of the opponent. In this case, it can select two tactics: 

one from the time-dependent part and one from the behavior-dependent part. Both of 

these tactics give a value to counterpropose for the issue negotiated. This value is 

the weighted combination of the two previous values.  

In time-dependent tactics, the main factor used to decide which value to offer 

next is the time. These tactics consist in changing the acceptance value for an issue, 
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depending on the remaining negotiation time. There are two different tactics in this 

approach. The boulware tactics maintain the offered value until the time is almost 

exhausted, and then it concedes up to the private value of the agent. The conceder 

tactics are used by agents, which go to their private value very quickly. 

The resource-dependent tactics enhance the time-dependent ones. Time-

dependent tactics can be seen as a kind of resource-dependent tactic, in which the 

only resource considered is the time. There are two types of resource-dependent 

tactics: dynamic-deadline and resource-estimation. Dynamic-deadline tactics 

represent a heuristic about how many resources are in the environment. When the 

resources are exhausted, the agreement must be reached. A resource to be modeled 

is the number of agents negotiating with a given agent and how interested they are to 

reach agreements. On the one hand, the greater the number of agents which are 

negotiating with an agent for a certain good or service, the lower the pressure on the 

agent to reach an agreement with any particular agent. On the other hand, as the 

negotiation lasts longer, the pressure on the agent to reach an agreement increases. 

The resource-estimation tactics generate counterproposals depending on how a 

particular resource is being consumed. The agent should become more conciliatory, 

as the quantity of resource decreases. When the quantity of the resource is almost 

zero, the agent concedes up to its private value for the issue negotiated. When there 

are a lot of resources, a more boulware behavior is expected.  

The behavior-dependent tactics compute the next offer based on the previous 

attitude of the negotiation opponent. The main difference between the tactics in this 

category is in the type of imitation they perform. One category imitates proportionally, 

another in absolute terms, and the last one computes the average of the proportions 

in a number of previous offers. In relative Tit-for-Tat, the agent replicates, in 

percentage terms, the behavior that its opponent performed some steps ago. In 

random absolute Tit-for-Tat, the behavior is the same as in relative Tit-for-Tat, but in 

absolute terms. In the averaged Tit-for-Tat, the agent computes the average of 

percentages of changes of its opponents’ history, when determining its next offer. 

A tradeoff tactic finds a proposal with the same utility as the previous one 

offered, but expecting to be more acceptable for the opponent agent. For the buyer 

agent b, which receives a proposal y from the seller agent s, the tactic allows agent b 

to choose a new proposal x’ to offer to agent s, which fulfills two conditions: the new 

proposal x’ has the same utility as the offer previously proposed x, and the new 

proposal x’ is the most similar to the offer y proposed by b. 

The tactics give a possibility to adapt to different situations, considering certain 

resources. The initial proposal has an important role in negotiation. Choosing the 

initial value could be learned in time. Using different weighted combinations of 

tactics, in order to find the suitable one in each negotiation, gives the agent an 

adaptive behavior for obtaining increased gains.  

The current approach uses a reinforcement learning algorithm to combine 

tactics and to learn good outcomes. In particular, it is used a version of the Q-
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learning algorithm [Srivihok A. and Sukonmance P., 2005]. The Q-learning 

algorithm estimates the value of executing an action in each state. Actions are 

vectors of weighted combinations of tactics, used in the process of negotiation. The 

Q-learning algorithm converges to the optimal combinations of state-action pairs, 

after each action has been tried enough times. The ranking is due to rewards by 

matching actions to certain states. The agent performs the next steps for each issue: 

1. determines the current state for each issue; 

2. chooses a weighted combination of tactics; 

3. uses this weighted combination of tactics for the next proposal; 

4. computes the rewards obtained. 

When the Q-values associated with each state-action pair are updated, this 

means rewarding the actions which give good results. The Q-learning formula used 

for updating is: 

)],()','(max*[),(),( asQasQrasQasQ a −++= γα                            (6.6) 

where α is the learning rate, r is the reward obtained by executing action a in state s, 

γ is the discount factor, maxaQ(s’,a’) is the maximum Q value for the actions in the 

next state. 

The Q-learning algorithm is applied on tactics. In this case, the action a 

represents a vector of weights of tactics, which could be applied in a given state s. 

The Q-learning chooses, for each issue, the highest scored weighted combination of 

tactics. Because the environment is dynamic, the same action may not lead to a 

desired output, when applied in the same state.  

The actions which result in deals are rewarded with a function depending on the 

deal values utility and on the average utility. This allows determining the deals 

corresponding to higher utilities. The failure of a goal has a negative reward on the 

action performed.  

The action selected to be performed is the action with the highest Q-value. In 

dynamic environments, actions do not give always the same results. In order to obtain 

a high reward, the agent should prefer actions that were considered good in the past, 

but in order to find them, it must try actions that were never selected before.   

This leads to the tradeoff between exploitation and exploration. In order to fulfill 

this tradeoff, two policies are possible: the ε-greedy approach, which selects 

uniformly, with a probability ε, a non-greedy action; the softmax policy, which uses a 

given degree of exploration T, for choosing between non-greedy actions, while 

considering their ranking.  

It is better that the agent does not prefer the first action leading to a deal, such 

that the agent increases the utility obtained in deals. Before the agent tries enough 

actions, it has an incomplete knowledge of the environment.  The agent should know 

what action to perform, for obtaining a deal, but not what the best actions are. In order 

to put the agent to try all the actions available before preferring the best ones, it is 

used a reinforcement learning technique called optimistic initial values. It means that 
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all the Q-values associated with the actions are initialized to a value greater than the 

expected reward. This measure increases the initial action exploration, because the 

Q-values are updated to lower values. 

In this approach, it is used the ε-greedy exploration, which selects a random 

action with probability ε and the best action, which is the one with the highest Q-value, 

with probability 1-ε. In this way, it can be seen as defining a probability vector over the 

action set of the agent for each state. Suppose that z=(z1, z2, …,zj) is one of these 

vectors. The probability zi of doing action i is given by: 
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where n is the number of actions in the set. 

 

6.5. Simulation Scenarios Discussion 

 

The multi-agent system is tested in a B2B framework, which is defined in a 

similar manner to the TAC-SCM (Trading Agent Competition – Supply Chain 

Management) environment [Groves et al., 2009]. The settings consist of agents that 

buy components from other agents, assemble these components and sell the 

assembled results to customers. All the three types of agents are artificial in the 

environment. The agents encountered uncertainty and incomplete information. 

Different initial values are used, to obtain a variety of strategic behaviors. Also, the 

agent is adjusted with the initial parameters, which produce good performance, 

according to the measurements. 

The agents assembling the components may use reinforcement learning and 

different strategy rules, or, alternately, the tactics types. The assembling agents are 

behaving in such a way as to obtain a maximum gain. The goal of the agents is to 

forecast the demand, which will give the highest overall profit. Depending on the 

behavior of other agents, the agent focuses on exactly enough demand, in order to 

achieve its goals. To this aim, the agents use behavior-dependent tactics, combined 

with time-dependent tactics, which are further combined with resource-dependent 

tactics. 

A prototype of the system is implemented in Jade, in an environment in which 

there are n assembling agents, m supplier agents and p customer agents. The values 

for n and p are varied between 2 and 5 agents, and m between 2 and 10 agents. The 

best behavior and output is obtained if the agents use negotiation rules and a 

combination of tactics. 

Many computation parameters kept in the state have unknown factors and 

many approximations are done. The available capacity of each seller is 

approximated, because it helps to determine the profitability of a given part, produced 

by a certain seller. The approximation is done by estimating three other parameters, 

which are relevant to that seller: the delay of the seller when the previous component 

if Q of i is the highest       (6.7) 

otherwise  
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is delivered, the prices offered by that seller for previous components, the estimation 

of partial offers, given by that seller until now. Then, the amount of available 

computers in the inventory is approximated, because it is not profitable to produce 

computers out of components in the inventory, if there are no pending orders. 

However, the amount of computers that can be delivered to buyers is estimated, 

according to the components in the inventory. In order to do that, an algorithm that 

converts a collection of components to computers is used. The algorithm is greedy, 

trying to construct as many computers as possible, starting with the most valuable 

ones. Each computer received a grade, according to the relevant information. For 

instance, if there is an increased demand for a certain computer, than that computer 

receives a better grade. When determining the grades, the computer type is also 

taken into account. 

Requesting more components doesn’t guarantee that it is possible to obtain 

them. Other agents could have higher priority or some sellers couldn’t handle the 

demand. Trying to obtain more customers’ orders is challenging, when competing 

against good opponents, which can offer better prices. The length of the simulation 

changes the suitable tactics. The agent should have a plan for the long run, 

constructing its inventory to last for the whole simulation.  

The chosen strategy coordinates decisions. An agent’s profit can be influenced 

by the market competition. For instance, if other agents are focusing on a large part 

of the market, then an agent should decrease its prices in order to reach its target. 

The relative percentage of each product, which is the product mixture, used to 

fulfill the goal, is easily changed after each negotiation round, based upon the profit 

of each product type. The exact percentage of each product in the mixture is equal to 

the percentage of the agent’s total profit it had on the previous negotiation round. 

When the profit of a product increases or decreases, with respect to the profit of 

other products, then its percentage in the product mixture increases or respectively 

decreases. 

In the case when a certain product has no profit, the product mixture is 

computed in a similar manner. But the strategy is changed, such that the quantity of 

the product which has no profit is decreased. This makes the demand to decrease. 

Eventually, the agent changes its heuristic in order to finish the simulation with small 

stocks in the inventory. 

The agent learns the combination of tactic weights for a negotiation round. 

During transitions between states in which the agent is bargaining, the reward is set to 

zero for each issue’s weighted combination of tactics. This doesn’t affect the conceder 

or boulware behavior. For a negative reward, the agent has fewer proposals to obtain 

a deal. When reaching a state representing a deal, the reward is equal to the sum of 

the agent’s utility for each issue. The deal configuration influences the reward. If a 

deal is not reached, it means the weighted combination of tactics is not good enough. 

Also, the multi-agent system is tested in a multi-issue negotiation, which 

simulates the negotiation between a telecommunication service provider and 
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customers. The telecommunication company offers services like: Internet connection, 

short and long distance phone calls and TV cable channels. In this case, there are 

three issues which could be negotiated: Internet services, phone calls services and 

TV services. There are different packages, which include different types of services: 

a) the Internet service has different characteristics, like: bandwidth available, 

wireless capabilities, firewall protection; 

b) the phone service offers: short distance calls, long distance calls, and 

international calls; 

c) the TV cable service offers different channels, which include national 

channels, international channels, film channels, music channels, entertainment 

channels.  

In the negotiation with a telecommunication company, in the case of the 

package deal negotiation, if the Internet service has a weight of 0.5, the phone 

service has a weight of 0.2 and the TV cable service has a weight of 0.3, then the 

evaluation function is computed as: 
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6.6. Conclusion 

 

This chapter presented how an agent can learn to improve its negotiation 

strategy. The idea is that the agent has a set of useful negotiation strategies, from 

which to choose the best one. The space of all possible negotiation strategies is very 

big. Restricting the agent’s behavior to a relevant set of negotiation strategies reduces 

the space the agent needs to learn.  

The chapter showed that it is possible to design agents with different negotiation 

strategies that have good performances in dynamic environments. The knowledge 

obtained in past negotiations can be an important advantage in certain scenarios.  

The package deal is the optimal procedure for each agent. However, the 

package deal could have a higher complexity than the other two procedures from the 

computational point of view and gives Pareto optimal results, as opposed to the 

simultaneous and the sequential procedures.  

The negotiation primitives that are proposed may be extended to take into 

account arguments. Each argument type defines preconditions for its usage. If these 

are fulfilled, then the agent can use the argument. The arguments types that are 

foreseen are similar to those presented in [Kraus S. et al., 1998]. The selection of 

arguments should be also coupled with the utility function of the agent. 

A future research direction is to use anticipatory genetic algorithms for learning 

tactics behaviour. This approach will extend the work on anticipatory genetic 

algorithms done in [Mocanu I. et al., 2010].    
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Chapter 7. A Negotiation Model with BDI Agents 
 

This chapter develops a conceptual model of self-interested agents in a multi-

agent system, which takes into account several facets of agent knowledge and 

behavior: abilities, history of relations with other agents, cooperation and negotiation 

options. This framework is based on the BDI (Beliefs-Desires-Intentions) model and 

uses rules for encoding the negotiation strategy. The inference rules that guide 

negotiation are based on price. This conceptual model considers several profiles, 

providing information about the object and the type of the current cooperation request 

and on the cooperation history. The gradually refinement of the cooperation profiles 

is seen as a form of agent learning. The model allows the definition of several types 

of agents, by changing their behavior, according to the desire to develop good 

cooperation relations with other agents in the system or the desire to obtain the 

maximum gain. This model also introduces the notions of utility for negotiation 

objects and for the roles the facilitator has in the negotiation process. 

 

7.1. An Overview of the JADE Platform 

 

JADE (Java Agent Development Framework) is a software environment 

implemented in Java language [Tudose C. et al., 2013], aiming at the development of 

multi-agent systems that comply with FIPA (Foundation for Intelligent Physical 

Agents) specifications [Bellifemine F. et al., 2007]. JADE provides many of the basic 

classes required for agent based software development. Some of them are: 

- Agent; 

- Behaviour; 

- ACLMessage; 

- Ontology. 

JADE simplifies the agents’ development, while ensuring standard compliance 

through a comprehensive set of system services and agents. JADE provides the 

following components for agent’s management [Bellifemine F. et al., 2007]: 

- AMS (Agent Management System), which besides providing white page 

services, as specified by FIPA, it also plays the role of authority in the platform; 

- DF (Directory Facilitator) provides yellow pages services to other agents; 

- ACC (Agent Communication Channel), which provides a Message Transport 

System (MTS) and is responsible for sending and receiving messages on an agent 

platform. 

Eclipse is the IDE (Integrated Development Environment) commonly used to 

develop the JADE application. It is easy to integrate Eclipse with JADE, so that when 

the agent application is executed, it runs JADE and deploys the agent into the 

runtime environment. 
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In JADE, a behavior represents a task that an agent can carry out. Each such 

behavior class must implement two abstract methods. The action() method defines 

the operations to be performed, when the behavior is in execution. The done() 

method returns a boolean value, to indicate whether or not a behavior has completed 

and must be removed from the pool of behaviors an agent is executing. To make an 

agent execute the tasks represented by a behavior object, the behavior must be 

added to the agent by means of the addBehaviour() method of the Agent class. 

The JADE platform provides a yellow pages service which allows any agent to 

dynamically discover other agents at a given point in time. A specialized agent called 

the DF (Directory Facilitator) provides the yellow pages service in JADE. Using this 

service any agent can both register (publish) services and search for (discover) 

services [Bellifemine F. et al., 2007]. 

Agent communication is a fundamental feature of JADE and is implemented 

with respect to the FIPA specifications. The JADE communication paradigm is based 

on asynchronous message passing. Each agent is equipped with an incoming 

message box and message polling can be blocking or non-blocking. A message in 

JADE is implemented as an object of the jade.lang.acl.ACLMessage class, which is 

then calling the send() method of the Agent class. 

One of the most useful tools to use when developing a multi-agent system with 

JADE is the Sniffer Agent. This is another agent built into JADE, which allows the 

user to see the message interactions taking place in real time. The arrows show the 

type of message, the sender, the receiver and when it was sent within the lifetime of 

the system. If more information is required about any of the ACL messages, the user 

can double click the specific arrows and full details are displayed. 

 

 
 

Figure 7.1. Screen Capture Showing the Multi-Agent System in Action 
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Figure 7.1 represents a screen capture of the JADE Sniffer Agent for the multi-

agent system implemented, showing the messages exchange between agents during 

a many-to-many negotiation. 

 

7.2. Agent Model 

 

A model of self-interested agents, acting in a multi-agent system, is described in 

this chapter. The system is inspired by the BDI approach. More details about the BDI 

model are given in the next paragraphs. 

Beliefs represent knowledge on the environment and are a way of representing 

the state of the world. Beliefs are important, because the environment is dynamic and 

the system has only a local view of the world. As beliefs represent possibly imperfect 

information about the environment, the semantics of the belief component should be 

in harmony with belief logics, even though the computational representation is not 

symbolic or logical. 

Desires or goals are another component of the system. A goal represents some 

desired final state. In computational terms, a goal may be the value of a variable, a 

structure, or a symbolic expression in some logic. 

Intentions represent committed plans or procedures. In computational terms, 

intentions may be a set of executing threads in a process, which can be interrupted 

when receiving feedback from the possibly changing environment. 

The main parts of a system designed for a dynamic and uncertain environment 

should contain representations of beliefs, desires, intentions, and plans, that is a BDI 

agent [Georgeff M. et al., 1999]. A BDI agent has a set of beliefs (B), desires (D), and 

intentions (I). A BDI agent has a set of percepts p, by means of which it recognizes 

an event, which can be either a state change or an action occurrence. The percept 

obtained from the environment may cause a change in beliefs, leading to a belief 

revision process, as presented in Figure 7.2. 

The reasoning components of a BDI agent are denoted by functions: 

a) brf: B××××p →→→→ B is the belief revision function, where p represents the set of 

percepts; 

b) options: B××××D××××I →→→→ I is the function which weights competing alternatives to 

achieve the desires and decides the course of action to be taken; 

c) plan: B××××I →→→→ ΠΠΠΠ  is the function that structures intentions into plans. 

The developed model takes into account different profiles, providing information 

about the object and the type of the current negotiation request and of the previous 

negotiations. This model presents the notions of utility for negotiation objects and for 

the roles that the facilitator could have in negotiation. It is supposed that the agents 

have consistent desires, so these may be considered equal to their goals. 

When a goal is fulfilled, the agent develops one or more plans for achieving it. 

Planning refers at constructing sequences of actions. The agent itself could perform 

part of these actions, while others are not part of its abilities. So, the agent has to 
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negotiate the actions with other counterparts in the system. The agent could also 

decide to delegate to others, parts of the actions it is able to perform. So, the agent 

includes the actions in a plan in two distinct classes: "intentions-to" (actions it is 

able and willing to perform) and "intentions-that" (actions the agent does not know 

how or does not want to perform). The later is the negotiation object with the others 

in the system. 

An agent has a set of inference rules for realizing the set of goals, for 

updating the mental state and for plan generation. After the plan creation, the 

agent analyses the intentions for realizing the plan and identifies the intentions-to 

and intentions-that, by investigating its abilities. In order to fulfill the intentions-

that, the agent has to negotiate their achievement with the other agents in the 

system. For having an efficient negotiation, the agent is endowed with a set of 

negotiation inference rules and also for the evaluation of the cooperation profile of 

other agents, another set of inference rules.  

 

 
Figure 7.2. The BDI Agent Model [Shoham Y. and Leyton-Brown K., 2009] 
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Negotiation is based on the gain the agent obtains from fulfilling its goals, but 

negotiation criteria contain also the cooperation profile the agent has developed to 

describe previous interactions with other agents in the system. The cooperation 

profile, which is always updated, may be considered as part of the agent’s beliefs 

about the others in the system.  

Each agent has different reasoning capabilities, described by inference rules. 

These are updating the beliefs about the agents, are constructing efficient plans for 

goal fulfillment, and are conducting successful negotiation. An agent should have 

details on others’ identity and abilities. It does not need to keep information on all the 

agents, but only on those it is interacting with, successfully or not, along its activity. In 

the system there is the facilitator, which supports interactions between agents.  

All agents start their activity by a registration message that informs the facilitator 

on their names and on the actions they can perform or want to receive. An agent can 

address the facilitator for different purposes: extension of its beliefs about agents 

able to perform a given action, selection of the best candidate to perform the 

requested action or negotiation with other agents. The facilitator has a selection role 

and also a negotiation role. During negotiation, the facilitator applies a protocol of 

type Contract Net, as opposed to agent negotiation, in which the negotiation 

protocol and strategy may be defined in different ways. 

The control structure of the agent has two steps. The first step refers to the 

control of independent agent’s activities, while the second step concerns 

negotiation and reaching agreements. The first step contains goal selection, plan 

generation, and analysis of intentions in the generated plan. Each goal has an 

associated gain. The gain associated to intentions is used by the agent during 

negotiation. 

The agent analyzes if the actions are in the current range of its abilities. This 

analysis may conduct to a revision of plan generation or of goal selection. The 

agent identifies the intentions-to and the intentions-that. The intentions-that are 

analyzed to identify the agents which, according to the agent beliefs, are able to 

perform them. If there are intentions-that which cannot be satisfied by other 

agents, the agent will revise its plans or its goals.  

The first step of the agent’s control structure is shown in Table 7.1. 

The second step refers to negotiation, when the agent has identified 

intentions-that necessary to fulfill its goals. Now, the agent tries to reach an 

agreement with other agents to perform these actions. Negotiation may be 

between two or more agents. In case of multi-agent negotiation, the inference 

rules indicate the agent with which other agents negotiate.  

The second step of the agent’s control structure is in Table 7.2. 

The negotiation inference rules generate and select the suitable request and 

the agents to which the requests are sent. The answers to these requests are 

evaluated and, in case a counterproposal is received, the new conditions may 
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either be accepted, rejected with a justification, or subject to a new 

counterproposal.  

 

Table 7.1. Step I for Agent A 

 

Select goals {Goals} as a subset of {DesiresA} 

Generate plans for selected goals {PlansGoalA
} 

Analyse actions in {PlansGoalsA
} with respect to agent’s abilities {AbilitiesA} 

If there are intentions-that then identify the agents {i} with {Abilitiesi} able to 

do intentions-that 

If no such agents exist then revise {PlansGoalsA
} or {GoalsA} 

Perform all intentions-to 

 

Table 7.2. Step II for Agent A 

 

Generate and send requests for agents in {i} to do intentions-that 

Evaluate answers, accept them or generate counterproposals 

Evaluate incoming requests {RequestA} and generate answers 

Update the mental model and the cooperation profile 

Send answers to {RequestA} 

 

After each negotiation step, the mental model is updated. This refers to 

beliefs, intentions, goals, and to the cooperation profile of the agents with which it 

has been exchanging messages. 

An agent, as presented in the Figure 7.3, has an input communication 

component, which analyzes the incoming communication primitives. These contain 

usually a proposal, an acceptance or rejection of a previous proposal. A proposal is 

stored in the knowledge base of the agent for future reference. Proposals or 

rejections go into a primitive evaluation and generation component, which makes a 

decision about whether to accept, reject or generate a counterproposal, or even 

terminate the negotiation. Then, the output communication primitives component 

sends the response to the other agent. 

Also, an agent maintains a knowledge base of its mental attitudes, such as 

beliefs, desires, intentions [Wooldridge M., 2002], as well as models of the 

environment and the negotiation counterparts. This knowledge may be used in the 

evaluation and generation of proposals by judging the validity and worth of proposals 

made, for instance, by verifying whether proposals are actually feasible and do not 

conflict with the current observations of the environment. Moreover, the knowledge 

base is updated when new information arrives. 
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Figure 7.3. The Elements of a Negotiating Agent 

 

Cognitive aspects associated to negotiation activities should be taken into 

account. One feature is the reflection capacity, because in the end of each 

bargaining, it would be important for an agent to evaluate how efficient was the 

interaction with other agents, identifying the positive points and the negative ones, by 

computing the gain associated to the transaction. Another feature is the empathy, 

which means the attempt to understand the real necessities or preferences of other 

agents, in order to decrease the divergences between them. This is fulfilled by 

changes in the cooperation profile, during the negotiation with a certain agent. 

Also, the agent has the capacity to do many negotiations at the same time, 

because it encounters different agents, which have different proposals.  

The system has an open and flexible architecture, where agents can be viewed 

as sellers and buyers in parallel negotiations. A negotiator is an autonomous entity. 

The agent registers in the negotiation environment and also informs about the 

services supplied, in case it is a seller. 

The JESS engine represents the agent’s inference engine, which stores the 

knowledge base of the business domain and also contains the negotiation strategies 

for the agent, the facts and the concepts of bargaining.  
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JADE is used as an infrastructure for building the multi-agent system and JESS 

as a mechanism to provide the inference engine for the agents that are negotiating. 

The negotiation strategies show how the agent reasons at each moment of the 

bargaining. Each agent possesses different negotiation strategies, encoded in rules. 

When an agent receives proposals, it filters the best proposal from its point of 

view and chooses it. The use of rules and the learning techniques for the negotiation 

strategies make the agent more flexible to changes that can occur in its strategies or 

objectives. This can happen for several reasons, like changes in the business 

domain, the necessity to consider new information related to the business or the 

necessity to act on new business domains. 

The reasoning model of the agent is presented in Figure 7.4. The agent first 

generates its desires, based on its beliefs and individual internal motivations. Then, it 

generates possible plans for achieving its desires. It selects the best plan, based on 

some appropriate criteria, which becomes an intention. If the agent can execute its 

intention on its own, then it would do so. Otherwise, if the agent needs to negotiate 

with another agent in order to contract out parts of its intention, it would initiate a 

negotiation dialogue with a certain agent. If the negotiation results in a deal, then the 

agent can execute its intention. The agent ends the negotiation if it decides that no 

deal is reachable. Until then, during the negotiation process, the agent may update 

its beliefs and planning knowledge, as a result of receiving new information, which 

updates its desires and intentions.  

 
Figure 7.4. The Reasoning Model of the Agent 

 

7.2.1. Automated Negotiation Design 

 

The agents that appear in the negotiation process are the buyers and the 

sellers. The negotiation mechanism is based on the following ideas: 

a) The buyers and the sellers are represented by software agents; 

b) The negotiation strategy of the agents is expressed using rules;  

c) The knowledge base consists of a set of facts and a number of rules;  
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d) Both buyers and sellers use the same negotiation protocol;  

e) When an agent receives an offer from another agent, it stores the new facts 

in the knowledge base. Consequently, the control part activates the inference engine, 

which in turn updates the knowledge base with the inference result, according to the 

strategy rules. Finally, the control part retrieves the result and presents it to the 

communication part of the agent.  

The architecture of a negotiating agent is presented in the Figure 7.5. 

 
Figure 7.5. The Negotiating Agent Architecture 

 

The three types of agents that are identifiable in the system are: the buyer, the 

seller, and the facilitator. This has a secondary role and the agents use it to find each 

other and to register what goods or services they want to buy or sell. The 

requirements of the buyer are represented using rules and priorities. These include 

both mandatory requirements that must be fulfilled, and also preferences, which can 

be used to select among the offers possible to be accepted. These requirements are 

communicated to the facilitator agent by the buyer agent. When the facilitator 

receives a request, it matches this to the offers, by running the request specification 

against the available offers. Then, the requester’s preferences are applied to select 

the most suitable one, which is then presented to the agent making the request.  

The multi-agent system architecture is presented in Figure 7.6. 
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Figure 7.6. Multi-Agent System Architecture 

 

7.2.2. Agent Control Structure 

 

The control structure of the agent is composed of two phases. The first phase is 

dedicated to the control of agent’s activities which doesn’t depend on other agents, 

while the second phase is dedicated to negotiation and reaching agreement. The 

steps for the first phase are: 

1. Generate desires, based on beliefs; 

2. Generate candidate plans for achieving desires; 

3. Generate intention, as the best possible plan; 

4. If it has capabilities then execute intention; 

5. If it hasn’t capabilities then negotiate. 

 

The steps for the second phase are: 

1. Receive offers from other agents; 

2. Update beliefs and planning knowledge; 

3. Update desires and intentions; 

4. Generate counteroffers and send them to the other agents. 

 

In the implemented system, there is a base agent class, extended by buyer 

and seller agents, which contains common functions used by all agents. The main 

features of this class are described in the following steps. 

1. Read negotiation object; 

2. Check if the current agent has products with the desired attributes; 

3. If there are no products in stock then REJECT-PROPOSAL; 

4. Check message type; 
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5. If message=CALL-FOR-PROPOSAL (only sellers receive CFP) then get all 

products of that type; 

5.1. If there are less products than the other agent wants to buy then 

REJECT PROPOSAL; 

5.2. If there are offers then send them; 

6. If message=INFORM (only buyers receive INFORM) then  

6.1. If multiple products received then find which one is the best; 

       else check if the attributes’ values match the request; 

7. If message=PROPOSE then process offer; 

8. If message=AGREE then  

8.1. Add information to statistics file and compute gain; 

8.2. Remove product from stock; 

8.3. Collect statistics when negotiation ends; 

9. If message= REJECT-PROPOSAL then end negotiation with reject. 

 

Each buyer agent does the following steps: 

1. When the buyer enters negotiation, send to all sellers REQUEST’s for the 

products of interest; 

2. Every 5 seconds the buyer agent sends to all sellers REQUEST’s for the 

products of interest; 

3. Get the agents which sell what the agent needs to buy. 

 

Each seller agent performs the following steps, when processing an ACCEPT 

offer: 

1. Remove the product from the stock; 

2. If OK then send AGREE message to the buyer agent; 

3. Add the negotiation results to statistics and compute the gain; 

4. Remove the current bid from the list of open bids; 

5. Reject the offers of other agents interested in this product; 

6. Add to statistics file the result of the failed negotiations. 

 

7.2.3. Negotiation Protocol 

  

 The message exchange protocol employed by the agents is described in the 

following algorithm: 

1. When seller agents are initialized, they inform the DF which products they 

sell. The products are registered by an alias used both by buyers and 

sellers; 

2. Each 5 seconds the buyer agent (B) uses DF to find which agents are 

selling the first product on its list of products to buy (P1); 

2.1. If there are no agents selling product P1 then B tries to find the 

agents which sell product P2 and so on; 
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2.2. If B finds an agent (or more) which sells the product P1 then sends 

CFP; 

2.3. If no agents are found then B repeats the procedure after 5 

seconds; 

3. Seller agent (S) receives CFP message sent by B; 

4. S finds out all products having the requested alias; 

5. S composes an INFORM message and add to it all products found; 

6. S sends the INFORM message to B; 

7. B receives the INFORM message sent by S; 

8. B validates the product attributes if the validation rule file is defined for the 

product; 

9. After the products are validated then B chooses the best product; 

10. B sets the quantity of products it wants to buy; 

11. B computes the classification for S in a cooperation class; 

12. B uses the rules defined for the product business model to get the new 

price; 

13. B sends PROPOSE message to S; 

14. S receives PROPOSE message from B; 

15. S uses the rules defined for its product business model to evaluate the new 

offer;  

16. If S ACCEPTs the offer then 

16.1. S updates the product list; 

16.2. If stock > negotiated quantity then stock is decreased; 

               else product is removed; 

16.3. If there are enough products in stock to fulfill the request then S 

sends AGREE message to B; 

16.4. Add information to statistics file; 

16.5. Remove this bid from the list of open bids; 

16.6. Reject the offers of other agents interested in this product; 

16.7. Add to statistics file the result of the failed negotiations; 

16.8. End current negotiation; 

16.9. If there are no more products like this then S informs DF to 

deregister this product from its services; 

17. If S REJECTs the offer then negotiation ends; 

17.1. Statistics file is updated; 

18. If S has a new price then S sends PROPOSE message to B; 

19. B receives PROPOSE message from S; 

20. B uses the rules defined for its product business model to evaluate the new 

offer. 

 The multi-agent system collects the following information in the statistics file: 

a) Negotiation Statistics – for each agent, the system collects the total gain, 

the number of negotiations, and the total number of negotiation rounds; 
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b) Cooperation Statistics – for each agent and partner cooperation class, the 

system collects the number of negotiation rounds, the number of 

negotiations, the total gain, and the list of agents included in that 

cooperation class; 

c) Supply Demand Statistics – supply is computed as the sum of quantities of 

all seller products and demand is computed as the sum of quantities of all 

buyer products. Their ratio is computed by dividing the demand to the 

supply.  

 

7.3. Negotiation Objects Utility 

 

The negotiation object (NO) is described by a unique name and a number of 

attributes. Because negotiation is a dynamic process, implying changes of the initial 

conditions for the negotiation object, the NO structure is flexible. It allows not only 

changes of attribute values, but also the addition of new ones. A negotiation object 

has two classes of attributes: dynamic attributes, which can be negotiated, and fixed 

attributes, which cannot be modified during negotiation. Each attribute has a name, a 

value, which can be of different types, and a flag showing if the attribute may be 

modified or not during the negotiation process. Figure 7.7 displays the attributes 

associated to the negotiation object. 

 

 
Figure 7.7. The Attributes Associated to the Negotiation Object 

 

A negotiation object utility estimates how useful a NO is for the negotiator. It 

allows the agent to compare the initial NO, which has the utility +1, with modified 

negotiation objects, either by itself during negotiation, or by the other agent in 

counterproposals. During one or several negotiation steps, some attribute values of 

the initial NO are changed, and some attributes are added, as a result of appropriate 

requests. The utility of modified negotiation objects is less than the initial utility, 

because it is supposed that the negotiator has increased the value of NO, by adding 

an attribute to it. The formula to compute a negotiation object utility, UO(NO), is: 
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wi - weight of attribute i in the utility of NO; 

e - function to capture how the utility increases or decreases by adding an extra 

attribute; for decreasing the utility wj < 0. 

For an attribute that cannot be modified during negotiation, for instance, a time 

limit that cannot be extended due to plan constraints, wi will have a big negative 

value, so that the utility of the negotiation object becomes very low. Utility values 

under a given threshold leads to unacceptable objects and to a new step in 

negotiation or to an unsuccessful negotiation. 

 

7.4. Modeling the Facilitator 

 

An agent asking the facilitator should give information about the role it wants the 

facilitator to assume and about the requested action. This information must be 

expressed for both a selection and a negotiation role of the facilitator, and is 

contained in the request profile. The request profile has two components: 

a) the negotiation object profile, dealing with the action of interest; 

b) the facilitator role profile, referring to the role played by the facilitator in the 

multi-agent system. 

The negotiation object profile should be designed in relation to the facilitator role 

profile, providing the appropriate information, which is represented by the name of 

the NO, accompanied or not by a subset or by all of its attributes. 

The facilitator role profile refers to the role the facilitator is requested to have, 

but also to the content of the expected answer, that is the list of agents able to 

perform the requested action.  

The roles developed by the facilitator can be divided in: 

Role 1 - Inform Role - the facilitator is requested to inform the agent issuing the 

request which agents are capable to fulfill the action specified in the negotiation 

object profile. In this case, upon receiving the facilitator's answer, the source agent 

selects the agent/agents with which it would negotiate and start negotiation to reach 

agreement; 

Role 2 – Selection Role - the facilitator sends the request received from the 

source agent to other agents and returns the list of agents interested in starting 

negotiation, which will be conducted by the source agent itself; 

Role 3 – Negotiation Role - the facilitator has the selection role, assuming 

afterwards the negotiation, under the conditions reflected in the negotiation object 

profile. The negotiation could be of two different types: single-party, with the best 

candidate found, or multi-party. In the second case, the facilitator sends copies of 

the negotiation object profile to all agents able to perform the corresponding action. 

There is an answer reception deadline, as measured by a timer set when sending the 

copies. From the answers received in time, the facilitator selects the best one, and 

sends the result back to the source agent. 

The model used for selecting facilitator roles is described in Figure 7.8. 
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Figure 7.8. The Facilitator Roles 

 

7.5. Negotiation Primitives 

 

The negotiation process implies an exchange of information between agents A 

and B. The process is started by the negotiator A, which issues a request for a 

product, this being directed towards agent B. Agent B may accept the request, may 

reject it, or may modify the request by changing the value of an attribute of the NO, or 

by adding a new attribute. In the later two cases, agent A has to decide upon 

accepting, rejecting or modifying the counterproposal, based on its intentions, goals 

and built plans. Negotiation may continue by performing several consecutive steps, 

during which one or the other agent modifies the NO, until a deal has been 

concluded or the negotiation failed.  

The negotiation primitives used in this scenario are: 

a) (Request NO) - request of a negotiation object - the entire negotiation object 

structure is transmitted; 

b) (Accept name(NO)) - accept the request for the NO; 

c) (Reject name(NO)) - reject the request for the NO; 

d) (ModReq name(NO) assign(NO,X,V1)) - counterproposal to modify the 

current NO by assigning a different value V1 to attribute X; 

e) (ModReqAdd name(NO) assign(NO,Y,V) Yes/No) - counterproposal for 

modifying the NO by adding an extra attribute Y, with value V, subject to further 

modification (Yes) or not (No). 

The negotiation primitives to address the facilitator and to ask it for a particular 

role are the following: 

a) (Inform NO_profile one/all) - the agent asks the facilitator to inform it about 

one agent (one) or all the agents (all) capable of performing NO or interested in NO 

(facilitator's Role 1); in this case NO_profile = name(NO); 

b) (Select NO_profile one/all) - the agent asks the facilitator to find one or all 

the agents willing to start a negotiation on object NO (facilitator's Role 2); the 

NO_profile may contain only the name of the NO or the entire structure of the NO or 

a subset of that structure; 

c) (Negotiate NO_profile one/all) - the agent asks the facilitator to bargain the 
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negotiation object NO for it (facilitator's Role 3); the NO_profile contains the entire 

NO structure and, optionally, acceptable ranges for the negotiation object attributes; 

the facilitator will return the partner agent with which it concluded a successful 

negotiation or all the agents interested in NO. 

When performing a negotiation role, the facilitator has no information about the 

goals and plans of the agents on behalf of which it negotiates. So, it can’t use a 

heuristic mechanism to decide on the suitability of a received modified request or to 

issue other modified negotiation objects, as is the case of a negotiating agent. 

Instead, it uses the Contract Net Protocol to choose among bidding agents the one 

with the best offer, or the best offer within acceptable ranges, in case the NO profile 

specifies acceptable ranges for the NO’s attributes. If the negotiation object is a 

service offered by the agent, this indicates it is interested in all agents wishing this 

service with the “all” parameter in the Negotiate primitive. 

To implement the Contract Net Protocol, the facilitator uses the following 

negotiation primitives, which are understood by the other agents in the system: 

a) (Call NO) – the facilitator calls for proposals on NO and the entire NO is 

transmitted; 

b) (Bid NO) – the agents in the system are bidding for NO; 

c) (Allocate name(NO)) – the facilitator allocates the NO to a bidding agent and 

informs it accordingly; 

d) (Refuse name(NO)) – the facilitator informs a bidding agent that its bid is 

rejected. 

The negotiation primitives described above are included in a send or receive 

message: 

a) (Send Sender Receiver negotiation_primitive) 

b) (Receive Receiver Sender negotiation_primitive) 

Figure 7.9 displays the messages exchange using the Contract Net Protocol, 

between the initiator of the communication and the participant. 
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Figure 7.9. Messages Exchange using the Contract Net Protocol  

 

7.6. Multi-Agent Cooperation 

 

A negotiation object has a utility, computed at the end of a successful 

negotiation. The utility of a negotiation is defined using the following formula: 

                        (7.2) 

where w represents the weight of the negotiation length, 0< w ≤1, and Ns the number 

of negotiation steps. 

Each agent increases its knowledge on the system by taking into account the 

results obtained when trying to cooperate with other agents.  
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agent has gained by successful negotiations when the facilitator assumed role ri; 
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where NO'j is the modified object concluded by the deal established in negotiation j; 

3) fi  - the total number of unsuccessful negotiations with X under role ri  of the 

facilitator;  

4) GUf(ri) - global negotiation objects utility, intended to measure how much the 

agent has lost, because of unsuccessful negotiations with X, when the facilitator 

assumed role ri. 
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where NOj is the object negotiated in the unsuccessful negotiation j. 

The Figure 7.10 displays the individual cooperation profile (A,X) for agent A. 

 
 

Figure 7.10. The Individual Cooperation Profile for Agent A 

 

The choice of the facilitator's role in the negotiation process is based on 

additional information, concerning cooperation profile of a group of agents. Such 

profiles include the same fields as the individual cooperation profile described above, 

with the only difference that the first field is either all or a list of agent names. 

After each negotiation, an agent updates both the individual and the group 

cooperation profiles, as well as the cooperation profiles of the groups having as 

member the negotiation partner. When there are few interactions with another agent, 

the agent uses, most of the time, the group profile. As the number of interactions with 

an agent grows, it is guided by the individual profile or by a combination of the 

existing profiles. 

The facilitator's role is chosen according to the maximum gain principle. It 

requires to compute the gain obtained for each role ri, i=1,3: 

)()()( ifisi rGUrGUrGain −=                       (7.5) 

and choose the facilitator role that gives the maximum gain: 
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In the beginning, the agent does not have too much information in the 
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cooperation profiles and therefore it chooses one or the other roles of the facilitator 

arbitrarily. As interactions go on, information is accumulated in these profiles, quicker 

in the group cooperation profile and slower in the individual cooperation profile. The 

emergence of these profiles is seen as a form of agent learning, in which the agent 

learns how to deal with the group of agents and then gradually refines its beliefs 

towards dealing with individual agents. 

The tradeoff between exploitation and exploration should be considered. If after 

successful deals under role ri of the facilitator, the agent starts prefering only this role, 

then it may ignore some opportunities. Therefore, it may be added an exploratory 

coefficient ε, ε ≥1, and choose role rk such that: 

))Gain(r(ε k
k

∗max
                        (7.7)

 

 

7.7. Conclusion 

 

This chapter presented a conceptual model of cognitive agents in a multi-agent 

system, based on the BDI model, which considers goals equal to desires. While 

cooperating with other agents, an agent develops cooperation profiles, which are 

gradually refined, and uses them to control its behavior during negotiation. A 

particular agent, the facilitator, has a special role in the system. It is responsible with 

the management of agents and their related abilities.  

The contribution of this chapter is to provide a conceptual model for agent 

cooperation, based on several profiles. The request profile, with its two components, 

the negotiation object profile and the facilitator role profile, provides information about 

the object and the type of the current cooperation request addressed to the facilitator, 

while the cooperation profiles provide synthetic information on the cooperation 

history. The gradually refinement of the cooperation profiles is seen as a form of 

agent learning.  

This model also introduces the notions of utility for negotiation objects and for 

the roles the facilitator could play in the negotiation process. The later allow the use 

of a very simple selection mechanism for the facilitator's role.  

The developed model can be extended to take into account the emotions of the 

agents. In this case, the affective behavior of the agents can be designed using an 

emotional modeling architecture [Lungu V. et al., 2013]. This emphasizes emotional 

reasoning in the context of other forms of reasoning, specific to the BDI model. 

Also, the norms in the multi-agent system influence the agents’ reasoning. 

Norms have an important role in the agents’ society [Trascau M. et al., 2013]. They 

tend to be generally accepted by all the agents in the system, as the norms are the 

result of a complex process of emergence, which starts with the simplest interactions 

between agents and continues as the agents negotiate repeatedly in the framework 

of a certain scenario. 
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Chapter 8. Automated Negotiation for the Travel Agency 

Business Model 
  

8.1. Travel Agency Automated Negotiation Rules 

 

This chapter presents a business scenario involving a travel agency [Radu S., 

2013 b]. A person, represented by the buyer agent, wants to book the hotel for the 

holiday. The user has several criteria, each attribute having a certain priority for the 

user, upon which he/she decides the hotel to choose. The buyer agent representing 

the human should know the criteria and the user’s preferences. The criteria are 

presented in Table 8.1 and the priorities for the user are displayed, on a 1 to 10 

scale. These characteristics are encoded in the XML configuration file associated 

to this business model. The content of the configuration file is read into the 

application using the SAX (Simple API for XML) parser. SAX provides a mechanism 

for reading data from an XML file. 

 

Table 8.1. Attributes of the Travel Agency Negotiation Scenario  

 

Requirements for the Hotel Priority 

Location in the Town 10 

Close to the Railway Station 8 

Close to the Airport 5 

Close to the Bus Station 7 

Close to the Touristic Area 10 

Hotel Classification 9 

View from the Room 6 

Room Type (single, double, twin, appartment) 8 

Private/Shared Bathroom 10 

Balcony 7 

TV 8 

Wireless Internet Access 5 

Refrigerator 8 

Type of Meals  10 

Indoor/Outdoor Swimming Pool 8 

Gym Room 4 

Air Conditioning in the Room 10 

 

The rules are defined in Jess. There are several rules, upon which the 

negotiation is performed. There are different rules defined for each type of 

communication primitive. The higher priority is associated to the ACCEPT rules, the 

medium priority to the REJECT rules, and the lower priority to the PROPOSE rules. 

It follows a description of the negotiation rules for the travel agency negotiation 

scenario, first for the buyer agent, and then for the seller agent. This scenario 
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accomodates one-to-one, one-to-many, many-to-one, and many-to-many 

negotiations. 

For the buyer, regarding the ACCEPT communication primitive, there are the 

following rules: 

1) The buyer will accept an offer o from a seller, which is either non-cooperative 

or unknown, for a certain quantity of q items, each having the price between minPrice 

and maxPrice, which is less than q*(minPrice+maxPrice)/2; 
(defrule accept1 

 (declare (salience 100)) 

 (NegotiationObject {sellerClassification == "nc" || 

sellerClassification == "u"} 

    (currentOffer ?o) (quantity ?q)) 

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice)) 

 (test (<= ?o (* ?q (/ (+ ?minPrice ?maxPrice) 2))) => (add (new Offer 

"accept1" ?*accept*))) 

2) The buyer will accept an offer o from a seller, which is either slightly 

cooperative or cooperative, for a certain quantity of q items, each having the price 

between minPrice and maxPrice, which is less than q*(maxPrice-

(minPrice+maxPrice)/2); 
(defrule accept2 

 (declare (salience 100)) 

 (NegotiationObject {sellerClassification == "sc" || 

sellerClassification == "c"} 

    (currentOffer ?o) (quantity ?q)) 

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice)) 

 (test (<= ?o (* ?q (- ?maxPrice (/ (+ ?minPrice ?maxPrice) 2)))))  

     => (add (new Offer "accept2" ?*accept*))) 

3) The buyer will accept an offer o from a seller, which is either very cooperative 

or highly cooperative, for a certain quantity of q items, each having the price between 

minPrice and maxPrice, which is less than q*maxPrice; 
(defrule accept3 

 (declare (salience 100)) 

 (NegotiationObject {sellerClassification == "vc" || 

sellerClassification == "hc"} 

    (currentOffer ?o) (quantity ?q)) 

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice)) 

 (test (<= ?o (* ?q ?maxPrice))) 

     => (add (new Offer "accept3" ?*accept*))) 

4) The buyer will accept an offer o from a seller, which is either non-cooperative 

or unknown, for a certain quantity of q items, each having the price between minPrice 

and maxPrice, which is less than q*(minPrice+10); 
(defrule accept4 

 (declare (salience 100)) 

 (NegotiationObject {sellerClassification == "nc" || 

sellerClassification == "u"}  

    (currentOffer ?o) (quantity ?q)) 

 (Product (minPrice ?minPrice)) 
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 (test (<= ?o (* ?q (+ 10 ?minPrice))))    

     => (add (new Offer "accept4" ?*accept*))) 

5) The buyer will accept an offer o from a seller, which is either slightly 

cooperative or cooperative, for a certain quantity of q items, each having the price 

between minPrice and maxPrice, which is less than q*(minPrice+15); 
(defrule accept5 

 (declare (salience 100)) 

 (NegotiationObject {sellerClassification == "sc" || 

sellerClassification == "c"}  

    (currentOffer ?o) (quantity ?q)) 

 (Product (minPrice ?minPrice)) 

 (test (<= ?o (* ?q (+ 15 ?minPrice))))    

     => (add (new Offer "accept5" ?*accept*))) 

6) The buyer will accept an offer o from a seller, which is either very cooperative 

or highly cooperative, for a certain quantity of q items, each having the price between 

minPrice and maxPrice, which is less than q*(minPrice+20); 
(defrule accept6 

 (declare (salience 100)) 

 (NegotiationObject {sellerClassification == "vc" || 

sellerClassification == "hc"}  

    (currentOffer ?o) (quantity ?q)) 

 (Product (minPrice ?minPrice)) 

 (test (<= ?o (* ?q (+ 20 ?minPrice)))) 

     => (add (new Offer "accept6" ?*accept*))) 

For the REJECT communication primitive of the buyer, there are the following 

rules: 

1) The buyer will reject an offer for a negotiation object, received after a certain 

time threshold, which is defined as 5 seconds for each negotiation. The message 

Negotiation time elapsed is sent from the buyer to the seller; 
(defrule reject1 

 (declare (salience 50)) 

 (NegotiationObject (timeElapsed ?te)) 

 (test (>= ?te ?*maxNegTime*))     

     => (add (new Offer "reject1" ?*reject* "Negotiation time elapsed."))) 

2) The buyer will reject the current offer o for a certain amount of q items, 

received from a non-cooperative or unknown seller, having the price greater than 

maxPrice+20, when the negotiation step is greater than 5. The message Price too 

high is sent from the buyer to the seller; 
(defrule reject2 

 (declare (salience 50)) 

 (NegotiationObject {sellerClassification == "nc" || 

sellerClassification == "u"}  {step > 5} 

    (currentOffer ?o) (quantity ?q)) 

 (Product (maxPrice ?maxPrice)) 

 (test (>= ?o (* ?q (+ ?maxPrice 20))))    

     => (add (new Offer "reject2" ?*reject* "Price too high"))) 

3) The buyer will reject the current offer o for a certain amount of q items, 

received from a slightly cooperative or cooperative seller, having the price greater 
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than maxPrice+40, when the negotiation step is greater than 5. The message Price 

too high is sent from the buyer to the seller; 
(defrule reject3 

 (declare (salience 50)) 

 (NegotiationObject {sellerClassification == "sc" || 

sellerClassification == "c"} {step > 5}  

    (currentOffer ?o) (quantity ?q)) 

 (Product (maxPrice ?maxPrice)) 

 (test (>= ?o (* ?q (+ ?maxPrice 40))))    

     => (add (new Offer "reject3" ?*reject* "Price too high"))) 

4) The buyer will reject the current offer o for a certain amount of q items, 

received from a very cooperative or highly cooperative seller, having the price greater 

than maxPrice+60, when the negotiation step is greater than 5. The message Price 

too high is sent from the buyer to the seller; 
(defrule reject4 

 (declare (salience 50)) 

 (NegotiationObject {sellerClassification == "vc" || 

sellerClassification == "hc"} {step > 5}  

    (currentOffer ?o) (quantity ?q)) 

 (Product (maxPrice ?maxPrice)) 

 (test (>= ?o (* ?q (+ ?maxPrice 60))))    

     => (add (new Offer "reject4" ?*reject* "Price too high"))) 

For the COUNTERPROPOSE communication primitive of the buyer, there are 

the following rules: 

1) The price offered by a buyer, in the first negotiation step, for a certain 

quantity q of products, having the price between minPrice and maxPrice, to a non-

cooperative or unknown seller, is equal to q*(minPrice-5);   
  (defrule firstPrice1 

 (declare (salience 10)) 

 (NegotiationObject {step == 1} {sellerClassification == "nc" || 

sellerClassification == "u"} (quantity ?q)) 

 (Product (minPrice ?minPrice)) 

     => (add (new Offer "firstPrice1" (* ?q (- ?minPrice 5)) ?*propose*))) 

2) The price offered by a buyer, in the first negotiation step, for a certain 

quantity q of products, having the price between minPrice and maxPrice, to a slightly 

cooperative or cooperative seller, is equal to q*minPrice;   
(defrule firstPrice2 

 (declare (salience 10)) 

 (NegotiationObject {step == 1} {sellerClassification == "sc" || 

sellerClassification == "c"} (quantity ?q)) 

 (Product (minPrice ?minPrice)) 

     => (add (new Offer "firstPrice2" (* ?q ?minPrice) ?*propose*))) 

3) The price offered by a buyer, in the first negotiation step, for a certain 

quantity q of products, having the price between minPrice and maxPrice, to a very 

cooperative or highly cooperative seller, is equal to q*(minPrice+10);   
(defrule firstPrice3 

 (declare (salience 10)) 
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 (NegotiationObject {step == 1} {sellerClassification == "vc" || 

sellerClassification == "hc"} (quantity ?q)) 

 (Product (minPrice ?minPrice)) 

     => (add (new Offer "firstPrice3" (* ?q (+ 10 ?minPrice)) 

?*propose*))) 

The buyer agent has three different strategies used during negotiation. It can 

employ either the linear strategy, the conceder strategy or the boulware strategy. 

There are different rules used for each strategy. 

For the linear strategy of the buyer, there are the following rules: 

1) The buyer will increase its previous offer o with 2, to the non-cooperative or 

unknown sellers, when the negotiation step is greater than 1;  
(defrule newPrice4 

 (declare (salience 10)) 

 (NegotiationObject {step > 1} (previousOffer ?o) 

{sellerClassification == "nc" || sellerClassification == "u"}) (Strategy 

{strategy == ?*linear*})    

     =>(add (new Offer "newPrice4" (+ ?o 2) ?*propose*))) 

2) The buyer will increase its previous offer o with 4, to the slightly cooperative 

or cooperative sellers, when the negotiation step is greater than 1;  
(defrule newPrice5 

 (declare (salience 10)) 

 (NegotiationObject {step > 1} (previousOffer ?o) 

{sellerClassification == "sc" || sellerClassification == "c"}) (Strategy 

{strategy == ?*linear*})    

     =>(add (new Offer "newPrice5" (+ ?o 4) ?*propose*))) 

3) The buyer will increase its previous offer o with 6, to the very cooperative or 

highly cooperative sellers, when the negotiation step is greater than 1;  
(defrule newPrice6 

 (declare (salience 10)) 

 (NegotiationObject {step > 1} (previousOffer ?o) 

{sellerClassification == "vc" || sellerClassification == "hc"}) (Strategy 

{strategy == ?*linear*})    

    => (add (new Offer "newPrice6" (+ ?o 6) ?*propose*))) 

For the conceder strategy of the buyer, there are the following rules: 

1) The buyer will increase its previous offer o with 25, to the non-cooperative or 

unknown sellers, when the negotiation step is greater than 1 and lower than 6;  
  (defrule newPrice7 

 (declare (salience 10)) 

 (NegotiationObject {step > 1 && step < 6} (previousOffer ?o) 

{sellerClassification == "nc" || sellerClassification == "u"}) 

 (Strategy {strategy == ?*conceder*})    

     => (add (new Offer "newPrice7" (+ ?o 25) ?*propose*))) 

2) The buyer will increase its previous offer o with 35, to the slightly cooperative 

or cooperative sellers, when the negotiation step is greater than 1 and lower than 6;  
(defrule newPrice8 

 (declare (salience 10)) 

 (NegotiationObject {step > 1 && step < 6} (previousOffer ?o) 

{sellerClassification == "sc" || sellerClassification == "c"}) 
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 (Strategy {strategy == ?*conceder*})    

     => (add (new Offer "newPrice7" (+ ?o 35) ?*propose*))) 

3) The buyer will increase its previous offer o with 45, to the very cooperative or 

highly cooperative sellers, when the negotiation step is greater than 1 and lower than 

6;  
(defrule newPrice9 

 (declare (salience 10)) 

 (NegotiationObject {step > 1 && step < 6} (previousOffer ?o) 

{sellerClassification == "vc" || sellerClassification == "hc"}) 

 (Strategy {strategy == ?*conceder*})    

     => (add (new Offer "newPrice7" (+ ?o 45) ?*propose*))) 

4) The buyer will increase its previous offer o with 5, to the non-cooperative or 

unknown sellers, when the negotiation step is greater than 6;  
(defrule newPrice10 

 (declare (salience 10)) 

 (NegotiationObject {step >= 6} (previousOffer ?o) 

{sellerClassification == "nc" || sellerClassification == "u"}) (Strategy 

{strategy == ?*conceder*}) 

     => (add (new Offer "newPrice10" (+ ?o 5) ?*propose*))) 

5) The buyer will increase its previous offer o with 10, to the slightly cooperative 

or cooperative sellers, when the negotiation step is greater than 6;  
(defrule newPrice11 

 (declare (salience 10)) 

 (NegotiationObject {step >= 6} (previousOffer ?o) 

{sellerClassification == "sc" || sellerClassification == "c"}) (Strategy 

{strategy == ?*conceder*}) 

     => (add (new Offer "newPrice11" (+ ?o 10) ?*propose*))) 

6) The buyer will increase its previous offer o with 15, to the very cooperative or 

highly cooperative sellers, when the negotiation step is greater than 6;  
(defrule newPrice12 

 (declare (salience 10)) 

 (NegotiationObject {step >= 6} (previousOffer ?o) 

{sellerClassification == "vc" || sellerClassification == "hc"}) (Strategy 

{strategy == ?*conceder*}) 

    => (add (new Offer "newPrice12" (+ ?o 15) ?*propose*))) 

For the boulware strategy of the buyer, there are the following rules: 

1) The buyer will increase its previous offer o with 0.1, when the negotiation 

step is greater than 1 and the time elapsed in the negotiation is less than 4 seconds, 

represented by the global variable boulwareTime1;  
  (defrule newPrice13 

 (declare (salience 10)) 

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed < 

?*boulwareTime1*}) 

 (Strategy {strategy == ?*boulware*}) 

     => (add (new Offer "newPrice13" (+ ?o 0.1) ?*propose*))) 

2) The buyer will increase its previous offer o with 10, when the negotiation step 

is greater than 1 and the time elapsed in the negotiation is greater than 4 seconds, 

represented by the global variable boulwareTime1;  
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(defrule newPrice14 

 (declare (salience 10)) 

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed >= 

?*boulwareTime1*}) 

 (Strategy {strategy == ?*boulware*}) 

    => (add (new Offer "newPrice14" (+ ?o 10) ?*propose*))) 

3) The buyer will increase its previous offer o with 15, when the negotiation step 

is greater than 1 and the time elapsed in the negotiation is greater than 4.5 seconds, 

represented by the global variable boulwareTime2;  
(defrule newPrice15 

 (declare (salience 10)) 

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed >= 

?*boulwareTime2*}) 

 (Strategy {strategy == ?*boulware*}) 

    => (add (new Offer "newPrice14" (+ ?o 20) ?*propose*))) 

For the seller, regarding the ACCEPT communication primitive, there are the 

following rules: 

1) The seller will accept an offer from a non-cooperative or unknown buyer, for 

a certain quantity of q products, having the price between minPrice and maxPrice, 

with the price greater than q*(minPrice+maxPrice)/2; 
  (defrule accept1 

 (declare (salience 100)) 

 (NegotiationObject {buyerClassification == "nc" || 

buyerClassification == "u"} {step > 0} 

    (currentOffer ?o) (quantity ?q)) 

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice)) 

 (test (>= ?o (* ?q (/ (+ ?minPrice ?maxPrice) 2)))) 

     => (add (new Offer "accept1" ?*accept*))) 

2) The seller will accept an offer from a slightly cooperative or cooperative 

buyer, for a certain quantity of q products, having the price between minPrice and 

maxPrice, with the price lower than q*(maxPrice-(minPrice+maxPrice)/2); 
(defrule accept2 

 (declare (salience 100)) 

 (NegotiationObject {buyerClassification == "sc" || 

buyerClassification == "c"} {step > 0} 

    (currentOffer ?o) (quantity ?q)) 

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice)) 

 (test (<= ?o  (* ?q (- ?maxPrice (/ (+ ?minPrice ?maxPrice) 2)))) 

  => (add (new Offer "accept2" ?*accept*))) 

3) The seller will accept an offer from a very cooperative or highly cooperative 

buyer, for a certain quantity of q products, having the price between minPrice and 

maxPrice, with the price lower than q*maxPrice; 
(defrule accept3 

 (declare (salience 100)) 

 (NegotiationObject {buyerClassification == "vc" || 

buyerClassification == "hc"} {step > 0} 

    (currentOffer ?o) (quantity ?q)) 

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice)) 
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 (test (<= ?o (* ?q ?maxPrice))) 

    => (add (new Offer "accept3" ?*accept*))) 

4) The seller will accept an offer from a non-cooperative or unknown buyer, for 

a certain quantity of q products, having the price between minPrice and maxPrice, 

with the price greater than q*(minPrice+30); 
(defrule accept4 

 (declare (salience 100)) 

 (NegotiationObject {buyerClassification == "nc" || 

buyerClassification == "u"} {step > 0} 

    (currentOffer ?o) (quantity ?q)) 

 (Product (minPrice ?minPrice)) 

 (test (>= ?o (* ?q (+ 30 ?minPrice))))    

     => (add (new Offer "accept4" ?*accept*))) 

5) The seller will accept an offer from a slightly cooperative or cooperative 

buyer, for a certain quantity of q products, having the price between minPrice and 

maxPrice, with the price greater than q*(minPrice+20); 
(defrule accept5 

 (declare (salience 100)) 

 (NegotiationObject {buyerClassification == "sc" || 

buyerClassification == "c"} {step > 0} 

    (currentOffer ?o) (quantity ?q)) 

 (Product (minPrice ?minPrice)) 

 (test (>= ?o (* ?q (+ 20 ?minPrice))))    

     => (add (new Offer "accept5" ?*accept*))) 

6) The seller will accept an offer from a very cooperative or highly cooperative 

buyer, for a certain quantity of q products, having the price between minPrice and 

maxPrice, with the price greater than q*(minPrice+10); 
(defrule accept6 

 (declare (salience 100)) 

 (NegotiationObject {buyerClassification == "vc" || 

buyerClassification == "hc"} {step > 0} 

    (currentOffer ?o) (quantity ?q)) 

 (Product (minPrice ?minPrice)) 

 (test (>= ?o (* ?q (+ 10 ?minPrice)))) 

    => (add (new Offer "accept6" ?*accept*))) 

For the REJECT communication primitive of the seller, there are the following 

rules: 

1) The seller will reject an offer for a negotiation object, received after a certain 

time threshold, which is defined as 5 seconds for each negotiation. The message 

Negotiation time elapsed is sent from the seller to the buyer; 
(defrule reject1 

 (declare (salience 50)) 

 (NegotiationObject (timeElapsed ?te)) 

 (test (>= ?te ?*maxNegTime*))     

     => (add (new Offer "reject1" ?*reject* "Negotiation time elapsed."))) 

2) The seller will reject the current offer o for a certain amount of q items, 

received from a non-cooperative or unknown buyer, having the price lower than 
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q*minPrice, when the negotiation step is greater than 5. The message Price too low 

is sent from the seller to the buyer; 
(defrule reject2 

 (declare (salience 50)) 

 (NegotiationObject {buyerClassification == "nc" || 

buyerClassification == "u"} {step > 5} 

    (currentOffer ?o) (quantity ?q)) 

 (Product (minPrice ?minPrice)) 

 (test (<= ?o (* ?q ?minPrice))) 

     => (add (new Offer "reject2" ?*reject* "Price too low"))) 

3) The seller will reject the current offer o for a certain amount of q items, 

received from a slightly cooperative or cooperative buyer, having the price lower than 

q*(minPrice+20), when the negotiation step is greater than 5. The message Price too 

low is sent from the seller to the buyer; 
(defrule reject3 

 (declare (salience 50)) 

 (NegotiationObject {buyerClassification == "sc" || 

buyerClassification == "c"} {step > 5} 

    (currentOffer ?o) (quantity ?q)) 

 (Product (minPrice ?minPrice)) 

 (test (<= ?o (* ?q (+ ?minPrice 20))))    

     => (add (new Offer "reject3" ?*reject* "Price too low"))) 

4) The seller will reject the current offer o for a certain amount of q items, 

received from a very cooperative or highly cooperative buyer, having the price lower 

than q*(minPrice+40), when the negotiation step is greater than 5. The message 

Price too low is sent from the seller to the buyer; 
(defrule reject4 

 (declare (salience 50)) 

 (NegotiationObject {buyerClassification == "vc" || 

buyerClassification == "hc"} {step > 5}  

    (currentOffer ?o) (quantity ?q)) 

 (Product (minPrice ?minPrice)) 

 (test (<= ?o (* ?q (+ ?minPrice 40)))) 

    => (add (new Offer "reject4" ?*reject* "Price too low"))) 

For the PROPOSE communication primitive of the seller, there are the following 

rules: 

1) The price proposed by a seller, in the beginning, for a certain quantity q of 

products, having the price between minPrice and maxPrice, to a non-cooperative or 

unknown buyer, is equal to q*(maxPrice+20);   
  (defrule firstPrice1 

 (declare (salience 10)) 

 (NegotiationObject {step == 0} {buyerClassification == "nc" || 

buyerClassification == "u"} (quantity ?q)) 

 (Product (maxPrice ?maxPrice)) 

     => (add (new Offer "firstPrice1" (* (+ ?maxPrice 20) ?q) 

?*propose*))) 
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2) The price proposed by a seller, in the beginning, for a certain quantity q of 

products, having the price between minPrice and maxPrice, to a slightly cooperative 

or cooperative buyer, is equal to q*maxPrice;   
(defrule firstPrice2 

 (declare (salience 10)) 

 (NegotiationObject {step == 0} {buyerClassification == "sc" || 

buyerClassification == "c"} (quantity ?q)) 

 (Product (maxPrice ?maxPrice)  ) 

    => (add (new Offer "firstPrice2" (* ?maxPrice ?q) ?*propose*))) 

3) The price proposed by a seller, in the beginning, for a certain quantity q of 

products, having the price between minPrice and maxPrice, to a very cooperative or 

highly cooperative buyer, is equal to q*(maxPrice-20);   
(defrule firstPrice3 

 (declare (salience 10)) 

 (NegotiationObject {step == 0} {buyerClassification == "vc" || 

buyerClassification == "hc"} (quantity ?q)) 

 (Product (maxPrice ?maxPrice)  ) 

    => (add (new Offer "firstPrice3" (* (- ?maxPrice 20) ?q) ?*propose*))) 

The seller agent has three different strategies used during negotiation. It can 

employ either the linear strategy, the conceder strategy or the boulware strategy. 

There are different rules used for each strategy. 

For the linear strategy of the seller, there are the following rules: 

1) The seller will decrease its previous offer o with 2, to the non-cooperative or 

unknown buyers, when the negotiation step is greater than 1;  
 (defrule newPrice4 

 (declare (salience 10)) 

 (NegotiationObject {step > 1} (previousOffer ?o) {buyerClassification 

== "nc" || buyerClassification == "u"}) (Strategy {strategy == ?*linear*})

  => (add (new Offer "newPrice4" (- ?o 2) ?*propose*))) 

2) The seller will decrease its previous offer o with 4, to the slightly cooperative 

or cooperative buyers, when the negotiation step is greater than 1;  
(defrule newPrice5 

 (declare (salience 10)) 

 (NegotiationObject {step > 1} (previousOffer ?o) {buyerClassification 

== "sc" || buyerClassification == "c"}) (Strategy {strategy == ?*linear*}

 => (add (new Offer "newPrice5" (- ?o 4) ?*propose*))) 

3) The seller will decrease its previous offer o with 6, to the very cooperative or 

highly cooperative buyers, when the negotiation step is greater than 1;  
(defrule newPrice6 

 (declare (salience 10)) 

 (NegotiationObject {step > 1} (previousOffer ?o) {buyerClassification 

== "vc" || buyerClassification == "hc"}) (Strategy {strategy == ?*linear*})

 => (add (new Offer "newPrice6" (- ?o 6) ?*propose*))) 

For the conceder strategy of the seller, there are the following rules: 

1) The seller will decrease its previous offer o with 25, to the non-cooperative or 

unknown buyers, when the negotiation step is greater than 1 and lower than 6;  
 (defrule newPrice7 
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 (declare (salience 10)) 

 (NegotiationObject {step > 1 && step < 6} (previousOffer ?o) 

{buyerClassification == "nc" || buyerClassification == "u"}) 

 (Strategy {strategy == ?*conceder*})    

     => (add (new Offer "newPrice7" (- ?o 25) ?*propose*))) 

2) The seller will decrease its previous offer o with 35, to the slightly cooperative 

or cooperative buyers, when the negotiation step is greater than 1 and lower than 6;  
(defrule newPrice8 

 (declare (salience 10)) 

 (NegotiationObject {step > 1 && step < 6} (previousOffer ?o) 

{buyerClassification == "sc" || buyerClassification == "c"}) 

 (Strategy {strategy == ?*conceder*})    

    =>(add (new Offer "newPrice7" (- ?o 35) ?*propose*))) 

3) The seller will decrease its previous offer o with 45, to the very cooperative or 

highly cooperative buyers, when the negotiation step is greater than 1 and lower than 

6;  
(defrule newPrice9 

 (declare (salience 10)) 

 (NegotiationObject {step > 1 && step < 6} (previousOffer ?o) 

{buyerClassification == "vc" || buyerClassification == "hc"}) 

 (Strategy {strategy == ?*conceder*})    

=> (add (new Offer "newPrice7" (- ?o 45) ?*propose*))) 

4) The seller will decrease its previous offer o with 5, to the non-cooperative or 

unknown buyers, when the negotiation step is greater than 6;  
(defrule newPrice10 

 (declare (salience 10)) 

 (NegotiationObject {step >= 6} (previousOffer ?o) 

{buyerClassification == "nc" || buyerClassification == "u"}) (Strategy 

{strategy == ?*conceder*}) 

     => (add (new Offer "newPrice10" (- ?o 5) ?*propose*))) 

5) The seller will decrease its previous offer o with 10, to the slightly cooperative 

or cooperative buyers, when the negotiation step is greater than 6;  
(defrule newPrice11 

 (declare (salience 10)) 

 (NegotiationObject {step >= 6} (previousOffer ?o) 

{buyerClassification == "sc" || buyerClassification == "c"}) (Strategy 

{strategy == ?*conceder*}) 

    => (add (new Offer "newPrice11" (- ?o 10) ?*propose*))) 

6) The seller will decrease its previous offer o with 15, to the very cooperative or 

highly cooperative buyers, when the negotiation step is greater than 6;  
(defrule newPrice12 

 (declare (salience 10)) 

 (NegotiationObject {step >= 6} (previousOffer ?o) 

{buyerClassification == "vc" || buyerClassification == "hc"}) (Strategy 

{strategy == ?*conceder*}) 

    => (add (new Offer "newPrice12" (- ?o 15) ?*propose*))) 

For the boulware strategy of the seller, there are the following rules: 
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1) The seller will decrease its previous offer o with 0.1, when the negotiation 

step is greater than 1 and the time elapsed in the negotiation is less than 4 seconds, 

represented by the global variable boulwareTime1;  
  (defrule newPrice13 

 (declare (salience 10)) 

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed < 

?*boulwareTime1*}) 

 (Strategy {strategy == ?*boulware*}) 

    => (add (new Offer "newPrice13" (- ?o 0.1) ?*propose*))) 

2) The seller will decrease its previous offer o with 10, when the negotiation 

step is greater than 1 and the time elapsed in the negotiation is greater than 4 

seconds, represented by the global variable boulwareTime1;  
(defrule newPrice14 

 (declare (salience 10)) 

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed >= 

?*boulwareTime1*}) 

 (Strategy {strategy == ?*boulware*}) 

     => (add (new Offer "newPrice14" (- ?o 10) ?*propose*))) 

3) The seller will decrease its previous offer o with 20, when the negotiation 

step is greater than 1 and the time elapsed in the negotiation is greater than 4.5 

seconds, represented by the global variable boulwareTime2;  
(defrule newPrice15 

 (declare (salience 10)) 

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed >= 

?*boulwareTime2*}) 

 (Strategy {strategy == ?*boulware*}) 

     => (add (new Offer "newPrice14" (- ?o 20) ?*propose*))) 

 

8.2. One-to-One Automated Negotiation Scenario 

 

The following graphics are obtained using the data collected from the statistics 

file, generated after the multi-agent system runs the automated negotiation between 

agents. When all the buyers finish their purchases, all the negotiation information is 

recorded in the statistics file. 

In the scenario, the buyer wants to rent 36 rooms with 12 different 

characteristics, 3 rooms of each type. The seller has a total of 120 rooms, 10 rooms 

for each type.  

A snapshot of the Sniffer Agent from the Jade environment, representing the 

exchange of messages in a one-to-one negotiation, is presented in Figure 8.1. 

In Figure 8.2 is described a one-to-one negotiation, in which is plotted the gain 

versus the number of negotiation rounds. The graphics obtained show that, when 

using the same negotiation strategy, the buyer and seller gain are almost the same. 

They can obtain different gains if they use distinct negotiation strategies. 
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Figure 8.1. Messages Exchange Captured with the  

Sniffer Agent for a One-to-One Negotiation  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 8.2. Transactional Gain Dependence of Negotiation Rounds Number 

for a One-to-One Negotiation 
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The gain obtained for each cooperation class, with respect to the number of 

negotiations, for the seller and respectively the buyer, are represented in Figures 8.3 

and 8.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.3. Transactional Gain in each Cooperation Class for each Negotiation Index 

for the Seller in a One-to-One Negotiation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.4. Transactional Gain in each Cooperation Class for each Negotiation Index 

for the Buyer in a One-to-One Negotiation 
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From the Figures 8.3 and 8.4 it can be deduced that, during negotiation, the 

cooperation classes of the agents are changed, as more negotiation rounds are 

performed. In the first negotiations, both agents belong to the unknown cooperation 

class. As they come to know more about each other, they change the classification of 

the cooperation potential of the partner agent. In the last negotiation, the buyer 

becomes highly cooperative, while the seller remains very cooperative. 

The gain for the buyer and for the seller versus the supply/demand ratio is 

represented in Figure 8.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.5. Transactional Gain Dependence of Supply/Demand Ratio  

for a One-to-One Negotiation 
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and the second buyer 60 rooms with 10 different characteristics, 6 rooms of each 
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A snapshot of the Sniffer Agent from the Jade environment, representing the 

exchange of messages in a two-to-one negotiation, is presented in Figure 8.6. 
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Figure 8.6. Messages Exchange Captured with the  

Sniffer Agent for a Two-to-One Negotiation 

 

In Figure 8.7 is described a two-to-one negotiation, in which is plotted the gain 

versus the number of negotiation rounds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.7. Transactional Gain Dependence of Negotiation Rounds Number  

for a Two-to-One Negotiation 
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The classification of the cooperation classes with respect to the number of 

negotiation for the seller and respectively the buyers are represented in Figures 8.8, 

8.9, and 8.10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.8. Transactional Gain in each Cooperation Class for each Negotiation Index 

for the Seller in a Two-to-One Negotiation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.9. Transactional Gain in each Cooperation Class for each Negotiation Index 

for the First Buyer in a Two-to-One Negotiation 
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Figure 8.10. Transactional Gain in each Cooperation Class for each Negotiation 

Index for the Second Buyer in a Two-to-One Negotiation 

 

The number of negotiation rounds for each cooperation class, in the case of a 

two-to-one negotiation, for the seller and for the buyers, are represented in Figures 

8.11, 8.12, and 8.13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.11. The Number of Negotiation Rounds for each Cooperation Class, in the 

Case of a Two-to-One Negotiation, for the Seller 
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Figure 8.12. The Number of Negotiation Rounds for each Cooperation Class, in the 

Case of a Two-to-One Negotiation, for the First Buyer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.13. The Number of Negotiation Rounds for each Cooperation Class, in the 

Case of a Two-to-One Negotiation, for the Second Buyer 

 
While the number of negotiation rounds is increasing, the classification in 

cooperation classes of the partner agent is performed. When the negotiation ends, 

the partner agents become very cooperative. 
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8.4. Many-to-One Automated Negotiation Scenario 

 

The next B2B travel agency scenario involves one seller and a different number 

of buyers, from 1 to 10. Ten different negotiations are performed, the number of 

buyers being successively increased by one. The seller has 200 hotel rooms to rent, 

of 4 types. Each buyer wants to rent 20 rooms, 5 rooms of each different type. The 

seller asks for the rooms’ prices between 70 and 100 monetary units. The Figure 

8.14 displays the total gain of the seller with respect to the number of buyer agents 

acting in the negotiation process. The seller gain is increasing linearly, when there 

are up to 6 buyer agents. Then, its gain is increasing exponentially, when there are 

more than 6 buyer agents in the virtual market. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.14. The Seller Total Gain with Respect to the  

Number of Buyer Agents Acting in the Negotiation 

 

The number of negotiation rounds with respect to the number of buyer agents 

acting in the negotiation is represented in the Figure 8.15. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.15. The Number of Negotiation Rounds with Respect to the  

Number of Buyer Agents Acting in the Negotiation 
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Chapter 9. Business Models Use Cases for Automated 

Negotiation 
 

After presenting the automated negotiation business model with a travel agency 

in Chapter 8, the current chapter develops three other business models use cases, 

each of them having some particularities, described in the beginning of each section.  

 

9.1. Real Estate Agency Automated Negotiation Business Model 

 

The following scenario develops an automated negotiation between real estate 

agencies and the real estate developers. The houses to be sold have different 

attributes, expressed in the XML configuration file, associated to this business 

model. The negotiation is done based on price, but there are also other attributes in 

the configuration file, such as the number of rooms, rooms’ dimensions, finishing 

quality, location of the house and others, displayed in Table 9.1. 

 

Table 9.1. Negotiation Requirements and Their Priorities 

 

Buyer Agent Requirements Priority 

Buy a House / an Apartment 10 

City / Area of the City 10 

No of floors / No of rooms 10 

Land Surface / House Surface / Apartment Surface 10 

No of bathrooms / kitchens / balcony 9 

With / without furniture 7 

Finishing quality 9 

Close to supermarkets / shopping area 8 

Close to parks 9 

Close to public transportation 10 

Close to kindergarten / school / high school / university 8 

New building / old building / refurbished building 10 

With / without parking area 7 

 

As a difference to the rules associated to the travel agency negotiation 

scenario, in the real estate agency business model, the REJECT rules based on 

price are eliminated. The negotiation is ended either when the time expires, or 

when one of the agents sends an ACCEPT message.  

The rules for the real estate agency are divided into rules for the buyer and for 

the seller agents. Further on, there are different rules associated to each 

communication primitive of the agents, and also for each strategy of the agent. These 

rules are described in details in Annex 1. 
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9.1.1. Three-to-One Automated Negotiation Scenario 

 

The following B2B scenario involves a real estate agency. There are three 

buyers, wanting to buy houses from the real estate agent, each buyer having a 

different negotiation strategy: 1-linear, 2-boulware, and 3-conceder. The 

requirements of the agents are represented in Table 9.2. 

 

Table 9.2. The Buyer Agents’ Requirements and the Seller Offer 

 

Agent House Type Quantity Price 

B1, B2, B3 2 Rooms 5 40000-60000 

B1, B2, B3 3 Rooms 5 80000-100000 

S1 2 Rooms 20 45000-70000 

S1 3 Rooms 20 85000-110000 

 

The results are presented in Figure 9.1. The buyers’ gain obtained after the 

simulation certifies the theoretical behavior. The higher gain is obtained for the buyer 

using the conceder strategy, the medium gain corresponds to the linear strategy and 

the smaller gain for the boulware strategy. 

 
 

 

 

 

     

 

     

 

 

 

 

 

 

 

Figure 9.1. The Three Buyers Gain in a Negotiation Process with Six Steps, each 

using a Different Negotiation Strategy, in a B2B Scenario involving a Real Estate 

Agency 

 

The Figure 9.2 shows the buyers gain, divided for each cooperation class 

(unknown, non cooperative, slightly cooperative), obtained after the negotiation is 

performed. The data regarding the gain is read from the statistics file generated by 

the program. 
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Figure 9.2. The Three Buyers Gain for each Cooperation Class, where  

U – Unknown, NC – Non-cooperative, and SC – Slightly cooperative  

 

Figure 9.3 shows the seller gain, divided for each cooperation class (unknown, 

non cooperative, slightly cooperative), obtained after the negotiation is performed. 

Figure 9.4 represents the gain of the three types of buyers (1-linear, 2-

boulware, and 3-conceder) versus the gain of the seller. 

Figure 9.5 displays each buyer weighted gain, for each step of the negotiation 

(the negotiation steps are displayed in a clockwise direction). 
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Figure 9.3. The Seller Gain for Each Cooperation Class  

in the Negotiation Process with Six Steps 
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Figure 9.4. The Buyers’ Gains, using Different Types of Strategies, versus the Seller 

Gain 
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Figure 9.5. The Buyers Weighted Gain during the Negotiation Rounds 

 

For the buyer using the linear strategy, the gain increases linearly with the 

negotiation index. In the first negotiation, there is no gain for all the buyers. The 

weighted gain in the third negotiation round is almost the same for all the three 

buyers. In the fourth negotiation, the buyer using a boulware strategy gets a higher 

weighted gain than the other two buyers. In the last negotiation, the buyer employing 

the boulware strategy obtains a lower weighted gain than the other two buyers. 

 

9.1.2. Two-to-Three Automated Negotiation Scenario 

 

The following scenario involves two buyers and three sellers. The buyers use a 

linear strategy, but the sellers are using different strategies: S1 has a linear strategy, 

S2 a conceder strategy, and S3 a boulware strategy.  

 Figure 9.6 shows a snapshot of the negotiation system, in which the agents use 

different negotiation strategies. 

Figure 9.7 displays the buyers gain versus the negotiation index. 

Figure 9.8 represents the sellers gain versus the negotiation index. Each seller 

uses a different strategy during negotiation. 
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Figure 9.6. Screen Capture Showing the System in Action 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.7. The Buyers’ Gain with respect to the Negotiation Index 

 

 

 

 

 

 

 

 

 

 

Figure 9.8. The Sellers’ Gain with respect to the Negotiation Index 
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The sellers’ gain obtained after the simulation certifies the theoretical behavior. 

The higher gain is obtained for the seller using the boulware strategy, the medium 

gain corresponds to the linear strategy and the smaller gain is obtained for the 

conceder strategy. 

 

9.2. Car Dealer Automated Negotiation Business Model 

 

This scenario involves car dealers negotiating with car factories, in order to buy 

sets of cars. Each type of car has different characteristics, expressed in the XML 

configuration file associated to each agent participating in the negotiation.  

 As a difference to the previous business models, there is added a seller 

discount for the first price, depending on the required quantity of cars (as the 

number of cars to be bought is higher, the discount increases). Table 9.4 displays the 

main characteristics of the car and their priorities for the dealers. 

The rules for the car dealer business model are divided into rules for the buyer 

and for the seller agents. Further on, there are different rules associated to each 

communication primitive of the agents, and also for each strategy of the agent. These 

rules are described in details in Annex 2. 

 

Table 9.3. Negotiation Characteristics and Their Priorities 

 

Buyer Agent Characteristics Priority 

Producer 10 

Price 8 

Maximum Speed 5 

Time to Maximum Speed 3 

Number of Seats 9 

Number of Airbags 7 

Trunk Size 6 

Car Type 9 

Car Fuel 8 

Start Stop System 3 

Audio System 8 

Video System 2 

 

9.2.1. One-to-Five Automated Negotiation Scenario 

 

The next scenario involves one buyer and five sellers. The buyer wants 10 cars 

with 5 different characteristics. Each seller has a certain type of car. The car prices 

increase from S1 to S5, because the car quality increases from S1 to S5. Figure 9.9 

displays a screen capture of the system in action. 
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Figure 9.9. Snapshot of the Running System 

 

 Figure 9.10 displays the sellers’ weighted gain obtained after negotiation (the 

sellers are displayed in a clockwise direction). The sellers gain increases depending 

on the car quality. As the price of the car increases and the car is a top one, the 

seller gain has higher values. 

 

 

 

 

 

 

 

 

 

 

Figure 9.10. Sellers Weighted Gain 

 

9.2.2. Three-to-Three Automated Negotiation Scenario 

 

The following B2B scenario involves 3 car factory producers and 3 car dealers. 

Each dealer wants to buy 2 car types, 15 cars of each type. The sellers are using 

different strategies during negotiation: the first one (S1) uses a linear strategy (L), the 

second (S2) employs a conceder strategy (C), and the third one (S3) a boulware 

strategy (B).  
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To compare the behavior of the sellers during negotiation, the minimal and 

maximal prices are the same for all the sellers, for each type of car. 

Figure 9.11 represents a screen capture showing the system in action. 

 

 
 

Figure 9.11. Screen Capture Showing the Multi-Agent System in Action 

 

Figure 9.12 displays the sellers’ gain with respect to the negotiation index, using 

different negotiation strategies: S1 uses linear strategy, S2 has conceder strategy, 

and S3 employs boulware strategy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.12. The Three Sellers Gain in a Negotiation Process with Six Steps, each 

using a Different Negotiation Strategy, in a B2B Scenario involving a Car Dealer 
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After the negotiation, it can be concluded that the higher gain is obtained by the 

seller using the boulware strategy, then by the one using the linear strategy, and the 

smaller gain is obtained by the seller using the conceder strategy. 

Figure 9.13 represents each seller weighted gain, for each negotiation index 

(the negotiation steps are displayed in a clockwise direction). 
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Figure 9.13. Weighted Gain for the Three Types of Sellers, during the 

Negotiation Rounds 

 

For the seller using the linear strategy, the gain increases linearly with the 

negotiation index. The seller using the conceder strategy has no gain in the first two 

negotiations. The seller using the boulware strategy has a gain from the first 

negotiation round, while the other two sellers have no gain in the first round. In the 

third negotiation, the seller using a boulware strategy gets a higher weighted gain 

than the other two sellers. The weighted gain in the fourth negotiation is almost the 

same for all the three sellers. In the last negotiation, the seller employing the 

conceder strategy obtains the highest weighted gain from all the sellers. 

 

9.3. Emergency Hospital Automated Negotiation Business Model 

 

This scenario refers to a B2B negotiation, in a many-to-many setting, in which 

agents representing hospitals negotiate with different pharmaceutical companies, in 

order to buy different medicines and other medical equipment necessary in the 

hospital. The framework is inspired from the research reported in [Serbanati L.D. and 

Radu S., 2013]. 

The scenario involves buyer agents representing emergency hospitals, which 

want to buy rapidly medicines and the most important for them is the time in which 

the negotiation is concluded, while the price is not so important during negotiation.  

The negotiation time is decreased with respect to the previous business 

models and now is set to 3 seconds. The ACCEPT rules of the buyer are 

modified with respect to the previous business models, such that the buyer 

accepts different prices, depending on the negotiation time elapsed. As the 

negotiation deadline approaches, the buyer agent accepts a higher price. 

The rules for the emergency hospital business model are divided into rules for 

the buyer and for the seller agents. Further on, there are different rules associated to 
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each communication primitive of the agents, and also for each strategy of the agent. 

These rules are described in details in Annex 3. 

 

9.3.1. Two-to-Two Automated Negotiation Scenario 

 

In two laboratories of a hospital it is necessary to buy medical devices. The 

negotiation scenario is performed with two medical equipment sellers. Figure 9.14 

shows the buyers and sellers gain versus the negotiation index. 
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Figure 9.14. The Buyers and Sellers Gain versus the Negotiation Index 

 

Figures 9.15 and 9.16 display the buyers gain versus the negotiation index, for 

each cooperation class: U - unknown, NC - non cooperative, SC - slightly 

cooperative, C - cooperative, VC - very cooperative, and HC - highly cooperative.  

Figures 9.17 and 9.18 display the sellers gain versus the negotiation index, for 

each cooperation class: U - unknown, NC - non cooperative, SC - slightly 

cooperative, C - cooperative, VC - very cooperative, and HC - highly cooperative. 
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Figure 9.15. The First Buyer Gain for each Cooperation Class versus the  

Negotiation Index 
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Figure 9.16. The Second Buyer Gain for each Cooperation Class versus the 

Negotiation Index 
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Figure 9.17. The First Seller Gain for each Cooperation Class versus the  

Negotiation Index 
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Figure 9.18. The Second Seller Gain for each Cooperation Class versus the 

Negotiation Index 
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When negotiation begins, the agents don't know each other and they are 

classifying the partner agent in the unknown class.While more negotiation rounds are 

performed, the classification of the partner agent is changed. The first buyer 

becomes cooperative in the fifth negotiation round, while the second buyer in the 

sixth round, having a smaller gain corresponding to the cooperative class. The 

second seller becomes cooperative in the fourth negotiation round, while the first 

seller becomes cooperative in the fifth round. The first seller, classified as very 

cooperative, has the highest gain, with respect to the gain obtained in any other 

class. The second seller, classified as cooperative, has the highest gain, with respect 

to the gain obtained in any other class.  

 

9.3.2. Four-to-Three Automated Negotiation Scenario 

 

The following scenario implies a B2B automated negotiation with a 

pharmaceutical supplier, for two different medicines. During negotiation, the four 

buyers and the three sellers are changing dynamically their strategies. 

In Figures 9.19 and 9.20 are represented the buyers and respectively the 

sellers gain versus the negotiation index. 

From the Figures 9.19 and 9.20, it can be deduced that the gain increases a lot, 

when the agent is changing its negotiation strategy. When the agent is using the 

same strategy for many negotiation rounds, its gain remains almost the same or 

increases with small values. 
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Figure 9.19. The Dependence of the Buyers Gain on the Negotiation Index 
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Figure 9.20. The Dependence of the Sellers Gain on the Negotiation Index 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 143 

Chapter 10. Conclusions and Future Work 
 

10.1. Conclusions 

 

The current research on automated negotiation approaches some challenging 

problems concerning multi-attribute negotiation, bargaining using negotiation profiles, 

and negotiation involving cooperation classes for the agents. If there is incomplete 

information regarding the partner negotiating agent, it is often complex to compute 

agents’ strategies. It is useful to design learning mechanisms for choosing certain 

strategies for agents to use.  

Regarding multi-agents, it is necessary to understand the negotiation power, 

which is related to the relative abilities of agents in a situation to have influence over 

each other. In a bilateral negotiation, each agent’s negotiation power is affected by its 

minimal and maximal prices, number of attributes bargained, negotiation deadline, 

etc. When many buyers and sellers are involved in negotiation, it is important to 

investigate how the market competition affects agents’ negotiation strategies. With a 

great number of buyers and sellers, a single agent is unlikely to have much influence 

on the market equilibrium. 

The automated negotiation has economical outcomes, because it has lower 

transaction costs, enabling higher volumes and new types of transactions in the 

electronic business domain. Through its automation, the negotiation mechanism 

becomes available to autonomous systems, improving the performance of these 

systems, when negotiation is used for agent coordination and cooperation, instead of 

existing interaction mechanisms. 

In this thesis, a set of models for automated negotiation agents are developed, 

which are endowed with adaptive negotiation strategies. These models are 

implemented and the agent behavior is tested on different settings of B2B and B2C. 

The first part of the thesis, Chapter 2 to Chapter 4, is dedicated to a review of 

the most important concepts, methods and techniques, which are relevant to the 

research approach and topics. In the same time, the challenges that lay ahead of the 

current research on agent negotiation are identified. 

The second part of the thesis contains the personal contribution in research. In 

the model presented in Chapter 5, the agents’ behavior is motivated by the gain they 

could get while satisfying their objectives and by the necessity to cooperate with 

other agents for obtaining these objectives. During cooperation and negotiation, the 

agent’s beliefs on the other agents are updated, as the agent comes to know more 

about the others. 

Because the agents' preferences are based on their needs, changes of their 

necessities influence the preferences during negotiation. The agents can modify their 

preferences over negotiation outcomes, when new information is available. The 
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communication primitives and the framework can express complex negotiation 

dialogues, in which agents change their preferences in time. 

The agents use the Iterated Contract Net protocol, which has the advantage 

that it can simulate a real-world scenario, with many buyers and sellers having 

parallel negotiations. Because the negotiation complexity is an important issue at 

run-time, which can slow down the negotiation time, the agents’ preferences are 

processed in the XML configuration file, before running the negotiations. The 

automated negotiation mechanism facilitates the self-interested agents to make 

decisions, which give them the optimal outcome. 

An automated negotiation environment, which combines the agents’ beliefs 

about the other agents in the system, with the possibility to represent and modify 

the negotiation strategy, is developed. The strategy is represented in the form of 

rules, with their attached preference coefficients. The negotiation strategy is 

improved in time using the Q-learning algorithm, applied upon the preference 

coefficients of the rules. 

The tests performed show that the change of the values for the preference 

coefficients gives better results when using the reinforcement learning algorithm, 

than in the case when a predefined formula is used. 

The rules expressed in Jess form a conflict set. There is a constraint solver, 

based on the preference coefficients of the rules, which solves the possible conflicts, 

and also has an important role in multi-attribute negotiations. 

The agents’ behavior can change during negotiation, according to previous 

interactions with other agents in the system. Changing behavior may refer to either 

the use of different negotiation strategies or to concessions made for other agents, 

with which they have successfully negotiated in the past. To this aim, an agent 

develops a set of profiles during negotiation: the preference profile, the partner 

cooperation profile, and the group-of-partners’ negotiation profile. The first two 

profiles characterize individuals, while in a group negotiation profile, several agent 

profiles are clustered, according to commonly discovered features. Different 

approaches to the development of these profiles are presented in Chapter 5. 

A set of negotiation strategies used by the agents is implemented in Chapter 6. 

They employ linear and non-linear negotiation strategies. The non-linear strategies 

can be divided into boulware strategy and conceder strategy. The experiments 

demonstrate different behavior and gain for the agents employing distinct strategies. 

The strategy used by agents is dependent on the number of buyers and sellers in the 

virtual market, and also on the business model, in which agents are acting. 

The three possible negotiation strategies: linear, conceder, and boulware, can 

be dynamically changed, during run-time, for each negotiating agent, being either 

buyer or seller, using the graphical interface of each agent. The combination of 

strategies for buyer and seller agents gives different gains for the agents. For 

instance, when the buyer is using the conceder strategy and the seller employs the 

boulware strategy, then the buyer gain is increased. 
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The experimental results proved the expected results regarding the buyer 

agents. The higher gain is obtained for the buyer using the conceder strategy, the 

medium gain corresponds to the linear strategy and the smaller gain is obtained for 

the boulware strategy. Also, for the seller agents, the simulations enhanced the 

theoretical results. The higher gain is obtained for the seller using the boulware 

strategy, the medium gain corresponds to the linear strategy and the smaller gain is 

obtained for the conceder strategy.  

Also, in Chapter 6 are described negotiation behaviors using weighted 

combinations of tactics for each one of the negotiation issues. The tests performed 

proved that it is better to use a mixture of resource-dependent tactics and behavior-

dependent tactics. 

A multi-agent system, based on the BDI model, which has rules for describing 

the agents’ negotiation strategies, is described in Chapter 7. The rules that guide 

negotiation are based on price, and on the cooperation profile the agent develops 

during previous interactions with other agents in the system. The model allows the 

definition of several types of agents, by varying their behavior, according to the 

desire to obtain the maximum gain. 

While negotiating with other agents, an agent develops cooperation profiles, 

which are gradually refined, and uses them to control its behavior. Better results are 

obtained after negotiation, if the agent’s beliefs on other agents are updated 

periodically, as the agent knows more about the others. The introduction and 

gradually refinement of the cooperation profile of other agents represents a form of 

agent learning. 

The use of the cooperation profiles is a challenging idea, and the cooperation 

classes, in which the agents are classified (unknown, non-cooperative, slightly 

cooperative, cooperative, very cooperative, highly cooperative), can be dynamically 

changed during the negotiation, with respect to the results obtained after each 

negotiation step. 

Chapters 8 and 9 present the implementation of the multi-agent system for four 

business cases and reports different experimental results for each of this case. The 

system is tested for different business models, each model having its own 

particularities.  

A travel agency business model and the associated negotiation rules used by 

the agents are described in Chapter 8. The gain obtained by agents during 

negotiation is computed after each negotiation step and is represented graphically for 

each negotiation. Also, the gain corresponding to each cooperation class of the 

agents is displayed. Different negotiations are performed, in which the number of 

buyers and sellers is gradually increased. 

Chapter 9 describes some use cases involving different business models: a real 

estate agency scenario, a car dealer scenario, and an emergency hospital scenario. 

Different negotiation strategies are employed by agents: linear, conceder, and 
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boulware strategies. Different tests are performed and the results are graphically 

displayed. 

Annexes 1, 2, and 3 describe in details the rules associated to the three 

business models presented in Chapter 9. Annex 1 presents the rules associated to 

the automated negotiation business model with a real estate agency. Annex 2 

describes the rules from the business model involving a car dealer, while Annex 3 

emphasizes the rules from an emergency hospital business model. 

  

10.2. Contributions 

 

The main original contributions of this thesis are the following: 

• A model of self-interested agents acting in an open environment, which 

capture the most relevant elements of agents’ behavior related to 

negotiation with other agents 

• A framework for automated negotiation based on negotiation profiles and 

rules that encode the agents’ negotiation strategy 

• A set of negotiation profiles: the preference profile, the partner 

cooperation profile and the group-of-partners’ negotiation profile, which 

characterize individuals and group of agents, clustered according to 

commonly discovered features 

• Representation of the negotiation strategy in the form of production rules 

with associated preference coefficients to help select the most relevant 

negotiation rule 

• Definition of the notion of cooperation classes for an agent and the 

classification of its cooperation potential, based on the C4.5 algorithm 

• Two ways of updating the rule preference coefficients: (i) a heuristic 

formula obtained through experimental trials, and (ii) by means of a Q-

learning algorithm, in which the learning performance is improved by 

state clusterization using k-means clustering algorithm 

• A model of negotiating agents endowed with a set of negotiation 

strategies, from which the agent can learn to select the best one 

• An associated multi-agent system in which, following the above model, 

an agent has the possibility to choose between three negotiation 

strategies: linear, conceder, and boulware, and also to evaluate the 

proposals using tactics 

• Implementation of three possible negotiation strategies used by agents, 

in the form of a knowledge base with rules, written in Jess 
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• Evaluation of the proposed model in a settings consisting of agents that 

buy components from other agents, assemble these components and 

sell the assembled results to customers 

• A multi-agent system, in which BDI agents are interacting towards 

reaching agreements for different negotiation objects, based on the utility 

of the negotiation objects 

• Evaluation of the different possible roles the facilitator in the system may 

have, correlated with the cooperation profile of the agents  

• Development of an open, scalable and adaptive multi-agent system for 

automated negotiation, implemented using Java, Jade, Jess, and XML, 

which supports different negotiation strategies and one-to-one, one-to-

many, many-to-one, and many-to-many negotiations between self-

interested agents 

• Evaluation in the system, by different set of experiments, of the 

possibility to improve in time the negotiation strategy of the agents, as 

more negotiations are taking place, using machine learning techniques 

• Evaluation of the proposed models in the system for four business cases:  

o automated negotiation in a travel agency scenario 

o automated negotiation between real estate agencies and the real 

estate developers 

o automated negotiation between car dealers negotiating with car 

factories 

o buyer agents representing emergency hospitals negotiating with 

medicines seller agents in a setting in which time is the most 

critical factor 

• A state of the art account on negotiation in multi-agent systems, 

knowledge representation and learning, and also adaptive negotiation 

strategies 

 

10.3. Publications 

  

The following list contains the research papers developed during the PhD 

studies: 

 

Book and Journal Papers 

 

Serban Radu, Eugenia Kalisz, Adina Florea, "A Model of Automated 

Negotiation based on Agents Profiles", Scalable Computing: Practice and Experience 

Journal, 14, 1, 47-55, 2013 (BDI Journal) 
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Serban Radu, Eugenia Kalisz, Adina Florea, "Automatic Negotiation with 

Profiles and Clustering of Agents", International Journal of Intelligence Science, 3, 2, 

69-76, 2013 (BDI Journal) 

Serban Radu, “An Automated Negotiation System with Autonomous Agents for 

a Travel Agency Business Model”, Scientific Bulletin of the University Politehnica of 

Bucharest, Series C: Electrical Engineering and Computer Science, submitted, 2013 

(BDI Journal) 

Catalin Tudose, Carmen Odubasteanu, Serban Radu, "Java Reflection 

Performance Analysis Using Different Java Development", Advances in Intelligent 

Control Systems and Computer Science, 187, 439-452, 2013 (ISBN 978-3-642-

32547-2) 

 

Conference Proceedings Papers 

 

Serban Radu, Valentin Lungu, “An Adaptive Multi-Agent Model for Automated 

Negotiation”, Proceedings of the 19-th International Conference on Control Systems 

and Computer Science, Bucharest, Romania, 29-31 May 2013, vol. 1, 167-174, 2013 

(IEEE CPS) 

Mihai Trascau, Teodor Tartareanu, Marius Benea, Serban Radu, “Emergence 

of Norms in Multi-Agent Societies; An Ultimatum Game Case Study”, Proceedings of 

the 5-th International Conference on Computational Collective Intelligence, 

Technologies and Applications, Craiova, Romania, 11-13 September 2013, To be 

published by Springer, (ISI Proceedings) 

Luca Dan Serbanati, Serban Radu, "Paradigm Shifts in Health Informatics", 

Proceedings of 6-th International Conference on Health Informatics, Barcelona, 

Spain, 11-14 February 2013, 256-262, 2013 (ISI Proceedings) 

Valentin Lungu, Andra Baltoiu, Serban Radu, “Using Emotion as Motivation in 

the Newtonian Emotion System”, Proceedings of the 7-th International Symposium 

on Intelligent Distributed Computing, Prague, Czech Republic, 4-6 September 2013, 

To be published by Springer, (ISI Proceedings) 

Serban Radu, Eugenia Kalisz, Adina Florea, "Agents Negotiation Profiles for 

Automatic Transactions in Open Environments", The 14-th International Symposium 

on Symbolic and Numerical Algorithms for Scientific Computing, Timisoara, Romania, 

26-29 September 2012 

Adina Florea, Serban Radu, “Enhancing Pen-based Experiences with the Use 

of Concept Maps”, Proceedings of the 1-st International Workshop on Pen-Based 

Learning Technologies, Catania, Italy, 24-25 May 2007, IEEE Computer Society 

Conference Publishing Service CPS, 17-22, 2007 (ISI Proceedings) 
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Papers published in Proceedings of Summer Schools 

 

Serban Radu, ”An Automated Negotiation Model based on Different Strategies 

in an Adaptive Multi-Agent System”, Proceedings of the 9-th International Summer 

School on Advanced Computer Architecture and Compilation for High-Performance 

and Embedded Systems, Fiuggi, Italy, 14-20 July 2013 

Serban Radu, Adina Florea, "An Adaptive Multi-Agent System for e-

Commerce", Proceedings of the 8-th International Summer School on Advanced 

Computer Architecture and Compilation for High-Performance and Embedded 

Systems, Fiuggi, Italy, 8-14 July 2012, 297-300, 2012 

 

10.4. Future Work 

 

A future research direction is to investigate an alternate approach to update the 

preference coefficients. This may be done using genetic algorithms. Moreover, 

genetic algorithms that use rule-specific genetic operators can be used to evolve new 

strategy rules, based on the existing ones. 

Future research will include the design of new business models for creating 

virtual enterprises. A virtual enterprise refers to a temporary group of autonomous 

agents, which is formed to fulfill a certain objective or to give a special service. This 

will involve a series of negotiations among virtual enterprise agents. 

Heuristic negotiation strategies used in this thesis are based on the exchange of 

proposals. The feedback that can be received from the opponent is a 

counterproposal. The argumentation-based negotiation extends the negotiation 

protocols with the possibility to exchange arguments. This information gives explicitly 

the opinion of the agent making the argument. Future work will investigate the 

arguments an agent should use, in order to improve the negotiation outcomes. 

A future research direction is to discover new applications of automated 

negotiation. Information incompleteness and the existence of market competition 

make it difficult to compute agents’ equilibrium strategies. An agent needs to learn 

from its negotiation history. Market dynamics may require an agent to reason about 

future trading opportunities. In addition, each agent needs to reason about other 

agents’ strategies. 

In addition to design negotiation strategies that maximize an agent’s utility, 

creating negotiation mechanisms that maximize some global performance measures, 

like social welfare, is also a future research direction. One line of research refers at 

investigating some simplified bargaining games. The other line of research aims at 

considering more complex environments and evaluating different mechanisms 

through experimentation.  

Another interesting future research direction is bargaining in trading networks. 

Different from trading in markets, a buyer and a seller can negotiate for an 
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agreement if and only if they have a relationship, to engage in exchange. This setting 

is practical, because individual buyers and sellers could trade through intermediaries 

and not all buyers and sellers could interact with the same intermediaries.  

Another related future research direction is building systems to support human 

negotiation, which is difficult due to a number of reasons. First, it is necessary to 

consider much larger negotiation space and strategy space. For instance, human 

beings often use body language while doing negotiation. Second, it is necessary to 

consider many other factors, such as emotion, trust, power, and culture. 

Also, in the future it is expected to identify possible partnerships with 

researchers from the academic and business environments, in order to exploit the 

results obtained by the multi-agent system platform for automated negotiation. 
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Annex 1. Real Estate Agency Automated Negotiation Rules 
 

The Jess rules upon which the negotiation is performed in the real estate agency business 

model are described in what follows. First the rules of the buyer agent are presented, and then the 

rules associated to the seller agent. 

The rules assciated to the ACCEPT communication primitive of the buyer are first defined. 

1) The first ACCEPT rule says that an offer for a quantity q for a certain product having the price 

between minPrice and maxPrice, from an unknown or non-cooperative partner is accepted, if the price 

is less than q*(minPrice+maxPrice)/2; 

(defrule accept1 

 (NegotiationObject {sellerClassification == "nc" || 

sellerClassification == "u"}(currentOffer ?o) (quantity ?q)) 

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice &: (<= ?o (* ?q (/ 

(+ ?minPrice ?maxPrice) 2))))) 

    => (add (new Offer "accept1" ?*accept*))) 

2) The second ACCEPT rule deals with the case when an offer for a quantity q for a certain 

product having the price between minPrice and maxPrice, from a slightly cooperative or cooperative 

partner is accepted, if the price is between q*(minPrice+maxPrice)/2 and q*maxPrice; 

(defrule accept2 

 (NegotiationObject {sellerClassification == "sc" || 

sellerClassification == "c"}(currentOffer ?o) (quantity ?q)) 

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice &: (<= ?o (* ?q 

?maxPrice)) &: (> ?o (* ?q (/ (+ ?minPrice ?maxPrice) 2))))) 

    => (add (new Offer "accept2" ?*accept*))) 

3) The third ACCEPT rule deals with the case when an offer for a quantity q for a certain 

product having the price between minPrice and maxPrice, from a very cooperative or highly 

cooperative partner is accepted, if the price is less or equal than q*maxPrice; 

(defrule accept3 

 (NegotiationObject {sellerClassification == "vc" || 

sellerClassification == "hc"}(currentOffer ?o) (quantity ?q)) 

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice &: (<= ?o (* ?q 

?maxPrice)))) 

    => (add (new Offer "accept3" ?*accept*))) 

For the REJECT communication primitive of the buyer, there is the following rule: 

1) The buyer will reject an offer for a negotiation object, received after a certain time threshold, 

which is defined as 5 seconds for each negotiation. The message Negotiation time elapsed is sent 

from the buyer to the seller; 

(defrule reject1 

 (NegotiationObject (timeElapsed ?te &: (>= ?te ?*maxNegTime*)))  

    => (add (new Offer "reject1" ?*reject* "Negotiation time 

elapsed."))) 

For the PROPOSE communication primitive of the buyer, there are the following rules: 

1) The price offered by a buyer, in the beginning, for a certain quantity q of products, having the 

price between minPrice and maxPrice, to a non-cooperative or unknown seller, is equal to q*minPrice; 

(defrule firstPrice1 

 (NegotiationObject {step == 1} {sellerClassification == "nc" || 

sellerClassification == "u"} (quantity ?q)) 

 (Product (minPrice ?minPrice)) 

    => (add (new Offer "firstPrice1" (* ?q ?minPrice) ?*propose*))) 
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2) The price offered by a buyer, in the beginning, for a certain quantity q of products, having the 

price between minPrice and maxPrice, to a slightly cooperative or cooperative seller, is equal to 

q*(minPrice+500); 

(defrule firstPrice2 

 (NegotiationObject {step == 1} {sellerClassification == "sc" || 

sellerClassification == "c"} (quantity ?q))(Product (minPrice ?minPrice)) 

    => (add (new Offer "firstPrice2" (* ?q (+ 500 ?minPrice)) 

?*propose*))) 

3) The price offered by a buyer, in the beginning, for a certain quantity q of products, having the 

price between minPrice and maxPrice, to a very cooperative or highly cooperative seller, is equal to 

q*(minPrice+1000); 

(defrule firstPrice3 

 (NegotiationObject {step == 1} {sellerClassification == "vc" || 

sellerClassification == "hc"} (quantity ?q))(Product (minPrice ?minPrice)) 

    => (add (new Offer "firstPrice3" (* ?q (+ 1000 ?minPrice)) 

?*propose*))) 

For the linear strategy of the buyer, there are the following rules: 

1) The buyer will increase its previous offer o with 200, to the non-cooperative or unknown 

sellers, when the negotiation step is greater than 1; 

(defrule newPrice4 

 (declare (salience 10)) 

 (NegotiationObject {step > 1} (previousOffer ?o) 

{sellerClassification == "nc" || sellerClassification == "u"} 

  (quantity ?q)) (Strategy {strategy == ?*linear*}) 

 (Product (maxPrice ?maxPrice &: (> (* ?q ?maxPrice) (+ ?o (* 200 

?q))))) => (add (new Offer "newPrice4" (+ ?o (* 200 ?q)) ?*propose*))) 

2) The buyer will increase its previous offer o with 400, to the slightly cooperative or cooperative 

sellers, when the negotiation step is greater than 1; 

(defrule newPrice5 

 (NegotiationObject {step > 1} (previousOffer ?o) 

{sellerClassification == "sc" || sellerClassification == "c"} 

  (quantity ?q)) (Strategy {strategy == ?*linear*}) 

 (Product (maxPrice ?maxPrice &: (> (* ?q ?maxPrice) (+ ?o (* 400 

?q))))) => (add (new Offer "newPrice5" (+ ?o (* 400 ?q)) ?*propose*))) 

3) The buyer will increase its previous offer o with 600, to the very cooperative or highly 

cooperative sellers, when the negotiation step is greater than 1; 

(defrule newPrice6 

 (NegotiationObject {step > 1} (previousOffer ?o) 

{sellerClassification == "vc" || sellerClassification == "hc"} 

  (quantity ?q)) (Strategy {strategy == ?*linear*}) 

 (Product (maxPrice ?maxPrice &: (> (* ?q ?maxPrice) (+ ?o (* 600 

?q))))) => (add (new Offer "newPrice6" (+ ?o (* 600 ?q)) ?*propose*))) 

For the conceder strategy of the buyer, there are the following rules: 

1) The buyer will increase its previous offer o with 1500, to the non-cooperative or unknown 

sellers, when the negotiation step is greater than 1 and lower than 12; 

(defrule newPrice7 

 (NegotiationObject {step > 1 && step < ?*concederRounds*} 

(previousOffer ?o) {sellerClassification == "nc" || sellerClassification == 

"u"}(quantity ?q)) (Strategy {strategy == ?*conceder*}) 

 (Product (maxPrice ?maxPrice &: (> (* ?q ?maxPrice) (+ ?o (* 1500 

?q))))) => (add (new Offer "newPrice7" (+ ?o (* 1500 ?q)) ?*propose*))) 



 159 

2) The buyer will increase its previous offer o with 2000, to the slightly cooperative or 

cooperative buyers, when the negotiation step is greater than 1 and lower than 12; 

(defrule newPrice8 

 (NegotiationObject {step > 1 && step < ?*concederRounds*} 

(previousOffer ?o) {sellerClassification == "sc" || sellerClassification == 

"c"}(quantity ?q)) (Strategy {strategy == ?*conceder*}) 

 (Product (maxPrice ?maxPrice &: (> (* ?q ?maxPrice) (+ ?o (* 2000 

?q))))) => (add (new Offer "newPrice8" (+ ?o (* 2000 ?q)) ?*propose*))) 

3) The buyer will increase its previous offer o with 2500, to the very cooperative or highly 

cooperative sellers, when the negotiation step is greater than 1 and lower than 12; 

(defrule newPrice9 

 (NegotiationObject {step > 1 && step < ?*concederRounds*} 

(previousOffer ?o) {sellerClassification == "vc" || sellerClassification == 

"hc"}(quantity ?q)) (Strategy {strategy == ?*conceder*}) 

 (Product (maxPrice ?maxPrice &: (> (* ?q ?maxPrice) (+ ?o (* 2500 

?q))))) => (add (new Offer "newPrice9" (+ ?o (* 2500 ?q)) ?*propose*))) 

4) The buyer will increase its previous offer o with 400, to the non-cooperative or unknown 

sellers, when the negotiation step is greater than 12; 

(defrule newPrice10 

 (NegotiationObject {step >= ?*concederRounds*} (previousOffer ?o) 

{sellerClassification == "nc" || sellerClassification == "u"} 

  (quantity ?q)) (Strategy {strategy == ?*conceder*}) 

 (Product (maxPrice ?maxPrice &: (> (* ?q ?maxPrice) (+ ?o (* 400 

?q))))) => (add (new Offer "newPrice10" (+ ?o (* 400 ?q)) ?*propose*))) 

5) The buyer will increase its previous offer o with 600, to the slightly cooperative or cooperative 

sellers, when the negotiation step is greater than 12; 

(defrule newPrice11 

 (NegotiationObject {step >= ?*concederRounds*} (previousOffer ?o) 

{sellerClassification == "sc" || sellerClassification == "c"} 

  (quantity ?q)) (Strategy {strategy == ?*conceder*}) 

 (Product (maxPrice ?maxPrice &: (> (* ?q ?maxPrice) (+ ?o (* 600 

?q))))) => (add (new Offer "newPrice11" (+ ?o (* 600 ?q)) ?*propose*))) 

6) The buyer will increase its previous offer o with 800, to the very cooperative or highly 

cooperative sellers, when the negotiation step is greater than 12; 

(defrule newPrice12 

 (NegotiationObject {step >= ?*concederRounds*} (previousOffer ?o) 

{sellerClassification == "vc" || sellerClassification == "hc"} 

  (quantity ?q)) (Strategy {strategy == ?*conceder*}) 

 (Product (maxPrice ?maxPrice &: (> (* ?q ?maxPrice) (+ ?o (* 800 

?q))))) => (add (new Offer "newPrice12" (+ ?o (* 8 ?q)) ?*propose*))) 

For the boulware strategy of the buyer, there are the following rules: 

1) The buyer will increase its previous offer o with 1, when the negotiation step is greater than 1 

and the time elapsed in the negotiation is less than 4 seconds, represented by the global variable 

boulwareTime1; 

(defrule newPrice13 

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed < 

?*boulwareTime1*}(quantity ?q)) (Strategy {strategy == ?*boulware*}) 

    => (add (new Offer "newPrice13" (+ ?o (* 1 ?q)) ?*propose*))) 

2) The buyer will increase its previous offer o with 1000, when the negotiation step is greater 

than 1 and the time elapsed in the negotiation is greater than 4 seconds, represented by the global 

variable boulwareTime1; 
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(defrule newPrice14 

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed >= 

?*boulwareTime1*}(quantity ?q)) (Strategy {strategy == ?*boulware*}) 

 (Product (maxPrice ?maxPrice &: (> (* ?q ?maxPrice) (+ ?o (* 1000 

?q))))) => (add (new Offer "newPrice14" (+ ?o (* 1000 ?q)) ?*propose*))) 

3) The buyer will increase its previous offer o with 3000, when the negotiation step is greater 

than 1 and the time elapsed in the negotiation is greater than 4.5 seconds, represented by the global 

variable boulwareTime2; 

(defrule newPrice15 

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed >= 

?*boulwareTime2*}(quantity ?q)) (Strategy {strategy == ?*boulware*}) 

 (Product (maxPrice ?maxPrice &: (> (* ?q ?maxPrice) (+ ?o (* 3000 

?q))))) => (add (new Offer "newPrice15" (+ ?o (* 3000 ?q)) ?*propose*))) 

For the seller, regarding the ACCEPT communication primitive, there are the following rules: 

1) The seller will accept an offer from a non-cooperative or unknown buyer, for a certain 

quantity of q products, having the price between minPrice and maxPrice, with the price greater than 

q*(minPrice+maxPrice)/2; 

(defrule accept1 

 (NegotiationObject {buyerClassification == "nc" || 

buyerClassification == "u"} {step > 0}(currentOffer ?o) (quantity ?q)) 

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice &: (>= ?o (* ?q (/ 

(+ ?minPrice ?maxPrice) 2))))) => (add (new Offer "accept1" ?*accept*))) 

2) The seller will accept an offer from a slightly cooperative or cooperative buyer, for a certain 

quantity of q products, having the price between minPrice and maxPrice, with the price less than 

q*(maxPrice-(minPrice+maxPrice)/2); 

(defrule accept2 

 (NegotiationObject {buyerClassification == "sc" || 

buyerClassification == "c"} {step > 0}(currentOffer ?o) (quantity ?q)) 

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice &: (<= ?o (* ?q 

?maxPrice)) &: (> ?o (* ?q (/ (+ ?minPrice ?maxPrice) 2))))) 

    => (add (new Offer "accept2" ?*accept*))) 

3) The seller will accept an offer from a very cooperative or highly cooperative buyer, for a 

certain quantity of q products, having the price between minPrice and maxPrice, with the price lower 

than q*maxPrice; 

(defrule accept3 

 (NegotiationObject {buyerClassification == "vc" || 

buyerClassification == "hc"} {step > 0}(currentOffer ?o) (quantity ?q)) 

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice &: (<= ?o (* ?q 

?maxPrice)))) => (add (new Offer "accept3" ?*accept*))) 

For the REJECT communication primitive of the seller, there are the following rules: 

1) The seller will reject an offer for a negotiation object, received after a certain time threshold, 

which is defined as 5 seconds for each negotiation. The message Negotiation time elapsed is sent 

from the seller to the buyer; 

(defrule reject1 

 (NegotiationObject (timeElapsed ?te &: (>= ?te ?*maxNegTime*))) 

    => (add (new Offer "reject1" ?*reject* "Negotiation time 

elapsed."))) 

For the PROPOSE communication primitive of the seller, there are the following rules: 

1) The price proposed by a seller, in the beginning, for a certain quantity q of products, having 

the price between minPrice and maxPrice, to a non-cooperative or unknown buyer, is equal to 

q*maxPrice; 
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(defrule firstPrice1 

 (NegotiationObject {step == 0} {buyerClassification == "nc" || 

buyerClassification == "u"} (quantity ?q))(Product (maxPrice ?maxPrice)) 

    => (add (new Offer "firstPrice1" (* ?maxPrice ?q) ?*propose*))) 

2) The price proposed by a seller, in the beginning, for a certain quantity q of products, having 

the price between minPrice and maxPrice, to a slightly cooperative or cooperative buyer, is equal to 

q*(maxPrice-500); 

(defrule firstPrice2 

 (NegotiationObject {step == 0} {buyerClassification == "sc" || 

buyerClassification == "c"} (quantity ?q))(Product (maxPrice ?maxPrice)) 

    => (add (new Offer "firstPrice2" (* (- ?maxPrice 500) ?q) 

?*propose*))) 

3) The price proposed by a seller, in the beginning, for a certain quantity q of products, having 

the price between minPrice and maxPrice, to a very cooperative or highly cooperative buyer, is equal 

to q*(maxPrice-1000);  

(defrule firstPrice3 

 (NegotiationObject {step == 0} {buyerClassification == "vc" || 

buyerClassification == "hc"} (quantity ?q))(Product (maxPrice ?maxPrice)  ) 

    => (add (new Offer "firstPrice3" (* (- ?maxPrice 1000) ?q) 

?*propose*))) 

For the linear strategy of the seller, there are the following rules: 

1) The seller will decrease its previous offer o with 200, to the non-cooperative or unknown 

buyers, when the negotiation step is greater than 1; 

(defrule newPrice4 

 (NegotiationObject {step > 1} (previousOffer ?o) {buyerClassification 

== "nc" || buyerClassification == "u"}(quantity ?q)) 

 (Product (minPrice ?minPrice &: (<= (* ?q ?minPrice) (- ?o (* 200 

?q))))) (Strategy {strategy == ?*linear*}) 

    => (add (new Offer "newPrice4" (- ?o (* 200 ?q)) ?*propose*))) 

2) The seller will decrease its previous offer o with 400, to the slightly cooperative or 

cooperative buyers, when the negotiation step is greater than 1; 

(defrule newPrice5 

 (NegotiationObject {step > 1} (previousOffer ?o) {buyerClassification 

== "sc" || buyerClassification == "c"} 

  (quantity ?q)) (Strategy {strategy == ?*linear*}) 

 (Product (minPrice ?minPrice &: (<= (* ?q ?minPrice) (- ?o (* 400 

?q))))) => (add (new Offer "newPrice5" (- ?o (* 400 ?q)) ?*propose*))) 

3) The seller will decrease its previous offer o with 600, to the very cooperative or highly 

cooperative buyers, when the negotiation step is greater than 1; 

(defrule newPrice6 

 (NegotiationObject {step > 1} (previousOffer ?o) {buyerClassification 

== "vc" || buyerClassification == "hc"} 

  (quantity ?q)) (Strategy {strategy == ?*linear*}) 

 (Product (minPrice ?minPrice &: (<= (* ?q ?minPrice) (- ?o (* 600 

?q))))) => (add (new Offer "newPrice6" (- ?o (* 600 ?q)) ?*propose*))) 

For the conceder strategy of the seller, there are the following rules: 

1) The seller will decrease its previous offer o with 1500, to the non-cooperative or unknown 

buyers, when the negotiation step is greater than 1 and lower than 12; 

(defrule newPrice7 
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 (NegotiationObject {step > 1 && step < ?*concederRounds*} 

(previousOffer ?o) {buyerClassification == "nc" || buyerClassification == 

"u"}(quantity ?q)) 

 (Product (minPrice ?minPrice &: (<= (* ?q ?minPrice) (- ?o (* 1500 

?q))))) (Strategy {strategy == ?*conceder*}) 

    => (add (new Offer "newPrice7" (- ?o (* 1500 ?q)) ?*propose*))) 

2) The seller will decrease its previous offer o with 2000, to the slightly cooperative or 

cooperative buyers, when the negotiation step is greater than 1 and lower than 12; 

(defrule newPrice8 

 (NegotiationObject {step > 1 && step < ?*concederRounds*} 

(previousOffer ?o) {buyerClassification == "sc" || buyerClassification == 

"c"}(quantity ?q)) 

 (Product (minPrice ?minPrice &: (<= (* ?q ?minPrice) (- ?o (* 2000 

?q))))) (Strategy {strategy == ?*conceder*}) 

    => (add (new Offer "newPrice8" (- ?o (* 2000 ?q)) ?*propose*))) 

3) The seller will decrease its previous offer o with 2500, to the very cooperative or highly 

cooperative buyers, when the negotiation step is greater than 1 and lower than 12; 

(defrule newPrice9 

 (NegotiationObject {step > 1 && step < ?*concederRounds*} 

(previousOffer ?o) {buyerClassification == "vc" || buyerClassification == 

"hc"}(quantity ?q)) (Product (minPrice ?minPrice)) 

 (Strategy {strategy == ?*conceder*}) 

 (test (<= (* ?q ?minPrice) (- ?o (* 2500 ?q))))  

    => (add (new Offer "newPrice9" (- ?o (* 2500 ?q)) ?*propose*))) 

4) The seller will decrease its previous offer o with q*400, to the non-cooperative or unknown 

buyers, when the negotiation step is greater than 12; 

(defrule newPrice10 

 (NegotiationObject {step >= ?*concederRounds*} (previousOffer ?o) 

{buyerClassification == "nc" || buyerClassification == "u"}(quantity ?q)) 

 (Product (minPrice ?minPrice &: (<= (* ?q ?minPrice) (- ?o (* 400 

?q))))) (Strategy {strategy == ?*conceder*}) 

    => (add (new Offer "newPrice10" (- ?o (* 400 ?q)) ?*propose*))) 

5) The seller will decrease its previous offer o with q*600, to the slightly cooperative or 

cooperative buyers, when the negotiation step is greater than 12; 

(defrule newPrice11 

 (NegotiationObject {step >= ?*concederRounds*} (previousOffer ?o) 

{buyerClassification == "sc" || buyerClassification == "c"}(quantity ?q)) 

 (Product (minPrice ?minPrice &: (<= (* ?q ?minPrice) (- ?o (* 600 

?q))))) (Strategy {strategy == ?*conceder*}) 

    => (add (new Offer "newPrice11" (- ?o (* 600 ?q)) ?*propose*))) 

6) The seller will decrease its previous offer o with q*800, to the very cooperative or highly 

cooperative buyers, when the negotiation step is greater than 12; 

(defrule newPrice12 

 (NegotiationObject {step >= ?*concederRounds*} (previousOffer ?o) 

{buyerClassification == "vc" || buyerClassification == "hc"} 

  (quantity ?q)) (Strategy {strategy == ?*conceder*}) 

 (Product (minPrice ?minPrice &: (<= (* ?q ?minPrice) (- ?o (* 800 

?q))))) => (add (new Offer "newPrice12" (- ?o (* 800 ?q)) ?*propose*))) 

For the boulware strategy of the seller, there are the following rules: 
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1) The seller will decrease its previous offer o by 1, when the negotiation step is greater than 1 

and the time elapsed in the negotiation is less than 4 seconds, represented by the global variable 

boulwareTime1; 

(defrule newPrice13 

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed < 

?*boulwareTime1*}(quantity ?q)) (Strategy {strategy == ?*boulware*}) 

    => (add (new Offer "newPrice13" (- ?o ?q) ?*propose*))) 

2) The seller will decrease its previous offer o by 1000, when the negotiation step is greater 

than 1 and the time elapsed in the negotiation is greater than 4 seconds, represented by the global 

variable boulwareTime1; 

(defrule newPrice14 

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed >= 

?*boulwareTime1*} (quantity ?q)) 

 (Product (minPrice ?minPrice &: (<= (* ?q ?minPrice) (- ?o (* 1000 

?q))))) (Strategy {strategy == ?*boulware*}) 

    => (add (new Offer "newPrice14" (- ?o (* 1000 ?q)) ?*propose*))) 

3) The seller will decrease its previous offer o by 2000, when the negotiation step is greater 

than 1 and the time elapsed in the negotiation is greater than 4.5 seconds, represented by the global 

variable boulwareTime2; 

(defrule newPrice15 

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed >= 

?*boulwareTime2*} 

  (quantity ?q)) (Strategy {strategy == ?*boulware*}) 

 (Product (minPrice ?minPrice &: (<= (* ?q ?minPrice) (- ?o (* 2000 

?q))))) => (add (new Offer "newPrice15" (- ?o (* 2000 ?q)) ?*propose*))) 
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Annex 2. Car Dealer Automated Negotiation Rules 
 

The Jess rules upon which the negotiation is performed in the car dealer business model are 

described in this annex. First the rules of the buyer agent are presented, and then the rules associated 

to the seller agent. 

The rules associated to the ACCEPT communication primitive of the buyer are first defined. 

1) The first ACCEPT rule says that an offer for a quantity q for a certain product having the price 

between minPrice and maxPrice, from an unknown or non-cooperative partner is accepted, if the price 

is less than q*(minPrice+maxPrice)/2; 

(defrule accept1 

 (NegotiationObject {sellerClassification == "nc" || 

sellerClassification == "u"}(currentOffer ?o) (quantity ?q)) 

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice &: (<= ?o (* ?q (/ 

(+ ?minPrice ?maxPrice) 2))))) => (add (new Offer "accept1" ?*accept*)))  

2) The second ACCEPT rule deals with the case when an offer for a quantity q for a certain 

product having the price between minPrice and maxPrice, from a slightly cooperative or cooperative 

partner is accepted, if the price is between q*(minPrice+maxPrice)/2 and q*maxPrice;  

 (defrule accept2 
 (NegotiationObject {sellerClassification == "sc" || 

sellerClassification == "c"}(currentOffer ?o) (quantity ?q)) 

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice &: (<= ?o (* ?q 

?maxPrice)) &: (> ?o (* ?q (/ (+ ?minPrice ?maxPrice) 2)))))  

    => (add (new Offer "accept2" ?*accept*))) 

3)  The third ACCEPT rule deals with the case when an offer for a quantity q for a certain 

product having the price between minPrice and maxPrice, from a very cooperative or highly 

cooperative partner is accepted, if the price is less or equal than q*maxPrice; 

(defrule accept3 

 (NegotiationObject {sellerClassification == "vc" || 

sellerClassification == "hc"}(currentOffer ?o) (quantity ?q)) 

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice &: (<= ?o (* ?q 

?maxPrice)))) => (add (new Offer "accept3" ?*accept*))) 

For the REJECT communication primitive of the buyer, there is the following rule: 

1) The buyer will reject an offer for a negotiation object, received after a certain time threshold, 

which is defined as 5 seconds for each negotiation. The message Negotiation time elapsed is sent 

from the buyer to the seller; 

(defrule reject1 

 (NegotiationObject (timeElapsed ?te &: (>= ?te ?*maxNegTime*))) 

  => (add (new Offer "reject1" ?*reject* "Negotiation time 

elapsed."))) 

For the PROPOSE communication primitive of the buyer, there are the following rules: 

1) The price offered by a buyer, in the beginning, for a certain quantity q of products, having the 

price between minPrice and maxPrice, to a non-cooperative or unknown seller, is equal to q*minPrice; 

(defrule firstPrice1 

 (NegotiationObject {step == 1} {sellerClassification == "nc" || 

sellerClassification == "u"} (quantity ?q))(Product (minPrice ?minPrice)) 

    => (add (new Offer "firstPrice1" (* ?q ?minPrice) ?*propose*))) 

2) The price offered by a buyer, in the beginning, for a certain quantity q of products, having the 

price between minPrice and maxPrice, to a slightly cooperative or cooperative seller, is equal to 

q*(minPrice+50); 

(defrule firstPrice2 
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 (NegotiationObject {step == 1} {sellerClassification == "sc" || 

sellerClassification == "c"} (quantity ?q))(Product (minPrice ?minPrice)) 

    => (add (new Offer "firstPrice2" (* ?q (+ 50 ?minPrice)) 

?*propose*))) 

3) The price offered by a buyer, in the beginning, for a certain quantity q of products, having the 

price between minPrice and maxPrice, to a very cooperative or highly cooperative seller, is equal to 

q*(minPrice+100); 

(defrule firstPrice3 

 (NegotiationObject {step == 1} {sellerClassification == "vc" || 

sellerClassification == "hc"} (quantity ?q))(Product (minPrice ?minPrice)) 

    => (add (new Offer "firstPrice3" (* ?q (+ 100 ?minPrice)) 

?*propose*)))  

For the linear strategy of the buyer, there are the following rules: 

1) The buyer will increase its previous offer o with 100, to the non-cooperative or unknown 

sellers, when the negotiation step is greater than 1; 

(defrule newPrice4 

 (NegotiationObject {step > 1} (previousOffer ?o) 

{sellerClassification == "nc" || sellerClassification == "u"} 

  (quantity ?q)) (Strategy {strategy == ?*linear*}) 

 (Product (maxPrice ?maxPrice)) 

    => (if (> (* ?q ?maxPrice) (+ ?o (* 100 ?q))) then 

     (add (new Offer "newPrice4" (+ ?o (* 100 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice4" (* ?q ?maxPrice) ?*propose*)))) 

2) The buyer will increase its previous offer o with 150, to the slightly cooperative or cooperative 

sellers, when the negotiation step is greater than 1; 

(defrule newPrice5 

 (NegotiationObject {step > 1} (previousOffer ?o) 

{sellerClassification == "sc" || sellerClassification == "c"} 

  (quantity ?q)) (Strategy {strategy == ?*linear*}) 

 (Product (maxPrice ?maxPrice)) 

    => (if (> (* ?q ?maxPrice) (+ ?o (* 150 ?q))) then 

     (add (new Offer "newPrice5" (+ ?o (* 150 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice5" (* ?q ?maxPrice) ?*propose*)))) 

3) The buyer will increase its previous offer o with 200, to the very cooperative or highly 

cooperative sellers, when the negotiation step is greater than 1; 

(defrule newPrice6 

 (NegotiationObject {step > 1} (previousOffer ?o) 

{sellerClassification == "vc" || sellerClassification == "hc"} 

  (quantity ?q)) (Strategy {strategy == ?*linear*}) 

 (Product (maxPrice ?maxPrice)) 

    => (if (> (* ?q ?maxPrice) (+ ?o (* 200 ?q))) then 

     (add (new Offer "newPrice6" (+ ?o (* 200 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice6" (* ?q ?maxPrice) ?*propose*)))) 

For the conceder strategy of the buyer, there are the following rules: 

1) The buyer will increase its previous offer o with 700, to the non-cooperative or unknown 

sellers, when the negotiation step is greater than 1 and lower than 12; 

(defrule newPrice7 

 (NegotiationObject {step > 1 && step < ?*concederRounds*} 

(previousOffer ?o) {buyerClassification == "nc" || buyerClassification == 

"u"}(quantity ?q)) (Product (maxPrice ?maxPrice)) 

 (Strategy {strategy == ?*conceder*}) 
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    => (if (> (* ?q ?maxPrice) (+ ?o (* 700 ?q))) then 

     (add (new Offer "newPrice7" (+ ?o (* 700 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice7" (* ?q ?maxPrice) ?*propose*)))) 

2) The buyer will increase its previous offer o with 800, to the slightly cooperative or cooperative 

buyers, when the negotiation step is greater than 1 and lower than 12; 

(defrule newPrice8 

 (NegotiationObject {step > 1 && step < ?*concederRounds*} 

(previousOffer ?o) {buyerClassification == "sc" || buyerClassification == 

"c"}(quantity ?q)) (Product (maxPrice ?maxPrice)) 

 (Strategy {strategy == ?*conceder*}) 

    => (if (> (* ?q ?maxPrice) (+ ?o (* 800 ?q))) then 

     (add (new Offer "newPrice8" (+ ?o (* 800 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice8" (* ?q ?maxPrice) ?*propose*)))) 

3) The buyer will increase its previous offer o with 900, to the very cooperative or highly 

cooperative sellers, when the negotiation step is greater than 1 and lower than 12; 

(defrule newPrice9 

 (NegotiationObject {step > 1 && step < ?*concederRounds*} 

(previousOffer ?o) {buyerClassification == "vc" || buyerClassification == 

"hc"}(quantity ?q)) (Product (maxPrice ?maxPrice)) 

 (Strategy {strategy == ?*conceder*}) 

    => (if (> (* ?q ?maxPrice) (+ ?o (* 900 ?q))) then 

     (add (new Offer "newPrice9" (+ ?o (* 900 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice9" (* ?q ?maxPrice) ?*propose*)))) 

4) The buyer will increase its previous offer o with 100, to the non-cooperative or unknown 

sellers, when the negotiation step is greater than 12; 

(defrule newPrice10 

 (NegotiationObject {step >= ?*concederRounds*} (previousOffer ?o) 

{sellerClassification == "nc" || sellerClassification == "u"} 

  (quantity ?q)) (Strategy {strategy == ?*conceder*}) 

 (Product (maxPrice ?maxPrice)) 

    => (if (> (* ?q ?maxPrice) (+ ?o (* 100 ?q))) then 

     (add (new Offer "newPrice10" (+ ?o (* 100 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice10" (* ?q ?maxPrice) ?*propose*))))  

5) The buyer will increase its previous offer o with 150, to the slightly cooperative or cooperative 

sellers, when the negotiation step is greater than 12; 

(defrule newPrice11 

 (NegotiationObject {step >= ?*concederRounds*} (previousOffer ?o) 

{sellerClassification == "sc" || sellerClassification == "c"} 

  (quantity ?q)) (Strategy {strategy == ?*conceder*}) 

 (Product (maxPrice ?maxPrice)) 

    => (if (> (* ?q ?maxPrice) (+ ?o (* 150 ?q))) then 

     (add (new Offer "newPrice11" (+ ?o (* 150 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice11" (* ?q ?maxPrice) ?*propose*))))  
6) The buyer will increase its previous offer o with 200, to the very cooperative or highly 

cooperative sellers, when the negotiation step is greater than 12; 

(defrule newPrice12 

 (NegotiationObject {step >= ?*concederRounds*} (previousOffer ?o) 

{sellerClassification == "vc" || sellerClassification == "hc"} 

  (quantity ?q)) (Strategy {strategy == ?*conceder*}) 

 (Product (maxPrice ?maxPrice)) 

    => (if (> (* ?q ?maxPrice) (+ ?o (* 200 ?q))) then 
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     (add (new Offer "newPrice12" (+ ?o (* 200 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice12" (* ?q ?maxPrice) ?*propose*))))  

For the boulware strategy of the buyer, there are the following rules: 

1) The buyer will increase its previous offer o with 1, when the negotiation step is greater than 1 

and the time elapsed in the negotiation is less than 4 seconds, represented by the global variable 

boulwareTime1; 

(defrule newPrice13 

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed < 

?*boulwareTime1*}(quantity ?q)) (Strategy {strategy == ?*boulware*}) 

    => (add (new Offer "newPrice13" (+ ?o (* 1 ?q)) ?*propose*))) 

2) The buyer will increase its previous offer o with 800, when the negotiation step is greater than 

1 and the time elapsed in the negotiation is greater than 4 seconds, represented by the global variable 

boulwareTime1; 

(defrule newPrice14 

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed >= 

?*boulwareTime1*}(quantity ?q)) (Strategy {strategy == ?*boulware*}) 

 (Product (maxPrice ?maxPrice)) 

    => (if (> (* ?q ?maxPrice) (+ ?o (* 800 ?q))) then 

     (add (new Offer "newPrice14" (+ ?o (* 800 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice14" (* ?q ?maxPrice) ?*propose*)))) 

3) The buyer will increase its previous offer o with 1000, when the negotiation step is greater 

than 1 and the time elapsed in the negotiation is greater than 4.5 seconds, represented by the global 

variable boulwareTime2; 

(defrule newPrice15 

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed >= 

?*boulwareTime2*}(quantity ?q)) (Strategy {strategy == ?*boulware*}) 

 (Product (maxPrice ?maxPrice)) 

    => (if (> (* ?q ?maxPrice) (+ ?o (* 1000 ?q))) then 

     (add (new Offer "newPrice14" (+ ?o (* 1000 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice14" (* ?q ?maxPrice) ?*propose*)))) 

For the seller, regarding the ACCEPT communication primitive, there are the following rules: 

1) The seller will accept an offer from a non-cooperative or unknown buyer, for a certain 

quantity of q products, having the price between minPrice and maxPrice, with the price greater than 

q*(minPrice+maxPrice)/2; 

(defrule accept1 

 (NegotiationObject {buyerClassification == "nc" || 

buyerClassification == "u"} {step > 0}(currentOffer ?o) (quantity ?q)) 

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice &: (>= ?o (* ?q (/ 

(+ ?minPrice ?maxPrice) 2))))) => (add (new Offer "accept1" ?*accept*))) 

2) The seller will accept an offer from a slightly cooperative or cooperative buyer, for a certain 

quantity of q products, having the price between minPrice and maxPrice, with the price between 

q*(minPrice+maxPrice)/2 and q*maxPrice; 

(defrule accept2 

 (NegotiationObject {buyerClassification == "sc" || 

buyerClassification == "c"} {step > 0}(currentOffer ?o) (quantity ?q)) 

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice &: (<= ?o (* ?q 

?maxPrice)) &: (> ?o (* ?q (/ (+ ?minPrice ?maxPrice) 2))))) 

    => (add (new Offer "accept2" ?*accept*))) 

3) The seller will accept an offer from a very cooperative or highly cooperative buyer, for a 

certain quantity of q products, having the price between minPrice and maxPrice, with the price lower 

than or equal to q*maxPrice; 
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(defrule accept3 

 (NegotiationObject {buyerClassification == "vc" || 

buyerClassification == "hc"} {step > 0}(currentOffer ?o) (quantity ?q)) 

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice &: (<= ?o (* ?q 

?maxPrice)))) => (add (new Offer "accept3" ?*accept*))) 

For the REJECT communication primitive of the seller, there are the following rules: 

1) The seller will reject an offer for a negotiation object, received after a certain time threshold, 

which is defined as 5 seconds for each negotiation. The message Negotiation time elapsed is sent 

from the seller to the buyer; 

(defrule reject1 

 (NegotiationObject (timeElapsed ?te &: (>= ?te ?*maxNegTime*))) 

    => (add (new Offer "reject1" ?*reject* "Negotiation time 

elapsed."))) 

For the PROPOSE communication primitive of the seller, there are the following rules: 

1) The price proposed by a seller, in the beginning, for a certain quantity q of products, having 

the price between minPrice and maxPrice, to a non-cooperative or unknown buyer, is equal to: 

a) q*maxPrice, if q≤10; 

b) q*maxPrice*0.95, if 10<q<20; 

c) q*maxPrice*0.85, if q≥20. 

(defrule firstPrice1 

 (NegotiationObject {step == 0} {buyerClassification == "nc" || 

buyerClassification == "u"} (quantity ?q))(Product (maxPrice ?maxPrice)) 

    => (if (and (> ?q 10) (< ?q 20)) then  

     (add (new Offer "firstPrice1" (* (* ?maxPrice 0.95) ?q) 

?*propose*)) elif (>= ?q 20) then 

      (add (new Offer "firstPrice1" (* (* ?maxPrice 0.85) ?q) 

?*propose*)) else 

      (add (new Offer "firstPrice1" (* ?maxPrice ?q) ?*propose*)))) 

2) The price proposed by a seller, in the beginning, for a certain quantity q of products, having 

the price between minPrice and maxPrice, to a slightly cooperative or cooperative buyer, is equal to: 

a) q*(maxPrice-150), if q≤10; 

b) q*maxPrice*0.9, if 10<q<20; 

c) q*maxPrice*0.8, if q≥20. 

(defrule firstPrice2 

 (NegotiationObject {step == 0} {buyerClassification == "sc" || 

buyerClassification == "c"} (quantity ?q))(Product (maxPrice ?maxPrice)  ) 

    => (if (and (> ?q 10) (< ?q 20)) then  

     (add (new Offer "firstPrice2" (* (* ?maxPrice 0.90) ?q) 

?*propose*)) elif (> ?q 20) then 

      (add (new Offer "firstPrice2" (* (* ?maxPrice 0.80) ?q) 

?*propose*)) else 

      (add (new Offer "firstPrice2" (* (- ?maxPrice 150) ?q) 

?*propose*)))) 

3) The price proposed by a seller, in the beginning, for a certain quantity q of products, having 

the price between minPrice and maxPrice, to a very cooperative or highly cooperative buyer, is equal 

to:   

a) q*(maxPrice-250), if q≤10; 

b) q*maxPrice*0.85, if 10<q<20; 

c) q*maxPrice*0.75, if q≥20. 

(defrule firstPrice3 



 169 

 (NegotiationObject {step == 0} {buyerClassification == "vc" || 

buyerClassification == "hc"} (quantity ?q))(Product (maxPrice ?maxPrice)) 

    => (if (and (> ?q 10) (< ?q 20)) then  

     (add (new Offer "firstPrice3" (* (* ?maxPrice 0.85) ?q) 

?*propose*)) elif (> ?q 20) then 

      (add (new Offer "firstPrice3" (* (* ?maxPrice 0.75) ?q) 

?*propose*)) else 

      (add (new Offer "firstPrice3" (* (- ?maxPrice 250) ?q) 

?*propose*)))) 

For the linear strategy of the seller, there are the following rules: 

1) The seller will decrease its previous offer o with 100, to the non-cooperative or unknown 

buyers, when the negotiation step is greater than 1; 

(defrule newPrice4 

 (NegotiationObject {step > 1} (previousOffer ?o) {buyerClassification 

== "nc" || buyerClassification == "u"} (quantity ?q)) (Product (minPrice 

?minPrice)) (Strategy {strategy == ?*linear*}) 

    => (if (<= (* ?q ?minPrice) (- ?o (* 100 ?q))) then 

     (add (new Offer "newPrice4" (- ?o (* 100 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice4" (* ?q ?minPrice) ?*propose*)))) 

2) The seller will decrease its previous offer o with 150, to the slightly cooperative or 

cooperative buyers, when the negotiation step is greater than 1; 

(defrule newPrice5 

 (NegotiationObject {step > 1} (previousOffer ?o) {buyerClassification 

== "sc" || buyerClassification == "c"} (quantity ?q)) (Product (minPrice 

?minPrice)) (Strategy {strategy == ?*linear*}) 

    => (if (<= (* ?q ?minPrice) (- ?o (* 150 ?q))) then 

     (add (new Offer "newPrice5" (- ?o (* 150 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice5" (* ?q ?minPrice) ?*propose*)))) 

3) The seller will decrease its previous offer o with 200, to the very cooperative or highly 

cooperative buyers, when the negotiation step is greater than 1; 

(defrule newPrice6 

 (NegotiationObject {step > 1} (previousOffer ?o) {buyerClassification 

== "vc" || buyerClassification == "hc"} (quantity ?q)) (Product (minPrice 

?minPrice)) (Strategy {strategy == ?*linear*}) 

    => (if (<= (* ?q ?minPrice) (- ?o (* 200 ?q))) then 

     (add (new Offer "newPrice6" (- ?o (* 200 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice6" (* ?q ?minPrice) ?*propose*)))) 

For the conceder strategy of the seller, there are the following rules: 

1) The seller will decrease its previous offer o with 700, to the non-cooperative or unknown 

buyers, when the negotiation step is greater than 1 and lower than 12; 

(defrule newPrice7 

 (NegotiationObject {step > 1 && step < ?*concederRounds*} 

(previousOffer ?o) {buyerClassification == "nc" || buyerClassification == 

"u"}(quantity ?q)) (Product (minPrice ?minPrice)) 

(Strategy {strategy == ?*conceder*}) 

    => (if (<= (* ?q ?minPrice) (- ?o (* 700 ?q))) then 

     (add (new Offer "newPrice7" (- ?o (* 700 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice7" (* ?q ?minPrice) ?*propose*)))) 

2) The seller will decrease its previous offer o with 800, to the slightly cooperative or 

cooperative buyers, when the negotiation step is greater than 1 and lower than 12; 

(defrule newPrice8 
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 (NegotiationObject {step > 1 && step < ?*concederRounds*} 

(previousOffer ?o) {buyerClassification == "sc" || buyerClassification == 

"c"}(quantity ?q)) (Product (minPrice ?minPrice)) 

 (Strategy {strategy == ?*conceder*}) 

    => (if (<= (* ?q ?minPrice) (- ?o (* 800 ?q))) then 

     (add (new Offer "newPrice8" (- ?o (* 800 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice8" (* ?q ?minPrice) ?*propose*))))  

3) The seller will decrease its previous offer o with 900, to the very cooperative or highly 

cooperative buyers, when the negotiation step is greater than 1 and lower than 12; 

(defrule newPrice9 

 (NegotiationObject {step > 1 && step < ?*concederRounds*} 

(previousOffer ?o) {buyerClassification == "vc" || buyerClassification == 

"hc"}(quantity ?q)) (Product (minPrice ?minPrice)) 

 (Strategy {strategy == ?*conceder*}) 

    => (if (<= (* ?q ?minPrice) (- ?o (* 900 ?q))) then 

     (add (new Offer "newPrice9" (- ?o (* 900 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice9" (* ?q ?minPrice) ?*propose*)))) 

4) The seller will decrease its previous offer o with 100, to the non-cooperative or unknown 

buyers, when the negotiation step is greater than 12; 

(defrule newPrice10 

 (NegotiationObject {step >= ?*concederRounds*} (previousOffer ?o) 

{buyerClassification == "nc" || buyerClassification == "u"} 

  (quantity ?q)) (Product (minPrice ?minPrice)) 

 (Strategy {strategy == ?*conceder*}) 

    => (if (<= (* ?q ?minPrice) (- ?o (* 100 ?q))) then 

     (add (new Offer "newPrice10" (- ?o (* 100 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice10" (* ?q ?minPrice) ?*propose*)))) 

5) The seller will decrease its previous offer o with 150, to the slightly cooperative or 

cooperative buyers, when the negotiation step is greater than 12; 

(defrule newPrice11 

 (NegotiationObject {step >= ?*concederRounds*} (previousOffer ?o) 

{buyerClassification == "sc" || buyerClassification == "c"} 

  (quantity ?q)) (Product (minPrice ?minPrice)) 

 (Strategy {strategy == ?*conceder*}) 

    => (if (<= (* ?q ?minPrice) (- ?o (* 150 ?q))) then 

     (add (new Offer "newPrice11" (- ?o (* 150 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice11" (* ?q ?minPrice) ?*propose*)))) 

6) The seller will decrease its previous offer o with 200, to the very cooperative or highly 

cooperative buyers, when the negotiation step is greater than 12; 

(defrule newPrice12 

 (NegotiationObject {step >= ?*concederRounds*} (previousOffer ?o) 

{buyerClassification == "vc" || buyerClassification == "hc"} 

  (quantity ?q)) (Product (minPrice ?minPrice)) 

 (Strategy {strategy == ?*conceder*}) 

    => (if (<= (* ?q ?minPrice) (- ?o (* 200 ?q))) then 

     (add (new Offer "newPrice12" (- ?o (* 200 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice12" (* ?q ?minPrice) ?*propose*)))) 

For the boulware strategy of the seller, there are the following rules: 

1) The seller will decrease its previous offer o by 1*q, when the negotiation step is greater than 

1 and the time elapsed in the negotiation is less than 4 seconds, represented by the global variable 

boulwareTime1; 
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(defrule newPrice13 

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed < 

?*boulwareTime1*}(quantity ?q)) (Strategy {strategy == ?*boulware*}) 

    => (add (new Offer "newPrice13" (- ?o ?q) ?*propose*))) 

2) The seller will decrease its previous offer o by 800*q, when the negotiation step is greater 

than 1 and the time elapsed in the negotiation is greater than 4 seconds, represented by the global 

variable boulwareTime1; 

(defrule newPrice14 

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed >= 

?*boulwareTime1*}(quantity ?q)) (Product (minPrice ?minPrice)) 

 (Strategy {strategy == ?*boulware*}) 

    => (if (<= (* ?q ?minPrice) (- ?o (* 800 ?q))) then 

     (add (new Offer "newPrice14" (- ?o (* 800 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice14" (* ?q ?minPrice) ?*propose*))))   

3) The seller will decrease its previous offer o by 1000*q, when the negotiation step is greater 

than 1 and the time elapsed in the negotiation is greater than 4.5 seconds, represented by the global 

variable boulwareTime2; 

(defrule newPrice15 

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed >= 

?*boulwareTime2*}(quantity ?q)) (Strategy {strategy == ?*boulware*}) 

 (Product (minPrice ?minPrice)) 

    => (if (<= (* ?q ?minPrice) (- ?o (* 1000 ?q))) then 

     (add (new Offer "newPrice15" (- ?o (* 1000 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice15" (* ?q ?minPrice) ?*propose*)))) 
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Annex 3. Emergency Hospital Automated Negotiation Rules 
 

The Jess rules upon which the negotiation is performed in the emergency hospital business 

model are described in this annex. First the rules of the buyer agent are presented, and then the rules 

associated to the seller agent. 

The rules assciated to the ACCEPT communication primitive of the buyer are first defined. 

1) The first ACCEPT rule says that an offer for a quantity q for a certain product having the price 

between minPrice and maxPrice, from an unknown, non-cooperative or slightly cooperative partner is 

accepted, if the price fulfills different conditions, with respect to the negotiation time elapsed, 

expressed below; 

(defrule accept1 

 (NegotiationObject {sellerClassification == "nc" || 

sellerClassification == "u" || sellerClassification == "sc"} 

   (currentOffer ?o) (quantity ?q) (timeElapsed ?te)) 

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice)) 

    => (bind ?half (* ?q (/ (+ ?minPrice ?maxPrice) 2))) 

    (bind ?quarter (* ?q (/ (+ ?minPrice ?half) 2))) 

    (bind ?test1 (and (<= ?o (* ?q (+ ?minPrice 10))) (<= ?te (* 0.6 

?*maxNegTime*)))) 

    (bind ?test2 (and (<= ?o (* ?quarter ?q)) (and (> ?te (* 0.6 

?*maxNegTime*)) (<= ?te (* 0.8 ?*maxNegTime*))))) 

    (bind ?test3 (and (<= ?o ( * ?q ?half)) (> ?te (* 0.8 

?*maxNegTime*)))) 

    (if (or ?test1 ?test2 ?test3) then (add (new Offer "accept1" 

?*accept*)))) 

2) The second ACCEPT rule deals with the case when an offer for a quantity q for a certain 

product having the price between minPrice and maxPrice, from a cooperative, very cooperative or 

highly cooperative partner is accepted, if the price fulfills different conditions, with respect to the 

negotiation time elapsed, expressed below; 

(defrule accept2 

 (NegotiationObject {sellerClassification == "c" || 

sellerClassification == "vc" || sellerClassification == "hc"}  

  (currentOffer ?o) (quantity ?q) (timeElapsed ?te)) 

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice)) 

    => (bind ?half (* ?q (/ (+ ?minPrice ?maxPrice) 2))) 

    (bind ?threeQuarters (* ?q (/ (+ ?maxPrice ?half) 2))) 

    (bind ?test1 (and (<= ?o (* ?q (+ ?half 10))) (<= ?te (* 0.6 

?*maxNegTime*)))) 

    (bind ?test2 (and (<= ?o (* ?threeQuarters ?q)) (and (> ?te (* 0.6 

?*maxNegTime*)) (<= ?te (* 0.8 ?*maxNegTime*))))) 

    (bind ?test3 (and (<= ?o ( * ?q ?maxPrice)) (> ?te (* 0.8 

?*maxNegTime*)))) 

    (if (or ?test1 ?test2 ?test3) then (add (new Offer "accept2"  

?*accept*)))) 

For the REJECT communication primitive of the buyer, there is the following rule: 

1) The buyer will reject an offer for a negotiation object, received after a certain time threshold, 

which is defined as 3 seconds for each negotiation. The message Negotiation time elapsed is sent 

from the buyer to the seller; 

(defrule reject1 
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 (NegotiationObject (timeElapsed ?te &: (>= ?te ?*maxNegTime*))) 

  => (add (new Offer "reject1" ?*reject* "Negotiation time 

elapsed."))) 

For the PROPOSE communication primitive of the buyer, there are the following rules: 

1) The price offered by a buyer, in the beginning, for a certain quantity q of products, having the 

price between minPrice and maxPrice, to a non-cooperative or unknown seller, is equal to q*minPrice; 

(defrule firstPrice1 

 (NegotiationObject {step == 1} {sellerClassification == "nc" || 

sellerClassification == "u"} (quantity ?q))(Product (minPrice ?minPrice)) 

    => (add (new Offer "firstPrice1" (* ?q ?minPrice) ?*propose*))) 

2) The price offered by a buyer, in the beginning, for a certain quantity q of products, having the 

price between minPrice and maxPrice, to a slightly cooperative or cooperative seller, is equal to 

q*(minPrice+5); 

(defrule firstPrice2 

 (NegotiationObject {step == 1} {sellerClassification == "sc" || 

sellerClassification == "c"} (quantity ?q))(Product (minPrice ?minPrice)) 

    => (add (new Offer "firstPrice2" (* ?q (+ 5 ?minPrice)) 

?*propose*))) 

3) The price offered by a buyer, in the beginning, for a certain quantity q of products, having the 

price between minPrice and maxPrice, to a very cooperative or highly cooperative seller, is equal to 

q*(minPrice+10); 

(defrule firstPrice3 

 (NegotiationObject {step == 1} {sellerClassification == "vc" || 

sellerClassification == "hc"} (quantity ?q))(Product (minPrice ?minPrice)) 

    => (add (new Offer "firstPrice3" (* ?q (+ 10 ?minPrice)) 

?*propose*))) 

For the linear strategy of the buyer, there are the following rules: 

1) The buyer will increase its previous offer o with 2, to the non-cooperative or unknown sellers, 

when the negotiation step is greater than 1; 

(defrule newPrice4 

 (NegotiationObject {step > 1} (previousOffer ?o) 

{sellerClassification == "nc" || sellerClassification == "u"} 

  (quantity ?q)) (Strategy {strategy == ?*linear*}) 

 (Product (maxPrice ?maxPrice)) 

    => (if (> (* ?q ?maxPrice) (+ ?o (* 2 ?q))) then 

     (add (new Offer "newPrice4" (+ ?o (* 2 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice4" (* ?q ?maxPrice) ?*propose*)))) 

2) The buyer will increase its previous offer o with 4, to the slightly cooperative or cooperative 

sellers, when the negotiation step is greater than 1; 

(defrule newPrice5 

 (NegotiationObject {step > 1} (previousOffer ?o) 

{sellerClassification == "sc" || sellerClassification == "c"} 

  (quantity ?q)) (Strategy {strategy == ?*linear*}) 

 (Product (maxPrice ?maxPrice)) 

    => (if (> (* ?q ?maxPrice) (+ ?o (* 4 ?q))) then 

     (add (new Offer "newPrice5" (+ ?o (* 4 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice5" (* ?q ?maxPrice) ?*propose*)))) 

3) The buyer will increase its previous offer o with 6, to the very cooperative or highly 

cooperative sellers, when the negotiation step is greater than 1; 

(defrule newPrice6 
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 (NegotiationObject {step > 1} (previousOffer ?o) 

{sellerClassification == "vc" || sellerClassification == "hc"} 

  (quantity ?q)) (Strategy {strategy == ?*linear*}) 

 (Product (maxPrice ?maxPrice)) 

    => (if (> (* ?q ?maxPrice) (+ ?o (* 6 ?q))) then 

     (add (new Offer "newPrice6" (+ ?o (* 6 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice6" (* ?q ?maxPrice) ?*propose*)))) 

For the conceder strategy of the buyer, there are the following rules: 

1) The buyer will increase its previous offer o with 15, to the non-cooperative or unknown 

sellers, when the negotiation step is greater than 1 and lower than 12; 

(defrule newPrice7 

 (NegotiationObject {step > 1 && step < ?*concederRounds*} 

(previousOffer ?o) {buyerClassification == "nc" || buyerClassification == 

"u"}(quantity ?q)) (Product (maxPrice ?maxPrice)) 

 (Strategy {strategy == ?*conceder*}) 

    => (if (> (* ?q ?maxPrice) (+ ?o (* 15 ?q))) then 

     (add (new Offer "newPrice7" (+ ?o (* 15 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice7" (* ?q ?maxPrice) ?*propose*)))) 

2) The buyer will increase its previous offer o with 20, to the slightly cooperative or cooperative 

buyers, when the negotiation step is greater than 1 and lower than 12; 

(defrule newPrice8 

 (NegotiationObject {step > 1 && step < ?*concederRounds*} 

(previousOffer ?o) {buyerClassification == "sc" || buyerClassification == 

"c"}(quantity ?q)) (Product (maxPrice ?maxPrice)) 

 (Strategy {strategy == ?*conceder*}) 

    => (if (> (* ?q ?maxPrice) (+ ?o (* 20 ?q))) then 

     (add (new Offer "newPrice8" (+ ?o (* 20 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice8" (* ?q ?maxPrice) ?*propose*)))) 

3) The buyer will increase its previous offer o with 25, to the very cooperative or highly 

cooperative sellers, when the negotiation step is greater than 1 and lower than 12; 

(defrule newPrice9 

 (NegotiationObject {step > 1 && step < ?*concederRounds*} 

(previousOffer ?o) {buyerClassification == "vc" || buyerClassification == 

"hc"}(quantity ?q)) (Product (maxPrice ?maxPrice)) 

 (Strategy {strategy == ?*conceder*}) 

    => (if (> (* ?q ?maxPrice) (+ ?o (* 25 ?q))) then 

     (add (new Offer "newPrice9" (+ ?o (* 25 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice9" (* ?q ?maxPrice) ?*propose*)))) 

4) The buyer will increase its previous offer o with 2, to the non-cooperative or unknown sellers, 

when the negotiation step is greater than 12; 

(defrule newPrice10 

 (NegotiationObject {step >= ?*concederRounds*} (previousOffer ?o) 

{sellerClassification == "nc" || sellerClassification == "u"} 

  (quantity ?q)) (Strategy {strategy == ?*conceder*}) 

 (Product (maxPrice ?maxPrice)) 

    => (if (> (* ?q ?maxPrice) (+ ?o (* 2 ?q))) then 

     (add (new Offer "newPrice10" (+ ?o (* 2 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice10" (* ?q ?maxPrice) ?*propose*)))) 

5) The buyer will increase its previous offer o with 4, to the slightly cooperative or cooperative 

sellers, when the negotiation step is greater than 12; 

(defrule newPrice11 
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 (NegotiationObject {step >= ?*concederRounds*} (previousOffer ?o) 

{sellerClassification == "sc" || sellerClassification == "c"} 

  (quantity ?q)) (Strategy {strategy == ?*conceder*}) 

 (Product (maxPrice ?maxPrice)) 

    => (if (> (* ?q ?maxPrice) (+ ?o (* 4 ?q))) then 

     (add (new Offer "newPrice11" (+ ?o (* 4 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice11" (* ?q ?maxPrice) ?*propose*)))) 

6) The buyer will increase its previous offer o with 6, to the very cooperative or highly 

cooperative sellers, when the negotiation step is greater than 12; 

(defrule newPrice12 

 (NegotiationObject {step >= ?*concederRounds*} (previousOffer ?o) 

{sellerClassification == "vc" || sellerClassification == "hc"} 

  (quantity ?q)) (Strategy {strategy == ?*conceder*}) 

 (Product (maxPrice ?maxPrice)) 

    => (if (> (* ?q ?maxPrice) (+ ?o (* 6 ?q))) then 

     (add (new Offer "newPrice12" (+ ?o (* 6 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice12" (* ?q ?maxPrice) ?*propose*)))) 

For the boulware strategy of the buyer, there are the following rules: 

1) The buyer will increase its previous offer o with 0.1, when the negotiation step is greater than 

1 and the time elapsed in the negotiation is less than 2 seconds, represented by the global variable 

boulwareTime1; 

(defrule newPrice13 

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed < 

?*boulwareTime1*}(quantity ?q)) (Strategy {strategy == ?*boulware*}) 

    => (add (new Offer "newPrice13" (+ ?o (* 0.1 ?q)) ?*propose*))) 

2) The buyer will increase its previous offer o with 10, when the negotiation step is greater than 

1 and the time elapsed in the negotiation is greater than 2 seconds, represented by the global variable 

boulwareTime1; 

(defrule newPrice14 

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed >= 

?*boulwareTime1*}(quantity ?q)) (Strategy {strategy == ?*boulware*}) 

 (Product (maxPrice ?maxPrice)) 

    => (if (> (* ?q ?maxPrice) (+ ?o (* 10 ?q))) then 

     (add (new Offer "newPrice14" (+ ?o (* 10 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice14" (* ?q ?maxPrice) ?*propose*))))  

3) The buyer will increase its previous offer o with 1000, when the negotiation step is greater 

than 1 and the time elapsed in the negotiation is greater than 2.5 seconds, represented by the global 

variable boulwareTime2; 

(defrule newPrice15 

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed >= 

?*boulwareTime2*}(quantity ?q)) (Strategy {strategy == ?*boulware*}) 

 (Product (maxPrice ?maxPrice)) 

    => (if (> (* ?q ?maxPrice) (+ ?o (* 20 ?q))) then 

     (add (new Offer "newPrice15" (+ ?o (* 20 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice15" (* ?q ?maxPrice) ?*propose*))))    

For the seller, regarding the ACCEPT communication primitive, there are the following rules: 

1) The seller will accept an offer from a non-cooperative or unknown buyer, for a certain 

quantity of q products, having the price between minPrice and maxPrice, with the price greater than 

q*(minPrice+maxPrice)/2; 

(defrule accept1 
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 (NegotiationObject {buyerClassification == "nc" || 

buyerClassification == "u"} {step > 0}(currentOffer ?o) (quantity ?q)) 

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice &: (>= ?o (* ?q (/ 

(+ ?minPrice ?maxPrice) 2))))) => (add (new Offer "accept1" ?*accept*))) 

2) The seller will accept an offer from a slightly cooperative or cooperative buyer, for a certain 

quantity of q products, having the price between minPrice and maxPrice, with the price between 

q*(minPrice+maxPrice)/2 and q*maxPrice; 

(defrule accept2 

 (NegotiationObject {buyerClassification == "sc" || 

buyerClassification == "c"} {step > 0}(currentOffer ?o) (quantity ?q)) 

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice &: (<= ?o (* ?q 

?maxPrice)) &: (> ?o (* ?q (/ (+ ?minPrice ?maxPrice) 2))))) 

    => (add (new Offer "accept2" ?*accept*))) 

3) The seller will accept an offer from a very cooperative or highly cooperative buyer, for a 

certain quantity of q products, having the price between minPrice and maxPrice, with the price lower 

than or equal to q*maxPrice; 

(defrule accept3 

 (NegotiationObject {buyerClassification == "vc" || 

buyerClassification == "hc"} {step > 0}(currentOffer ?o) (quantity ?q)) 

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice &: (<= ?o (* ?q 

?maxPrice)))) => (add (new Offer "accept3" ?*accept*))) 

For the REJECT communication primitive of the seller, there are the following rules: 

1) The seller will reject an offer for a negotiation object, received after a certain time threshold, 

which is defined as 3 seconds for each negotiation. The message Negotiation time elapsed is sent 

from the seller to the buyer; 

(defrule reject1 

 (NegotiationObject (timeElapsed ?te &: (>= ?te ?*maxNegTime*))) 

    => (add (new Offer "reject1" ?*reject* "Negotiation time 

elapsed."))) 

For the PROPOSE communication primitive of the seller, there are the following rules: 

1) The price proposed by a seller, in the beginning, for a certain quantity q of products, having 

the price between minPrice and maxPrice, to a non-cooperative or unknown buyer, is equal to: 

a) q*maxPrice, if q≤10; 

b) q*maxPrice*0.95, if 10<q<20; 

c) q*maxPrice*0.85, if q≥20. 

(defrule firstPrice1 

 (NegotiationObject {step == 0} {buyerClassification == "nc" || 

buyerClassification == "u"} (quantity ?q))(Product (maxPrice ?maxPrice)) 

    => (if (and (> ?q 10) (< ?q 20)) then  

     (add (new Offer "firstPrice1" (* (* ?maxPrice 0.95) ?q) 

?*propose*)) elif (>= ?q 20) then 

      (add (new Offer "firstPrice1" (* (* ?maxPrice 0.85) ?q) 

?*propose*)) else 

      (add (new Offer "firstPrice1" (* ?maxPrice ?q) ?*propose*)))) 

2) The price proposed by a seller, in the beginning, for a certain quantity q of products, having 

the price between minPrice and maxPrice, to a slightly cooperative or cooperative buyer, is equal to: 

a) q*maxPrice*0.97, if q≤10; 

b) q*maxPrice*0.9, if 10<q<20; 

c) q*maxPrice*0.8, if q≥20. 

(defrule firstPrice2 
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 (NegotiationObject {step == 0} {buyerClassification == "sc" || 

buyerClassification == "c"} (quantity ?q))(Product (maxPrice ?maxPrice)  ) 

    => (if (and (> ?q 10) (< ?q 20)) then  

     (add (new Offer "firstPrice2" (* (* ?maxPrice 0.90) ?q) 

?*propose*)) elif (> ?q 20) then 

      (add (new Offer "firstPrice2" (* (* ?maxPrice 0.80) ?q) 

?*propose*)) else 

      (add (new Offer "firstPrice2" (* (* ?maxPrice 0.97) ?q) 

?*propose*)))) 

3) The price proposed by a seller, in the beginning, for a certain quantity q of products, having 

the price between minPrice and maxPrice, to a very cooperative or highly cooperative buyer, is equal 

to:   

a) q*maxPrice*0.95, if q≤10; 

b) q*maxPrice*0.85, if 10<q<20; 

c) q*maxPrice*0.75, if q≥20. 

(defrule firstPrice3 

 (NegotiationObject {step == 0} {buyerClassification == "vc" || 

buyerClassification == "hc"} (quantity ?q))(Product (maxPrice ?maxPrice)  ) 

    => (if (and (> ?q 10) (< ?q 20)) then  

     (add (new Offer "firstPrice3" (* (* ?maxPrice 0.85) ?q) 

?*propose*)) elif (> ?q 20) then 

      (add (new Offer "firstPrice3" (* (* ?maxPrice 0.75) ?q) 

?*propose*)) else 

      (add (new Offer "firstPrice3" (* (* ?maxPrice 0.95) ?q) 

?*propose*)))) 

For the linear strategy of the seller, there are the following rules: 

1) The seller will decrease its previous offer o with 2, to the non-cooperative or unknown buyers, 

when the negotiation step is greater than 1; 

(defrule newPrice4 

 (NegotiationObject {step > 1} (previousOffer ?o) {buyerClassification 

== "nc" || buyerClassification == "u"} (quantity ?q)) (Product (minPrice 

?minPrice)) (Strategy {strategy == ?*linear*}) 

    => (if (<= (* ?q ?minPrice) (- ?o (* 2 ?q))) then 

     (add (new Offer "newPrice4" (- ?o (* 2 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice4" (* ?q ?minPrice) ?*propose*)))) 

2) The seller will decrease its previous offer o with 4, to the slightly cooperative or cooperative 

buyers, when the negotiation step is greater than 1; 

(defrule newPrice5 

 (NegotiationObject {step > 1} (previousOffer ?o) {buyerClassification 

== "sc" || buyerClassification == "c"}(quantity ?q)) (Product (minPrice 

?minPrice))(Strategy {strategy == ?*linear*}) 

    => (if (<= (* ?q ?minPrice) (- ?o (* 4 ?q))) then 

     (add (new Offer "newPrice5" (- ?o (* 4 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice5" (* ?q ?minPrice) ?*propose*)))) 

3) The seller will decrease its previous offer o with 6, to the very cooperative or highly 

cooperative buyers, when the negotiation step is greater than 1; 

(defrule newPrice6 

 (NegotiationObject {step > 1} (previousOffer ?o) {buyerClassification 

== "vc" || buyerClassification == "hc"}(quantity ?q)) (Product (minPrice 

?minPrice))(Strategy {strategy == ?*linear*}) 

    => (if (<= (* ?q ?minPrice) (- ?o (* 6 ?q))) then 
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     (add (new Offer "newPrice6" (- ?o (* 6 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice6" (* ?q ?minPrice) ?*propose*)))) 

For the conceder strategy of the seller, there are the following rules: 

1) The seller will decrease its previous offer o with 15, to the non-cooperative or unknown 

buyers, when the negotiation step is greater than 1 and lower than 12; 

(defrule newPrice7 

 (NegotiationObject {step > 1 && step < ?*concederRounds*} 

(previousOffer ?o) {buyerClassification == "nc" || buyerClassification == 

"u"}(quantity ?q)) (Product (minPrice ?minPrice))  

(Strategy {strategy == ?*conceder*}) 

    => (if (<= (* ?q ?minPrice) (- ?o (* 15 ?q))) then 

     (add (new Offer "newPrice7" (- ?o (* 15 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice7" (* ?q ?minPrice) ?*propose*)))) 

2) The seller will decrease its previous offer o with 20, to the slightly cooperative or cooperative 

buyers, when the negotiation step is greater than 1 and lower than 12; 

(defrule newPrice8 

 (NegotiationObject {step > 1 && step < ?*concederRounds*} 

(previousOffer ?o) {buyerClassification == "sc" || buyerClassification == 

"c"}(quantity ?q)) (Product (minPrice ?minPrice)) 

 (Strategy {strategy == ?*conceder*}) 

    => (if (<= (* ?q ?minPrice) (- ?o (* 20 ?q))) then 

     (add (new Offer "newPrice8" (- ?o (* 20 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice8" (* ?q ?minPrice) ?*propose*)))) 

3) The seller will decrease its previous offer o with 25, to the very cooperative or highly 

cooperative buyers, when the negotiation step is greater than 1 and lower than 12; 

(defrule newPrice9 

 (NegotiationObject {step > 1 && step < ?*concederRounds*} 

(previousOffer ?o) {buyerClassification == "vc" || buyerClassification == 

"hc"}(quantity ?q)) (Product (minPrice ?minPrice)) 

 (Strategy {strategy == ?*conceder*}) 

    => (if (<= (* ?q ?minPrice) (- ?o (* 25 ?q))) then 

     (add (new Offer "newPrice9" (- ?o (* 25 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice9" (* ?q ?minPrice) ?*propose*)))) 

4) The seller will decrease its previous offer o with q*2, to the non-cooperative or unknown 

buyers, when the negotiation step is greater than 12; 

(defrule newPrice10 

 (NegotiationObject {step >= ?*concederRounds*} (previousOffer ?o) 

{buyerClassification == "nc" || buyerClassification == "u"} 

  (quantity ?q)) (Product (minPrice ?minPrice)) 

 (Strategy {strategy == ?*conceder*}) 

    => (if (<= (* ?q ?minPrice) (- ?o (* 2 ?q))) then 

     (add (new Offer "newPrice10" (- ?o (* 2 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice10" (* ?q ?minPrice) ?*propose*)))) 

5) The seller will decrease its previous offer o with q*4, to the slightly cooperative or cooperative 

buyers, when the negotiation step is greater than 12; 

(defrule newPrice11 

 (NegotiationObject {step >= ?*concederRounds*} (previousOffer ?o) 

{buyerClassification == "sc" || buyerClassification == "c"}(quantity ?q)) 

(Product (minPrice ?minPrice))(Strategy {strategy == ?*conceder*}) 

    => (if (<= (* ?q ?minPrice) (- ?o (* 4 ?q))) then 

     (add (new Offer "newPrice11" (- ?o (* 4 ?q)) ?*propose*)) 



 179 

     else (add (new Offer "newPrice11" (* ?q ?minPrice) ?*propose*)))) 

6) The seller will decrease its previous offer o with q*6, to the very cooperative or highly 

cooperative buyers, when the negotiation step is greater than 12;  

(defrule newPrice12 

 (NegotiationObject {step >= ?*concederRounds*} (previousOffer ?o) 

{buyerClassification == "vc" || buyerClassification == "hc"}(quantity ?q)) 

(Product (minPrice ?minPrice))(Strategy {strategy == ?*conceder*}) 

    => (if (<= (* ?q ?minPrice) (- ?o (* 6 ?q))) then 

     (add (new Offer "newPrice12" (- ?o (* 6 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice12" (* ?q ?minPrice) ?*propose*)))) 

For the boulware strategy of the seller, there are the following rules: 

1) The seller will decrease its previous offer o by 0.1*q, when the negotiation step is greater 

than 1 and the time elapsed in the negotiation is less than 2 seconds, represented by the global 

variable boulwareTime1; 

(defrule newPrice13 

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed < 

?*boulwareTime1*}(quantity ?q))(Strategy {strategy == ?*boulware*}) 

    => (add (new Offer "newPrice13" (- ?o (* ?q 0.1)) ?*propose*))) 

2) The seller will decrease its previous offer o by 10*q, when the negotiation step is greater than 

1 and the time elapsed in the negotiation is greater than or equal to 2 seconds, represented by the 

global variable boulwareTime1; 

(defrule newPrice14 

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed >= 

?*boulwareTime1*}(quantity ?q)) (Product (minPrice ?minPrice)) 

 (Strategy {strategy == ?*boulware*}) 

    => (if (<= (* ?q ?minPrice) (- ?o (* 10 ?q))) then 

     (add (new Offer "newPrice14" (- ?o (* 10 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice14" (* ?q ?minPrice) ?*propose*)))) 

3) The seller will decrease its previous offer o by 20*q, when the negotiation step is greater than 

1 and the time elapsed in the negotiation is greater than or equal to 2.5 seconds, represented by the 

global variable boulwareTime2; 

(defrule newPrice15 

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed >= 

?*boulwareTime2*}(quantity ?q))(Strategy {strategy == ?*boulware*}) 

 (Product (minPrice ?minPrice)) 

    => (if (<= (* ?q ?minPrice) (- ?o (* 20 ?q))) then 

     (add (new Offer "newPrice15" (- ?o (* 20 ?q)) ?*propose*)) 

     else (add (new Offer "newPrice15" (* ?q ?minPrice) ?*propose*)))) 

 

 

 

 

 


