

University Politehnica of Bucharest
Faculty of Automatic Control and Computers

Computer Science Department

Ph. D. THESIS

An Adaptive Negotiation Multi-Agent
System for e-Commerce Applications

Ph. D. Student:
Șerban Radu

Scientific Advisor:
Prof. Adina Magda Florea

Bucharest, 2013

 1

Contents

Chapter 1. Introduction__ 6

1.1. Problem Description ___ 6

 1.2. Research Objectives ___ 8

 1.3. Outline of the Thesis __ 10

Part I. Literature Overview on Automated Negotiation _________________________________ 12

Chapter 2. Negotiation in Multi-Agent Systems _______________________________________ 12

 2.1. The Need for Negotiation in e-Commerce ___________________________________ 12

 2.2. Modeling the Negotiation in e-Commerce____________________________________ 17

 2.3. The Coordination Process in Negotiation ____________________________________ 21

 2.4. Types of Negotiation __ 23

 2.4.1. Negotiation based on Game Theory___________________________________ 23

 2.4.2. Heuristic based Negotiation ___ 25

 2.4.3. Argumentation based Negotiation ____________________________________ 26

 2.5. Modeling the Negotiation in Multi-Agent Systems______________________________ 28

 2.5.1. Automated Negotiation Modeling _____________________________________ 28

 2.5.2. The Negotiation Protocol ___ 29

 2.5.3. Automated Negotiation Agent Strategies _______________________________ 35

 2.6. Syntactic Interoperability ___ 35

Chapter 3. Knowledge Representation and Learning __________________________________ 38

 3.1. Knowledge Representation for Negotiation Strategies _________________________ 38

 3.1.1. Knowledge Representation using Rules _______________________________ 38

 3.1.2. Jess and RuleML ___ 39

 3.1.3. Knowledge Representation using Ontologies ___________________________ 41

 3.1.4. OWL Language___ 41

 3.2. Learning Algorithms___ 42

 3.2.1. ID3 Algorithm __ 42

 3.2.2. C4.5 Algorithm ___ 44

 3.2.3. Reinforcement Learning __ 45

 3.2.4. Q-Learning __ 46

 3.2.5. Learning Classifier Systems ___ 47

Chapter 4. Adaptive Negotiation Strategies __ 48

 4.1. The Negotiation Mechanism __ 48

 4.2. Negotiation using Decision and Game Theory ________________________________ 49

 4.3. Learning Algorithms used in Negotiation ____________________________________ 52

 4.4. Negotiation Systems using Argumentation ___________________________________ 53

 4.5. Negotiation Systems with Ontologies _______________________________________ 54

 4.6. Negotiation Systems in Auctions___ 55

 4.7. Heuristic Negotiation Systems __ 56

Part II. An Adaptive Negotiation Multi-Agent System __________________________________ 59

Chapter 5. Automated Negotiation using Profiles and Clustering of Agents _______________ 59

 5.1. Multi-Agent System Description ___ 59

 5.2. Overview of the Approach using Profiles and Clustering of Agents ________________ 60

 5.3. Framework for Automated Negotiation ______________________________________ 61

 5.4. Agents Classification and Strategies__ 66

 5.5. Preference Coefficients Determination ______________________________________ 70

 2

 5.6. Conclusion__ 73

Chapter 6. Automated Negotiation Model using Strategies and Tactics___________________ 75

 6.1. Environment Description for Automated Negotiation ___________________________ 75

 6.2. Different Approaches using Strategies and Tactics ____________________________ 76

 6.3. Negotiation Model using Negotiation Primitives _______________________________ 77

 6.4. Negotiation Model using Tactics ___ 83

 6.5. Simulation Scenarios Discussion __ 87

 6.6. Conclusion__ 89

Chapter 7. A Negotiation Model with BDI Agents _____________________________________ 90

 7.1. An Overview of the JADE Platform ___ 90

 7.2. Agent Model __ 92

 7.2.1. Automated Negotiation Design ______________________________________ 97

 7.2.2. Agent Control Structure __ 99

 7.2.3. Negotiation Protocol __100

 7.3. Negotiation Objects Utility ___102

 7.4. Modeling the Facilitator ___103

 7.5. Negotiation Primitives __104

 7.6. Multi-Agent Cooperation __106

 7.7. Conclusion___108

Chapter 8. Automated Negotiation for the Travel Agency Business Model _______________109

 8.1. Travel Agency Automated Negotiation Rules ________________________________109

 8.2. One-to-One Automated Negotiation Scenario _______________________________120

 8.3. Two-to-One Automated Negotiation Scenario _______________________________123

 8.4. Many-to-One Automated Negotiation Scenario ______________________________128

Chapter 9. Business Models Use Cases for Automated Negotiation ____________________129

 9.1. Real Estate Agency Automated Negotiation Business Model ___________________129

 9.1.1. Three-to-One Automated Negotiation Scenario _________________________130

 9.1.2. Two-to-Three Automated Negotiation Scenario _________________________132

 9.2. Car Dealer Automated Negotiation Business Model___________________________134

 9.2.1. One-to-Five Automated Negotiation Scenario __________________________134

 9.2.2. Three-to-Three Automated Negotiation Scenario________________________135

 9.3. Emergency Hospital Automated Negotiation Business Model ___________________137

 9.3.1. Two-to-Two Automated Negotiation Scenario __________________________138

 9.3.2. Four-to-Three Automated Negotiation Scenario_________________________141

Chapter 10. Conclusions and Future Work__143

 10.1. Conclusions ___143

 10.2. Contributions __146

 10.3. Publications ___147

 10.4. Future Work___149

Bibliography ___151

Annex 1. Real Estate Agency Automated Negotiation Rules ___________________________157

Annex 2. Car Dealer Automated Negotiation Rules___________________________________164

Annex 3. Emergency Hospital Automated Negotiation Rules __________________________172

 3

Figures Index

2.1. Coordination in Negotiation ___ 15

2.2. Automated Negotiation Scenarios __ 16

2.3. Travel Agent Scenario ___ 16

2.4. Negotiation Steps between Two Agents ___ 18

2.5. Bargaining between Buyer and Seller Agents _______________________________________ 25

2.6. The Protocol for the Defined Primitives __ 27

2.7. Alternating Offers Protocol __ 30

3.1. RuleML Rules Hierarchy__ 40

3.2. Standard Reinforcement Learning Model___ 45

5.1. The Multi-Agent System Open Environment __ 62

5.3. The Agent Main Components__ 64

5.4. Classification using the Partner Cooperation Profile __________________________________ 68

5.5. Clustering the States of the Agent __ 72

6.1. Communication between Agents – First Approach ___________________________________ 75

6.2. Communication between Agents – Second Approach_________________________________ 76

6.3. Negotiation Model Components __ 80

6.4. Seller Agent Strategies___ 81

6.5. Buyer Agent Strategies___ 81

6.6. Utility Values Matrix Space__ 82

7.1. Screen Capture Showing the Multi-Agent System in Action ____________________________ 91

7.2. The BDI Agent Model __ 93

7.3. The Elements of a Negotiating Agent__ 96

7.4. The Reasoning Model of the Agent ___ 97

7.5. The Negotiating Agent Architecture ___ 98

7.6. Multi-Agent System Architecture ___ 99

7.7. The Attributes Associated to the Negotiation Object _________________________________102

7.8. The Facilitator Roles__104

7.9. Messages Exchange using the Contract Net Protocol________________________________106

7.10. The Individual Cooperation Profile for Agent A ____________________________________107

8.1. Messages Exchange Captured with the Sniffer Agent for One-to-One Negotiation _________121

8.2. Transactional Gain Dependence of Negotiation Rounds Number _______________________121

8.3. The Gain in Each Cooperation Class for the Seller in a One-to-One Negotiation ___________122

8.4. The Gain in Each Cooperation Class for the Buyer in a One-to-One Negotiation___________122

8.5. The Gain Dependence of Supply/Demand Ratio for a One-to-One Negotiation ____________123

8.6. Messages Exchange Captured with the Sniffer Agent for a Two-to-One Negotiation _______124

8.7. The Gain Dependence of Negotiation Rounds Number_______________________________124

8.8. The Gain in Each Cooperation Class for the Seller in a Two-to-One Negotiation ___________125

8.9. The Gain in Each Cooperation Class for the First Buyer in a Two-to-One Negotiation_______125

8.10. The Gain in Each Cooperation Class for the Second Buyer in a Two-to-One Negotiation ___126

8.11. The Number of Negotiation Rounds for the Seller in a Two-to-One Negotiation___________126

8.12. The Number of Negotiation Rounds for the First Buyer in a Two-to-One Negotiation ______127

8.13. The Number of Negotiation Rounds for the Second Buyer in a Two-to-One Negotiation ____127

8.14. The Seller Total Gain with Respect to the Number of Buyer Agents ____________________128

8.15. The Number of Negotiation Rounds with Respect to the Number of Buyer Agents ________128

 4

9.1. The Three Buyers Gain using a Different Negotiation Strategy_________________________130

9.2. The Three Buyers Gain for each Cooperation Class _________________________________131

9.3. The Seller Gain for Each Cooperation Class _______________________________________131

9.4. The Buyers Gains using Different Types of Strategies versus the Seller Gain _____________132

9.5. The Three Types of Buyers Weighted Gain during the Negotiation Rounds_______________132

9.6. Screen Capture Showing the System in Action _____________________________________133

9.7. The Buyers Gain with Respect to the Negotiation Index ______________________________133

9.8. The Sellers Gain with Respect to the Negotiation Index ______________________________133

9.9. Snapshot of the Running System__135

9.10. The Sellers Weighted Gain ___135

9.11. Screen Capture Showing the Multi-Agent System in Action __________________________136

9.12. The Three Sellers Gain using a Different Negotiation Strategy ________________________136

9.13. The Three Types of Sellers Weighted Gain during the Negotiation Rounds ______________137

9.14. The Buyers and Sellers Gain versus the Negotiation Index___________________________138

9.15. The First Buyer Gain for Each Cooperation Class versus Negotiation Index _____________139

9.16. The Second Buyer Gain for Each Cooperation Class versus Negotiation Index___________139

9.17. The First Seller Gain for Each Cooperation Class versus Negotiation Index _____________140

9.18. The Second Seller Gain for Each Cooperation Class versus Negotiation Index ___________140

9.19. The Dependence of the Buyers Gain on the Negotiation Index________________________141

9.20. The Dependence of the Sellers Gain on the Negotiation Index________________________142

 5

Tables Index

4.1. Types of Research and Authors__ 57

4.2. Main Characteristics for Negotiation Models __ 57

5.1. Partner Cooperation Profile of an Agent ___ 65

5.2. Example of Strategy Rules__ 70

7.1. Step I for Agent A ___ 95

7.2. Step II for Agent A __ 95

8.1. Attributes of the Travel Agency Negotiation Scenario ________________________________109

9.1. The Negotiation Requirements and Their Priorities __________________________________129

9.2. The Buyer Agents Requirements and the Seller Offer________________________________130

9.3. Negotiation Characteristics and Their Priorities _____________________________________134

 6

Chapter 1. Introduction

The main aim of this thesis is to conceive, design, implement, and evaluate

different models of negotiation between autonomous agents, built to assist the users

in automated negotiation for e-commerce.

The negotiation process is a complex feature of traditional buying and selling.

This process can be examined in the context of automated negotiation, as applied in

the multi-agent based e-commerce.

Creating and developing intelligent autonomous agents is an important issue

nowadays. The agents could have different goals, constraints, capabilities and

preferences. Negotiation between agents becomes a complex problem to be solved.

The main approach for multi-agent bargaining is automated negotiation.

Because of the technology development, the business world encountered new

possibilities to exchange data by computer networks at reduced costs. So, computer-

based networking has created major changes in business activity. Therefore, these

changes need a fundamental rethinking of the development of negotiation models. A

business involves different processes, such as buying, selling, and services, which

require the negotiation process. Software agents can be used in order to automate

several of the most time consuming steps of the buying and selling processes.

The thesis realizes the modeling and design of a multi-agent system for

automated negotiation, in which every agent has a cognitive part, composed from a

knowledge base and an inference engine. The agents negotiate, based on a

negotiation language, which contains a set of primitives, and also based on

negotiation criteria, represented as rules.

The negotiation process is improved using learning algorithms. The use of

learning techniques is investigated, in order to allow agents to reuse their negotiation

experience for improving the final outcomes. The learning mechanism is used to

improve the agent strategies in negotiation. Experimental results on four real world

specific scenarios evaluate the performances of the multi-agent system for

automated negotiation.

1.1. Problem Description

From the transactional point of view, there are the following types of electronic

commerce:

a) business-to-business (B2B) - commerce transactions between businesses,

such as between a manufacturer and a wholesaler, or between a wholesaler and a

retailer. About 80 % of e-commerce is of this type;

b) business-to-consumer (B2C) – transaction that occurs between a company

and a consumer;

 7

c) consumer-to-consumer (C2C) – commerce between private individuals or

consumers;

d) consumer-to-business (C2B) - consumers create value, and companies

consume this value. Consumers can offer products and services to companies and

the companies pay them;

e) business-to-government (C2G) – commerce between companies and the

public sector;

f) mobile commerce (m-commerce) – buying and selling of goods and

services through wireless technology.

Systems that use software agent technologies are proving to be effective in

helping users make better decisions when buying or selling over the Internet.

Software agents can also play an important role in providing automation and support

for the negotiation stage of online commerce.

Agent-based systems support various stages of online commerce: product

brokering (determining what to buy), merchant brokering (determining whom to buy

from), and negotiation, where all parties involved communicate in order to reach an

agreement on the terms of transactions. An example of such system is called

Kasbah, proposed in [Chavez A. and Maes P., 1996]. More sophisticated automated

trading systems are proposed, which offer multi-attribute intelligent matching, such as

Tete-a-Tete [Guttman R. H. et al., 1998] and ITA [Kowalczyk R. and Bui V., 2000].

Bazaar is an experimental system for updating negotiation offers between two

intelligent agents during bilateral negotiations [Zeng D. and Sycara K., 1998]. It

models negotiation as a sequential decision making task, and uses bayesian

probability as the underlying learning mechanism. The price is used as the issue of

negotiation.

Most former studies on the negotiation are not for an automated negotiation

system, but for a negotiation support system, that allows the negotiations between

buyers and sellers. The reason is that in case of multi-issue negotiation, it is not easy

to evaluate many negotiation issues, making the development of an automated

negotiation system a complex problem.

Under the current e-commerce environment, an automated negotiation system

is critical in dealing with complex problems and different changes in business

environment [Choi H.R. et al., 2005]. The multi-agent frameworks have simple

functions, such as the generation of agents, support for the conversation between

agents and agents’ management, but they don’t have the function to support

negotiation attributes.

Existing multi-agent frameworks have no function to define the category and

relationship between products. These functions are necessary, if the conditions of a

negotiation don’t coincide. Negotiation messages should be prepared and used to

bring a better result of the negotiation.

Negotiation can be viewed as a process of cooperative and competitive

decision making between self-interested agents, in the presence of incomplete

 8

information. It is a process in which competing agents decide how to divide the gains

from cooperation [Fatima S. et al., 2007].

Machine learning is widely used in negotiation learning mechanisms.

Negotiation parties use various learning techniques to improve and update their

knowledge about environments and other parties, and the knowledge represents

good support for their later decisions. The past negotiation records play an important

role in all these learning techniques, because they compose the training data sets for

the learning algorithms. As the larger training set implies more accurate learning

results and increased profits, negotiation parties have the desire to obtain more

related negotiation records. If several negotiation parties have the same negotiation

learning objective and meanwhile they do not have any direct profit conflicts (for

instance, a group of buyers conduct bilateral negotiations with a third party supplier),

sharing their negotiation records will bring to all of them benefits [Lau R.Y.K., 2005].

Real-world negotiation scenarios, such as those found in B2B environments, are

characterized by complex negotiation spaces, strict negotiation deadlines, limited

information about the opponents, and different negotiator preferences. Therefore,

practical negotiation systems must be equipped with effective learning mechanisms

to acquire automatically domain knowledge, from the negotiation environments and

continuously adapt to the dynamic negotiation contexts [Zhang S. and Makedon F.,

2005].

Rule-based approaches represent a technique to parameterize the negotiation

design space in multi-agent systems. Rules can be used for describing both

strategies and mechanisms of automated negotiations [Badica C. et al., 2006 a].

1.2. Research Objectives

The main goal of the thesis is to develop a set of adaptive negotiation

strategies, a model of autonomous entities that use these strategies and an

associated implementation based on multi-agent system technology. The proposed

model and implementation are aimed to support the development of advanced e-

commerce applications, in which the users are represented by autonomous agents,

which can adapt their negotiation strategies to both context and user preferences.

The framework is composed of a set of agents and a facilitator. The facilitator

performs the function of exchanging messages and managing agents. The facilitator

is in charge of a server function to exchange the messages between agents. The

proposed strategies and models are validated by building an e-commerce

environment that supports the development of several e-commerce scenarios.

When the proposed models are designed, the requirements for the negotiation

protocol specified in [Bartolini C. et al., 2005] are followed, namely:

a) Be sufficiently formal that automated entities can interact using it;

b) Support negotiation about simple and complex objects;

 9

c) Be sufficiently general that a variety of different market mechanisms can be

expressed as specific instances of it;

d) Allow, but not require, the existence of a third party to arbitrate a given

negotiation, for instance, a facilitator in an auction;

e) Support existing ways of doing business, as well as permitting more

approaches in the future.

Regarding the negotiation strategies, some decision taking assistance

techniques are used in the thesis, such as rule-based reasoning and machine

learning techniques. The open environment allows automated negotiation, offering

support for the use of various existing negotiation models, together with their

respective negotiation strategies. In this manner, it is possible to integrate different

models, approximating the automated negotiations to the way the real world

interacts.

Multi-attribute techniques for negotiation are introduced by the agents, in the

evaluation of the exchanged offers and counteroffers, and an associated

communication mechanism is developed to support the negotiation protocol. Agents

use multi-issue negotiation by exchanging offers and counteroffers, until they either

reach a consensus that satisfies each party's private preferences and constraints, or

the agents run out of offers and the negotiation fails. The agents use multi-attribute

utility theory and constraint based reasoning for the evaluation and generation of

offers. Multi-attribute negotiation is important for agents to reach agreements on

multiple issues, but it is more complex than single-attribute negotiation.

The architecture for the negotiation environment is open and the number of

buyers and sellers could be changed during execution time. In a flexible way, the

negotiator agent could increase the number of negotiation strategies. These

characteristics are designed in the environment using configuration files and rule-

based systems. A flexible and interoperable system, where knowledge, negotiation

protocol and strategies are explicitly represented in rules is developed.

The agents are rule-based and the rules express both the knowledge of the

domain and the negotiation strategy. The rules are defined in JESS (Java Expert

System Shell), for ensuring the interoperability among agents.

An agent is modeled as a knowledge-based system and is composed from the

knowledge base, the inference engine and the control part. The knowledge base has

two components, one component to represent the rules and knowledge about the

objects of the business domain, and also one component to represent explicitly the

strategy through negotiation rules.

In order to negotiate successfully, agents need to consider each others’ agents

preferences and generate offers accordingly. Agents may find each others’

preferences over time and through interactions. As agents learn about each others’

preferences, they can provide better offers and enable faster negotiation.

 10

1.3. Outline of the Thesis

The thesis is composed of introduction, two parts with several chapters each of

them, a chapter of conclusions and future work, bibliography and three annexes. The

first chapter, Introduction, contains the problem description, the research objectives,

and this section.

The first part, Literature Overview on Automated Negotiation, organized in

three chapters, contains an overview of the most important theoretical concepts and

technological aspects on which the thesis is based, and also presents the state of the

art research in the relevant fields for the thesis contributions.

Chapter 2, Negotiation in Multi-Agent Systems, describes the negotiation

process in multi-agent systems and presents the possible negotiation types. Then, it

provides guidelines for the models used in automated negotiation, the negotiation

protocol and the negotiation strategies.

Chapter 3, Knowledge Representation and Learning, contains an overview of

the representation methods and languages that are mostly used in automated

negotiation systems. Then, it describes the basis of some learning algorithms used in

automated negotiation.

Chapter 4, Adaptive Negotiation Strategies, is an overview of the current

state of art in negotiation, with a focus on adaptive negotiation strategies. This

provides a background, on which the personal contributions are built, and

emphasizes significant results obtained and challenges for future research.

The second part, An Adaptive Negotiation Multi-Agent System, contains the

presentation of the contributions of the thesis for the design and implementation of an

adaptive negotiation multi-agent system for e-commerce applications.

Chapter 5, Automated Negotiation using Profiles and Clustering of Agents,

defines an automated negotiation model, based on profiles and clustering of agents.

In this model, the agents develop a set of negotiation profiles: the preference profile,

the partner cooperation profile and the group-of-partners’ negotiation profile. These

profiles help the agents to conduct their negotiation. In the group-of-partners’

negotiation profile, individual agent profiles are clustered, according to commonly

discovered features.

Chapter 6, Automated Negotiation Model using Strategies and Tactics,

presents a model of heuristic negotiation between self-interested agents, which

allows negotiation over multiple issues and learns the agent’s negotiation strategy.

The agents are using different strategies to negotiate and several models to adjust

their decision during negotiation. The performance of the agents which use multiple

tactics is compared to the agents having learning capabilities, based on

reinforcement learning techniques.

Chapter 7, A Negotiation Model with BDI Agents, describes a model of

cognitive agents, based on the BDI (Belief-Desire-Intention) architecture, which takes

into account different aspects of agent knowledge and behavior: abilities, history of

 11

interaction with other agents, cooperation and negotiation options. This model

defines the notion of utility for negotiation objects and for the roles the facilitator has

in the negotiation process. The goal of the agents is to improve the negotiation

strategy, using learning techniques and also to design negotiation environments.

Chapters 8 and 9 present different automated negotiation scenarios,

corresponding to distinct business models, and their implementation in the system,

showing the results obtained for each of them.

Chapter 8, Travel Agency Automated Negotiation Business Model,

describes a travel agency scenario, gives a detailed analysis of the negotiation rules

and of the different strategies the agents may use, and reports experimental results

for several use cases.

Chapter 9, Business Models Examples for Negotiation, implements three

other scenarios: a real estate agency scenario, a car dealer business model, and an

emergency hospital negotiation scenario. For each scenario, the business case is

described, and the experimental results obtained by implementing the scenario in the

system are presented.

Chapter 10, Conclusions and Future Work, presents the conclusions of the

thesis, the original contributions of the author, and points out directions of future

work.

The Bibliography contains 107 references, including publications of the author.

The Annexes 1, 2, and 3 describe in details the set of negotiation rules for the

scenarios defined in Chapter 9.

 12

Part I. Literature Overwiev on Automated Negotiation

Chapter 2. Negotiation in Multi-Agent Systems

2.1. The Need for Negotiation in e-Commerce

Negotiation represents the process aimed to change the plans, in order to reach

an agreement among a subset of businesses. In other words, negotiation is a form of

decision making, where two or more agents search together a space of possible

solutions through interaction, with the goal of reaching a consensus. Negotiation

usually has a series of rounds, with every agent making a proposal at each round.

Negotiation is a process that appears in many aspects of our lives. Research in

the field of automated negotiation has suggested the design and use of automated

negotiators, on one hand to allow facilitation of the negotiation process by human

negotiators and, on the other hand, to provide automated agents that can negotiate

on behalf of humans [Lin R. et al., 2009 b].

Negotiation in electronic commerce is the process in which two or more parties

multilaterally bargain goods or services for mutual intended gain, using the tools and

techniques of electronic commerce [Beam C. and Segev A., 1997]. Automated

negotiations take place when the negotiating function is performed by software

agents.

A software agent is a computer program that acts for a user or other program.

It represents an entity with goals, capable of actions endowed with domain

knowledge and situated in an environment. Multi-agent systems are distributed

agents that do not have the capabilities to achieve a goal alone and should

communicate for this. They are suitable for the domains that involve interactions

between different people or organizations with different goals.

In order to model automated negotiation, negotiation protocols and

negotiation strategies should be differentiated. The protocol describes rules

between negotiation participants, by specifying the requirements that enable their

interaction. The strategy defines the behavior of participants, aiming to achieve a

desired outcome. This behavior must be consistent with the negotiation protocol, and

usually aims at maximizing individual gains of each of the negotiation agents [Badica

C. et al., 2006 b].

A negotiation framework should specify a negotiation protocol, for constraining

the use of the language. A protocol is a formal set of conventions governing the

interaction among participants [Rahwan I. et al., 2003]. The negotiation protocol

defines the formal interaction between the negotiators, whether the negotiation is

done only once or repeatedly, and how the exchange of offers between the agents is

conducted [Lin R. and Kraus S., 2010]. The negotiation strategy is an important

issue. If one agent’s negotiation strategy is known to the other agent, the first agent

 13

may be in a significant disadvantage. Strategy means an analysis of the

counterpart’s negotiation strategy and an offer for a responding proposal.

There are three major approaches to automated negotiation in the multi-agent

domain: game-theoretic approach, heuristic-based approach, and argumentation-

based approach.

Game-theoretic approaches of automated negotiation assume that agents have

unbounded computational resources and that the space of outcomes is completely

known. In most real environments, these assumptions fail, due to the limited

processing and communication capabilities of the information systems.

Heuristic-based approaches overcome the shortcomings of game-theoretic

approaches, but they have a number of disadvantages. The models lead to

outcomes that are sub-optimal, because they adopt an approximate notion of

rationality and because they do not examine the full space of possible outcomes.

Also, it is very difficult to predict how the system and the agents will behave. The

heuristic negotiation strategies are domain dependent and time consuming. A

reinforcement learning approach allows the negotiator to learn which negotiation

primitive to use in a certain state of the negotiation [Florea A.M. and Kalisz E., 2008].

Argumentation-based approaches attempt to overcome the limitations of other

approaches, by allowing agents to exchange additional information, or to argue about

their beliefs and other mental attitudes during the negotiation process. In the context

of negotiation, an argument is a piece of information that may allow an agent to

justify its negotiation position or to influence another agent’s negotiation position

[Rahwan I. et al., 2003].

The agents have limited information about the preferences and constraints of

each other. They make decisions according to available information about private

preferences, constraints and individual negotiation strategies. The agents exchange

information in the form of offers. An offer is a complete solution, which is currently

preferred by an agent, given its preferences, constraints and the negotiation history

of offers and counteroffers.

An agreement takes place when a particular offer is accepted by all negotiation

parties. During the negotiation process, the range of possible offers of each agent

changes, according to the current information available. These give finally an

agreement, or, if a deal is not possible, the negotiation ends unsuccessfully.

Therefore, negotiation is typically an iterative process of evaluating the offers,

updating the available options, and making the counteroffers, according to the

individual negotiation strategies.

An automated negotiation system has three steps: the estimation step, the

negotiation making step, and the negotiation concluding step. In the stage of an

estimate, upon the buyer’s request for a written estimate, the seller reviews his

process planning, performing cost accounting, and suggests his estimate to the

buyer. During the stage of making negotiations and concluding negotiations, one

 14

agent evaluates the other agent’s negotiation proposal, building one’s own

negotiation strategy and sending his proposal to the other.

The cooperation between agents should be made by means of a common

message through which the request for a deal will be able to be made and the result

to be sent. In general, messages between agents under the multi-agent environment

are based on FIPA-ACL (Foundation for Intelligent Physical Agents - Agent

Communication Language) and KQML (Knowledge Query and Manipulation

Language). FIPA-ACL is a standard language for agent communications. KQML is a

language and protocol for communication among software agents and knowledge-

based systems.

Effective and efficient multi-issue negotiation requires an agent to have some

indication of its opponent’s preferences. However, in competitive domains, such as e-

commerce, an agent will not reveal this information and so the best that can be

achieved is to learn some approximation of it through the negotiation exchanges

[Coehoorn R. and Jennings N., 2004].

For instance, if it is considered an organization that needs to order some

products, it could have a buying agent that moves through all the stages of the

buying process. An agent can be designed to automatically gather information on

sellers and products, which may match the requirements of that organization. After

the evaluation of various offers, a decision is made about which sellers and products

to investigate. This is followed by negotiation on the terms of the transactions with

these sellers. Following successful negotiation, orders are placed and payment is

made automatically.

The negotiation process appears in all electronic transactions at the time of the

communication of agents in order to reach mutual beneficial agreements. The agents

might have some common interest in cooperating, but might have some conflicting

issues about how to cooperate, as shown in Figure 2.1 [Florea A.M., 2012]. Agents

can mutually benefit in reaching agreement on a particular result from a set of

possible outcomes, but might have some conflicting interests to overcome in

achieving the result that they prefer. Before moving into any cooperation, they need

to decide how to cooperate in order to obtain the associated benefits. On the other

hand, each agent would like to reach an agreement that is favorable to itself as

quickly as possible. Therefore, they need to make a series of offers and counteroffers

before any agreement is reached.

While software agents not only save the time of human negotiators, they also

find solutions that are as beneficial as possible to all the parties. As a result,

negotiation in an electronic environment increases the efficiency of negotiations

through the assistance and automation of decision tasks.

 This increase in efficiency provides the following benefits [Huq G., 2010]:

a) The complexity and uncertainty of non-automated decisions in electronic

negotiation can be reduced due to adequate information being provided;

 15

Figure 2.1. Coordination in Negotiation [Florea A.M., 2012]

b) Structured negotiation tasks with a well-defined solution approach can be

applied;

c) Increase the total number of potential transaction participants, which offers

more options, flexibility and eventually attract more efficient agreements, when

moving towards negotiation;

d) More transparency can be enabled between participants;

e) Reduce the total cost and time of negotiation.

Possible scenarios for automated negotiation [Rahwan I. et al., 2002 b] are

presented in the next paragraphs.

In a telecommunications market, a software agent, representing the user and

running on a smart phone, negotiates with other software agents representing phone

companies. This is presented in Figure 2.2 (a). The user agent attempts to find a

good quality phone connection for a reasonable price. Each phone company agent

aims at maximising its company's profit. Conflict of interests exists because the user

competes on money and bandwidth with various service providers, while service

providers themselves compete over user's money.

In dynamic supply chains, a software agent acting on behalf of a computer

manufacturer negotiates with various supplier agents, in order to assure the deliver of

various components. Each supplier agent might itself negotiate with subcontractors

to get the components it needs. This is presented in Figure 2.2 (b).

In this scenario, the negotiation mechanism involves allocating money and

computer components. Each part aims at making more money and the different

monitor and printer cartridge suppliers compete over contracts with the computer and

printer manufacturers respectively.

Agents may begin to negotiate without having complete and accurate

preferences over alternative deals. This may be because agents have limited,

CCoooorrddiinnaattiioonn

Collectively
motivated agents

common goals

CCooooppeerraattiioonn ttoo

aacchhiieevvee ccoommmmoonn ggooaall

Self-interested
agents

own goals

CCoooorrddiinnaattiioonn ffoorr

ccoohheerreenntt bbeehhaavviioorr

Distributed search
through a space of
possible solutions

 16

uncertain, or wrong information, due to imperfect sensing of the environment or

because they lack the necessary time. As a result, agents may have incomplete or

incorrect preferences over different deals. Negotiating on the basis of such

preferences can lead to sub-optimal deals.

Figure 2.2. Automated Negotiation Scenarios [Rahwan I. et al., 2002 b]

For example, an agent organizing a trip from Bucharest to Wien on behalf of a

user, as shown in Figure 2.3, might not know about all possible ways of travelling to

Wien. Further, the user might have forgotten to request a hotel booking. Due to such

incomplete and inaccurate information, the agent can make incorrect decisions as it

negotiates with different travel agents.

Figure 2.3. Travel Agent Scenario [Rahwan I. et al., 2002 b]

 17

2.2. Modeling the Negotiation in e-Commerce

Electronic commerce is one of the most important market places in today’s

electronic environment, where buyers and sellers are involved in trading activities.

Electronic commerce is expanding and becoming more popular to both business

organizations and consumers.

A multi-agent system has a set of agents, which have some interactions

between them, in general by messages exchange. Agents in a multi-agent system

represent or act on behalf of users or owners with a diversity of goals and

motivations. Therefore, these agents require the ability to cooperate, coordinate and

negotiate with each other for successful interaction.

Negotiation is a process by which a group of agents communicate to try to

come to a mutually acceptable agreement on some matter. It is one of important

methods for establishing agent cooperation.

Negotiation refers to the process by which a group of agents communicate with

one another in order to reach a mutually acceptable agreement. If the negotiation

spaces are large, even experienced human negotiators are overwhelmed. Under

such circumstance, sub-optimal rather than optimal deals are often reached.

Therefore, it is desirable to employ intelligent software agents to automatically search

through the negotiation spaces to find potential agreements on behalf of the human

negotiators.

Negotiation between agents appears in different areas of research, like

electronic commerce, distributed resource allocation or virtual enterprises. In open

systems, agents are acting in an environment in which other agents may enter or

leave, some of them known before, some others encountered for the first time. In this

context, the design of intelligent agents with a complete pre-defined negotiating

behavior represents a challenge for the designer, especially when the agents are

conceived to be general purpose and not limited to a specified domain. To overcome

existing difficulties, creating automatic negotiating agents is still a fertile area of

research, despite the important amount of work in the domain.

The environments of applications are open, as they are populated with self-

interested agents designed and/or owned by different people and there is no complete

information about the preferences or decision-making processes of the participating

agents. In order to be autonomous and achieve performance when conducting a

negotiation, an agent should be able to anticipate both the outcome of the negotiation

and the best potential partner with which to start a negotiation. Machine learning

approaches can contribute to adapt the agent’s strategy during negotiation and

trading, achieve improved outcomes and increased payoffs.

Negotiation plays an important role in multi-agent systems. When one business

organization wants to buy or sell goods or have services in an electronic environment

[Huq G., 2010], then it always needs some processes that involve negotiation, as

presented in Figure 2.4.

 18

Figure 2.4. Negotiation Steps between Two Agents [Huq G., 2010]

The components, which form the negotiation setting, are [Wooldridge M., 2009]:

a) the negotiation set, representing the space of all possible proposals that

agent can make;

b) the negotiation protocol, describing the proposals that agents can make,

with respect to the previous negotiation history;

c) the negotiation strategy, determining what proposals the agents will make.

In general, each agent has its own strategy. The fact that an agent is using a certain

strategy is in general not visible to other negotiation participants;

d) the rule which determines when a deal is obtained and what the agreement

deal is.

In general, negotiation has a series of rounds, with some proposal made at

every round. The proposals that agents make are defined by their strategy, should be

derived from the negotiation set, and should be correct, as defined by the protocol. If

agreement is obtained, as described by the agreement rule, then negotiation ends

with the agreement deal.

The negotiation complexity increases, as the number of agents involved in

negotiation increases. There are three negotiation types:

a) one-to-one negotiation, in which one agent negotiates with another agent. A

simple case of one-to-one negotiation is when the agents have symmetric

preferences with respect to the possible deals;

 19

b) many-to-one negotiation, in which many agents negotiate with one agent.

Auctions are an example of many-to-one negotiation. Such a negotiation can be seen

as a many one-to-one negotiations done in parallel;

c) many-to-many negotiation, in which many agents negotiate with other

agents simultaneously. If there are n agents involved in negotiation, it means that

there can be up to n*(n-1)/2 negotiation threads.

Also, the negotiation complexity increases in the case of multi-issue

negotiations. An instance of a single-issue negotiation is when two agents are

negotiating only the price of a certain good or service. In such a scenario, the

preferences of the agents are symmetric, such that a deal, which is more preferred

from one agent’s point of view, is guaranteed to be less preferred from the other

agent’s point of view. Such a symmetric scenario is simple to be analyzed, because it

is clear what represents a concession. For the seller to concede, it must decrease

the price of its proposal, while for the buyer to concede, it must increase the price of

its proposal. In multi-issue negotiation scenarios, agents negotiate not only the

value of a single attribute, such as price, but the values of multiple attributes, which

may be interrelated. In multi-issue negotiations, it is not clear what represents a true

concession and when all the attribute values must be either increased or decreased.

Multiple attributes give an exponential growth in the space of possible deals.

There are five characteristics that are necessary for a negotiation mechanism:

efficiency, stability, simplicity, distributivity and symmetry [Benameur H. et al., 2002].

These characteristics are found when considering a model for automatic negotiation:

a) Efficiency - expressing the efficiency of a negotiation is a difficult task,

because there must be taken into account restrictions;

b) Stability - a possibility to get stability is to not allow an agent to ignore or

reconsider offers, once they have been submitted;

c) Simplicity - negotiation mechanisms should be simple to implement. Taking

into account the set of messages to be exchanged, the communications needed are

the offers and the answers from both parts;

d) Distributivity - when many buyers are active, the seller is the main entity.

But in a market, a lot of buyers and sellers could negotiate. The sellers could act

independently or coordinate their activities. Multiple simultaneous negotiations can

be performed in this way;

e) Symmetry - the symmetry could be obtained by assuming that all agents

could access all the available information.

For conducting business efficiently, there is an interaction from one business

organization to other business organization. The suppliers, manufacturers, retailers

and consumers, are all in a related network, which needs proper, efficient and timely

coordination, cooperation and negotiation processes. Therefore, in an electronic

environment, when the above entities interact with each other, the system needs

different automated software agents to perform tasks on behalf of real-world

 20

business organizations. This can be achieved by applying multi-agent systems in an

electronic environment, in order to improve the performance among software entities.

New strategies are required for proper planning and managing the businesses.

In order to develop these strategies, automation of business processes is required.

The negotiation process is one of the most important processes in business

communities. In addition, automation of negotiation, which corresponds to

negotiation-based e-commerce, has received a lot of attention from the multi-agent

community, because such topics have the important potential to reduce significantly

the negotiation time and to remove some of the reticence of humans to engage in

negotiation and to facilitate the intelligent agents that are able to perform negotiation

on behalf of users.

In market environments, business activities are coordinated through price,

which is one of the values that is assigned to a negotiation object. Various

businesses assign different values to negotiation objects, and for this reason, they

need to bargain to reach mutually acceptable agreements. Therefore, it is important

to enable businesses to engage in negotiation in an electronic business environment.

There are many areas of research that studied negotiation in an electronic

environment, like: the information systems field with negotiation support systems; the

multi-agent systems field with searching, trading and negotiating agents, and the

market design field with electronic auctions [Zlatev Z. et al., 2004].

The negotiation process can be decomposed into components, such as

negotiation protocols, negotiation objects and agent’s decision-making models.

Negotiation protocols describe the rules used in negotiation. Negotiation objects refer

to the issues the agents are negotiating, that is, goods or services. Agent’s decision-

making models represent decision-making framework, which agents use to fulfill their

goals with respect to the protocol.

Real negotiation situations are characterized by complex negotiation spaces,

which involve multiple parties and many issues. In addition, negotiators are bounded

by limited computational resources, time, and limited information about the

opponents. While classical game-theoretic negotiation models provide good

theoretical analysis of the optimal outcomes, these fail to advise the course of actions

that a negotiator can follow to reach the optimal outcome in real world negotiations.

One main concern for the practical use of these theories is that the search space for

considering all the possible strategies and interactions, in order to identify the

equilibrium solutions grows exponentially. It means that the problem of finding an

optimal strategy is in general computationally difficult. Another problem is that the

classical game theories assume that complete information about every agent is

available to a centralized decision making mechanism. It turns out that such an

assumption does not hold in most real-world negotiation situations.

 21

2.3. The Coordination Process in Negotiation

As the number of electronic transactions increases, the interest for partial or full

automation of these transactions also grows. E-commerce describes the changes

that are transforming the way business is conducted, through the use of information

technology. In order to understand the basic stages of an e-commerce procedure, it

is examined a consumer’s buying behavior model [Guttman R.H. et al., 1998; Ye

Y. et al., 2001].

In such a model, there are six steps, which appear during the buying process.

Need identification is done by the buyer, so he needs a particular product. Product

brokering is the information gathering by the buyer, so that he is able to decide what

to buy. The buyer provides some criteria and a filtering mechanism is employed to

provide him with a set of products. Merchant brokering combines the products set

from the previous stage with information for specific merchants and gives the buyer a

set of potential sellers. Negotiation is the stage during which both participants try to

reach an agreement, over possible negotiation issues, such as the price, the volume

or the delivery time of a product. Purchase and delivery follow the negotiation

phase and payment or delivery options are examined. Finally, product service and

evaluation is the evaluation of product and customer service, made by the buyer in

order to estimate his utility.

The main techniques used for product brokerage are: characteristics filtering,

collaborative filtering and constrained-based filtering [Guttman R.H. and Maes

P., 1998]. Characteristics filtering select the products based on associated keywords

or characteristics. Collaborative filtering refers at sending personalized

recommendations to an agent, based on similarities between different profiles of

users’ preferences. Constrained-based filtering implies an agent, which specifies the

imposed constraints upon the product.

In the current negotiation environments, which represent the first

generation of

e-commerce applications, buyers and sellers are humans who browse through a

catalogue of well-defined goods and make fixed price purchases, usually by means

of credit card transaction [He M. et al., 2003]. Humans appear in all the stages of the

buying process, and this is time consuming. The research is conducted towards the

realization of the second generation, which is the future state, of e-commerce

applications, which will be done through the use of automated methods of information

technology. Web users will be represented by software agents. Nowadays, there is

an increasing use of software agents for all the aspects of e-commerce.

However, as software agents start to engage in e-commerce, new issues arise.

Information must be organized in a way that is accessible by both humans and

machines. Additionally, machines must be able to access, process and interpret the

information in the same way. This vision is consistent with the Semantic Web

initiative, which enriches the current Web through the use of machine-processing

information about the semantics of information content. This way, the meaning of

 22

displayed information is accessible not only to humans, but also becomes accessible

to software agents. The techniques of the Semantic Web are semantic annotations

(meta-data) and ontologies, which organize terms in a conceptualization of a domain,

thus connecting semantic annotations with each other and serving as a basis for

interoperability.

Electronic commerce is rapidly gaining acceptance nowadays, and it will

become more widespread in the future. Current e-commerce systems, such as

Amazon.com, allow a user to browse an online catalog of products, choose some,

and then purchase these selected products using a credit card. However, agents can

lead to the second-generation of e-commerce systems, where many aspects of

consumer buying behaviors (in B2C systems) and business-to-business transactions

(in B2B systems) are automated. The automation on both the buyer’s and the seller’s

side can lead to applications that are more dynamic and personalized. Both buyers

and sellers gain from these changes - the buyers can expect the agents to search for

and retrieve the best deals available, while the sellers can have the agents that

automatically customize their offerings to customers, based on various parameters,

such as the customer type, current seller competition, and current state of the seller’s

own business. This advanced degree of automation can be achieved by modeling the

e-commerce systems as interacting agents.

The agents should go through a coordination process involving negotiations

over all possible agreements covering issues of common interest, eventually bringing

them all to a consensus. There are three main issues in defining such a coordination

process [Goradia H.J. and Vidal J.M., 2007]:

a) Space of Possible Deals - this represents a finite set of candidate deals for

the agents to consider. Possible proposals that the agents can make are restricted by

this set;

b) Negotiation Process - this is a negotiation protocol, which, given the set of

possible deals, defines how the agents will find to an agreement on a single deal. It

specifies the set of rules that govern the agent interactions, while they attempt to

reach a consensus. The process explicitly defines the various negotiation states, the

events that cause negotiation states to change, and the valid actions for the agents in

particular states. The negotiation process also defines the rules that determine when

a deal is obtained, and what this agreement deal is;

c) Negotiation Strategy - given a set of possible deals and a negotiation

process, a negotiation strategy represents a model that individual agents employ to

make decisions and achieve their objectives. The negotiation protocol, as well as

certain agent characteristics, whether the agent has complete knowledge of its

environment, whether it is truthful, determines the complexity of the agent decision

model.

The above parameters lead to a rich and complex environment for analyzing

negotiation problems. Negotiations typically involve a series of rounds, with each

agent making a proposal at every round, before eventually converging to an

 23

agreement. However, there are many attributes that can complicate this model in

real-world negotiation settings. For example, the complexity of the model increases

rapidly with the number of agents in the negotiation process. Not only the negotiation

space increases, but also the negotiation strategies of the individual agents become

more complex. Also, the agents in real-world settings typically have multiple issues

over which agreement must be reached. Suppose there are n issues that the agents

have to negotiate, where each issue can have m possible values. This leads to a set

of m*n possible deals. To make matters worse, in many situations the number of

issues in the negotiation process may itself vary based on other parameters.

2.4. Types of Negotiation

2.4.1. Negotiation based on Game Theory

Game theory studies interactions between self-interested agents [Jennings N.R.

et al., 2001]. Game theory is important in the automated negotiation research,

because the agents in these negotiations are self-interested. In order for an agent to

make the choice that optimizes its outcome, it must reason strategically. That is, it

must take into account the decisions that other agents may make, and must assume

that they will act so as to optimize their own outcome. In negotiation, this means, for

example, taking into account the private valuations that agents have on the

negotiation issues, their own deadlines for making a deal, and so on. Game theory

gives a way of formalizing and analyzing such concerns.

Game theoretic techniques can be applied to two key problems:

a) The design of an appropriate protocol that conducts the interactions between

the negotiation participants;

b) The design of a particular strategy that individual agents can use while

negotiating – an agent aims to use a strategy that maximizes its own individual

welfare.

There are a number of problems associated with the use of game theory when

applied to automated negotiation [Jennings N.R. et al., 2000]:

a) game theory assumes that it is possible to characterize an agent’

preferences with respect to possible outcomes. Humans, however, find difficult to

define consistently their preferences over outcomes. In general, human preferences

cannot be characterized even by a simple ordering over outcomes. In scenarios

where preferences are obvious, game theoretic techniques may work well. With more

complex preferences, it is much harder to use them;

b) the theory has failed to generate a general model governing rational choice in

interdependent situations;

c) game theory models often assume perfect computational rationality, meaning

that no computation is required to find mutually acceptable solutions within a feasible

range of outcomes. Furthermore, this space of possible deals is often assumed to be

 24

fully known by the agents, as the potential outcome values are. This assumption is

seldom true in most real world cases. Agents know their own information space, but

they do not know that of their opponent.

In the negotiation based on game theory, criteria to evaluate negotiation

protocols among self-interested agents are used. The agents are supposed to

behave rationally, meaning that an agent prefers a greater utility or payoff, over a

smaller one. When referring to payoff maximization, it is possible to have individual

payoffs, group payoffs or social welfare.

Social welfare deals with the sum of agents’ utilities or payoffs in a given

solution. It measures the global well-being of the agents. The problem arises when

comparing the utilities.

A solution x, that is a payoff vector p(x1, …, xn) is called Pareto efficient or

Pareto optimal, if there is no other solution x’ such that at least one agent is better

off in x’ than in x and no agent is worst off in x’ than in x. It measures the global well-

being, it does not require utility.

The individual rationality (IR) of an agent’ participation refers to the agent’s

payoff in the negotiated solution, which should be no less than the payoff that the

agent would get by not participating in the negotiation. A mechanism is IR if the

participation is IR for all the agents.

A protocol is called stable if once the agents arrived at a solution, they do not

deviate from it. In a dominant strategy, an agent is best off using a specific strategy,

no matter what strategies the other agents use.

Suppose that r = f(ActA, ActB) is the result (state) of actions ActA of agent A

and ActB of agent B. A strategy S1 = {r11, r12, …, r1n} dominates another strategy S2

= {r21, r22, …, r2m} if any result of r∈∈∈∈S1 is preferred (better than) to any result of r’∈∈∈∈S2.

Two strategies, S1 of agent A and S2 of agent B, are in a Nash equilibrium if:

a) in case agent A follows S1, agent B can not do better than using S2 and

b) in case agent B follows S2, agent A can not do better than using S1.

The previous definition can be generalized for several agents using strategies

S1, S2, …, Sk. The set of strategies {S1, S2, …, Sk} used by the agents A1, A2, …, Ak

is in a Nash equilibrium if, for any agent Ai, the strategy Si is the best strategy to be

followed by Ai, if the other agents are using strategies {S1, S2, …, Si-1, Si+1, …, Sk}.

A mixed strategy pi of a player i is a probability distribution over actions Ai

available to I. A pure Nash equilibrium is a Nash equilibrium using pure strategies.

A mixed Nash equilibrium is a Nash equilibrium using mixed strategies. A mixed

Nash equilibrium is a set of mixed strategies, one for each agent, so that no agent

has an incentive to unilaterally deviate from its assigned strategy.

In a transaction, when a buyer and a seller agent value a product differently, a

surplus is created. A bargaining solution is a way in which buyers and sellers agree

to divide the surplus. Trade would result in the generation of surplus, while no surplus

is created in case of no trade. A bargaining solution provides an acceptable way to

 25

divide the surplus among the two parties. The bargaining problem is described in

Figure 2.5.

Figure 2.5. Bargaining between Buyer and Seller Agents [Florea A.M., 2012]

A bargaining solution is defined by F:(X,d)→→→→S, where X⊆⊆⊆⊆ℜℜℜℜ2 and S,d⊆⊆⊆⊆ℜℜℜℜ2. X

represents the utilities of the players in the set of possible bargaining agreements

and d represents the point of disagreement. For instance, if the price for a certain

item is between 10 and 20 monetary units, then the bargaining set is x+y ≤≤≤≤ 10, x ≥≥≥≥ 0,

y ≥≥≥≥ 0. A point (x,y) in the bargaining set represents the case when the seller gets a

surplus of x, and the buyer gets a surplus of y, that is the seller sells the item at

10+x, while the buyer pays 20-y.

2.4.2. Heuristic based Negotiation

A way of overcoming the limitations of game theoretic models is to use heuristic

methods. Such models acknowledge that there is a cost associated with computation

and decision making and seek to search the negotiation space in a non-exhaustive

manner. This has the effect that heuristic methods aim to produce good, rather than

optimal solutions. The methods themselves may either be computational

approximations of game theoretic techniques or they may be computational

realizations of more informal negotiation models. In heuristic negotiation, there is no

central mediator and the messages are private between the negotiating agents. In

general, the protocol does not prescribe an optimal course of action. The main

concern is represented by the agent’s decision making heuristic model during the

course of negotiation.

In the heuristic approach, the models are based on realistic assumptions and

they provide a more suitable basis for automation and they can, therefore, be used in

a wider variety of application domains [Jennings N.R. et al., 2001].

 26

The space of possible agreements is quantitatively represented by contracts,

having different values for each issue. Every agent evaluates these points in the

space of possible outcomes, according to some preference structure, captured by a

utility function. Proposals and counterproposals are offers over single points in this

space of possible results. Search terminates either when the time to reach an

agreement has been exceeded or when a mutually acceptable solution has been

reached.

In heuristic negotiation, the models often select outcomes that are sub-optimal,

because they adopt an approximate notion of rationality and because they do not

examine the full space of possible results. Also, the models need extensive

evaluation, through simulations and empirical analysis, since it is almost impossible

to predict precisely how the system and the agents behave in a wide variety of

circumstances.

In heuristic negotiation, a negotiation object (NO) can be defined as the range

of issues over which agreements must be reached. For instance, the object of

negotiation may be an action which the negotiator agent A asks another agent B to

perform for it, a service that agent A asks to B, or an offer of a service agent A is

willing to perform for B, provided that B agrees to the conditions of A [Florea A.M.,

2012]. The negotiation primitives used in such a scenario can be the following:

a) Request NO – request of a negotiation object;

b) Accept name(NO) – accept the request for the NO;

c) Reject name(NO) – reject the request for the NO;

d) ModReq name(NO) value(NO, X, V1) – modify the request by modifying the

value of the attribute X of the NO to a different value V1.

The protocol used by the agents for the primitives defined above is presented in

the Figure 2.6.

2.4.3. Argumentation based Negotiation

This approach allows additional information to be exchanged. This information

is of different forms, mainly arguments which explain the opinion of the agent. Thus,

in addition to reject a proposal, an agent can offer a critique of the proposal,

explaining why it is unacceptable.

When evaluating an argument, the agent needs to assess the argument on its

own merits and then modify this by its own perception of the argument’s degree of

credibility, in order to work out how to respond [Mercier H. and Sperber D., 2011].

Using argumentation means handling the complexities of the agents’ mental

attitudes, the communication between agents, and the integration of the

argumentation mechanisms into a complex agent architecture.

Suitable argumentation protocols should be defined, that is, set of rules that

specify how agents generate and respond to arguments, based upon what they

know.

 27

Figure 2.6. The Protocol for the Defined Primitives [Florea A.M., 2012]

Argumentation based negotiator agents have the ability to be persuasive and so

achieve agreements, which non-argumentation based negotiators can’t reach.

However, the problem is the overhead added to the negotiation process.

The arguments are used to persuade the opponent to accept a negotiation

proposal. There are different types of arguments. Each argument type defines

preconditions for its usage. If the preconditions are met, then the agent may use the

argument. The agents need a strategy to decide which argument to use. The

following arguments can be used by the agents, presented together with the

associated negotiation primitive [Florea A.M. and Kalisz E., 2008]:

a) Appeal to past promise - the agent A reminds agent B of a past promise

regarding the negotiation object (NO), that is, agent B has promised to the agent A to

perform or offer the NO in a previous negotiation. Preconditions: A must check if a

promise of the NO (future reward) was received in the past in a successfully

concluded negotiation. Negotiation primitive: Remember NO;

b) Promise of a future reward - the agent A promises to do a NO for the other

agent B at a future time. Preconditions: A must find one desire of agent B for a future

time interval, if possible a desire, which can be satisfied through an action that A can

perform, while B can not. Negotiation primitive: Promise NO;

c) Appeal to self interest - the agent A believes that concluding the contract

for NO is in the best interest of B and tries to persuade B of this fact. Preconditions:

A must find one of B desires, which is satisfied if B has the NO or, alternatively, A

Initiator Participant

 Request NO

Reject NO

Accept NO

ModReq NO' val

Reject NO'

Accept NO' val

ModReq NO'' val

Failure

Inform done

 28

must find another negotiation object NO' that is previously offered on the market and

it believes NO is better than NO'. Negotiation primitive: CompareD NO Desire or

CompareO NO NO’;

d) Threat - the agent A makes the threat of refusing doing/offering something to

B or threatens that it will do something to contradict B's desires. Preconditions: A

must find one of B's desires directly fulfilled by a NO that A can offer or A must find

an action that is contradictory to what it believes is one of B's desires. Negotiation

primitive: TreatForbid NO or ThreatDo NO.

2.5. Modeling the Negotiation in Multi-Agent Systems

The agents should be designed and implemented such that to negotiate

concurrently with other agents. Negotiating agents are developed to improve the set

of possible agreements and the concession amount they are willing to do, like an

answer to different situations and negotiation conditions. In this perspective, agents

have a time-dependent negotiation strategy, in which the private value of each

negotiation object is dynamically found by: the probability that the negotiation will not

be successfully concluded, the expected agreement price of the negotiation object,

and the expected number of deals [Silva S., 1996].

Agents’ negotiation strategies are performed in dynamic and complex

negotiation environments, in which agents have conflicting objectives and

preferences. Also, they have incomplete information about other agents and have

multiple trading partners and trading competitors [An B. et al., 2010].

From a theoretical perspective, agents’ strategies in negotiation are analyzed.

Game theoretic analysis provides insights and theoretical foundations for developing

negotiation agents. For real complex dynamic negotiation involving multi-agents, it is

impractical to compute agents’ rational strategies and heuristic based negotiation

strategies are designed.

2.5.1. Automated Negotiation Modeling

In the negotiation theory, most work focuses on bilateral negotiation [Tamma V.

et al., 2005; An B., et al., 2009; An B. et al., 2010]. One-to-many and many-to-many

negotiations are also important and widely exist in many application domains. For

one-to-many negotiation, an auction is widely used and, for many-to-many

negotiation, market mechanisms like matching or two-sided auction are appropriate.

Even if an agent interacts with many agents, a common assumption is that an agent

can be involved in only one negotiation at a time. The result is that an agent may

finish the current negotiation in disagreement, in spite of possible gains from

bargaining, in order to find a more attractive alternative. Therefore, the idea that an

agent is involved in only one negotiation at a time appears to be restrictive.

 29

Agents’ strategic behavior in one-to-many and many-to-many negotiations are

analyzed, in which agents are negotiating with multiple trading partners and, at the

same time, are facing competition from trading competitors.

The analysis shows that both negotiation order and market competition affect

agents’ negotiation power. An agent’s negotiation power increases with the number

of trading partners and decreases with the number of trading competitors.

In e-commerce environments, in which self-interested agents act individually,

agents should obtain different goods or services. Therefore, agents may need to

engage in multiple negotiations. If these negotiations are not all successful, users

gain decrease. From the perspective of the overall negotiation, goods or services are

dependent, as an agent’s utility from the overall negotiation depends on obtaining

overall agreements on all the transactions. The negotiation environment has the

following three features [An B. et al., 2010]:

a) When acquiring multiple goods, a buyer agent only knows the private value

available for the set of items, that is the highest price the agent can pay for all the

goods, rather than the private value of each separate item;

b) Agents can decommit from tentative agreements at the cost of paying a

penalty. Decommitment allows agents to profitably accommodate new negotiations. If

these negotiations make some existing contracts less profitable or infeasible for an

agent, that agent can decommit from those contracts;

c) Negotiation agents are assumed to have incomplete information about other

agents, for example, a buyer agent knows the distribution of the private value of a

seller agent and the number of trading competitors. However, an agent’s negotiation

status (the set of proposals it has received) and negotiation strategy are its private

information. During negotiation, the agents can quit negotiation at any time, even

without notifying their trading partners. When an agent wants to buy multiple goods

or services, it concurrently negotiates with sellers to reach agreements for all the

items.

In order to evaluate the performance of negotiation agents, simulation

environments consisting of agents negotiating goods and services, and a facilitator,

are modeled and implemented.

In the experiments, agents are using different negotiation strategies, deadlines,

and objects to buy or sell. A number of performance measures, such as utility, gain,

number of successful negotiations, learning capabilities, are determined.

2.5.2. The Negotiation Protocol

There are different types of protocols, which are developed for different types of

negotiation. The main protocols are described below:

a) Contract Net Protocol was introduced for distributed problem solving [Smith

R.G., 1980]. It is used for task allocation problems. Using this protocol, agents

negotiate about tasks. One agent, which is interested to perform a task, announces

 30

other agents that a task is available. The agent might not be capable of performing

the task on its own or it might try to find other agents that are able to perform the task

more effectively. The agents that are interested in the task submit bids to the

manager, which awards the task to the agent that sent the most satisfactory bid.

Then, the agent starts the task. The bidding, bid processing and task processing

phases are dependent on the problem.

b) Rubinstein’s Alternating Offers Protocol [Osborne M.J. and Rubinstein A.,

1994; Osborne M.J., 2004], in which two agents negotiate by taking actions at

discrete time steps. In each time step, one agent makes a proposal to the other

agent, which can accept or reject the proposal. If it accepts, negotiation ends,

otherwise, the other agent makes a proposal at the next time step. This protocol is

illustrated by the state transition diagram in Figure 2.7. [Wooldridge M., 2009].

c) Monotonic Concession Protocol [Rosenschein J.S. and Zlotkin G., 1994] is

a particular case of Rubinstein’s alternating offers model. This protocol forces an

agent to make a concession to the other agent at each time step. It is guaranteed to

stop, but it requires that agents know each other’s utility functions, which is

impossible in practice.

d) Auctions are particular negotiation protocols used for multilateral

negotiations. Agents bid for items and special agents called auctioneers evaluate

bids and allocate items. There are many types of auctions, the most important

auction types being the English auction, the Dutch auction, first-price sealed-bid,

second-price sealed-bid, and combinatorial auctions.

Figure 2.7. Alternating Offers Protocol [Wooldridge M., 2009]

In the evaluation of the results for negotiation protocols, there are certain

parameters that can be used to measure different protocols [Kraus S., 2001]:

Agent 1 makes
 proposal

Start

Agent 2
rejects

Agent 2 makes
 proposal

Agent 2
accepts

End

Agent 1
accepts

Agent 1
rejects

 31

a) Negotiation Time - negotiations which end without delay are preferred over

negotiations which are time-consuming. It is assumed that a delay in reaching an

agreement causes an increase in the cost of communication and computation time

spent on the negotiation. It is necessary to prevent the agents from spending too

much time on negotiations resulting in deviation from their schedules for satisfying

their goals;

b) Efficiency - an efficient outcome of the negotiations is preferred. An outcome

increases the number of satisfied agents from the negotiation results. So, it is

preferred that the agents reach Pareto optimal agreements. A deal is Pareto optimal

if there is no other agreement that dominates it, for instance, there is no other accord

that is better for the same agents and not worse for the others. In addition, if there is

an agreement that is better for all the agents than terminating the negotiation, then it

is preferred that the negotiation will end with an accord;

c) Simplicity - negotiation processes that are simple and efficient are better

than complex processes. A simple strategy means that it is feasible to be built into an

automated agent. A simple strategy supposes also that an agent will be able to

compute the strategy in a reasonable amount of time;

d) Stability - a set of negotiation strategies are stable if, given that all the other

agents included in the set are following their strategies, it is useful for an agent to

follow its strategy. Negotiation protocols which have stable strategies are more useful

in multi-agent environments than protocols which are unstable. If there are stable

strategies, it is recommended to all agent designers to build relevant strategies into

their agents;

e) Money transfer - money transfer may be used to solve conflicts. For

example, a server may “sell” a data item to another server when relocating this item.

This can be done by providing the agents with a monetary system and with a

mechanism for secure payments. Since maintaining such a monetary system

requires resources and efforts, negotiation protocols that do not require money

transfers are preferred.

The main characteristics of the negotiation protocol are [Zlatev Z. et al., 2004]:

a) Each agent is making proposals corresponding to its own goal. A proposal

contains an offer corresponding to the negotiation object, for instance a specific

price, together with supporting information representing conditions under which this

offer is made. Different offers have different supporting information, for example a

goal to buy at a low price can contain several prices as possible offers, each of them

being supported by the appropriate information. So, the negotiation object may be

extended and may cover several issues related to the initial issue, for example terms

and conditions under which an agent could accept a specific price;

b) The first of the two negotiating agents, which is unable to produce a new

offer with supporting information for its goal, cancels it and searches for supporting

information, if any, under which it can accept the counterproposal of the other agent.

For example, a seller agent unable to find another way to support offers with high

 32

prices considers selling at a low price and looks for supporting information under

which it may be able to do so;

c) In such a case, the negotiation enters a conciliation phase and if the receiver

agent can sustain the proposed supporting information, the negotiation ends with

agreement on this offer and the supporting information accumulated so far.

Otherwise, the sender takes this into account and tries again to find another way to

support the goal of the agent. If this is not possible, then the negotiation ends in

failure.

In automated negotiation, the combination of the software agents, representing

the parties in the negotiation, and the negotiation protocol, establishing the

interactions between these software agents, forms the automated negotiation system

[Tamma V. et al., 2005]. The preferences over the negotiation object and the

negotiation object itself are only input to this system and are not object to choices of

the system user. The configuration of the automated negotiation system, which is the

choice of software agents and interaction protocol used to perform automated

negotiation, can be determined by the system users. So, while the negotiation object

and the preferences of the users over this negotiation object are taken as they are,

users can decide about the configuration and parameterization of the system

employed to handle this negotiation problem by means of automated negotiation.

The interaction protocol builds the basis for the communication between

software agents in an automated negotiation system. In some cases, the negotiations

are finished earlier, most often by the protocol, if a deadline, in terms of a maximal

number of turns, is reached before agents come to an agreement. Only in some of

these cases, the agents have the choice to quit negotiations, and this decision is

often based on whether or not a specified deadline is reached. Continuous

concession strategies are applicable for automated negotiation in an open

environment, as they can easily adapt to new problems and are independent of the

opponent agent. Therefore, the idea is to apply protocols that are suitable for a

population of software agents that follow these strategies. Such protocols should

exhibit features that enable the software agents to interrupt their continuous

concession strategy, if they think it is in their interest, which is to avoid exploitation or

unfavorable outcomes [Filzmoser M., 2010].

When the negotiation begins, the protocol calls the agents in their initiation

mode. The protocol provides the software agents, registered with the system as

representing their parties, with the negotiation object indicated by the parties as

input, as well as utility values for possible solutions. The agents create private

storage variables, where they keep this information, together with information on the

negotiation process. After this initiation of the software agents, the negotiation

protocol chooses one agent and sends to him a call for proposals.

The software agent that receives the call for proposals from the interaction

protocol is the first to make an opening offer and the one sending messages at odd

turns during the negotiation process. The other software agent sends his opening

 33

offer in the second turn and thereafter sends messages in the even turns of the

negotiation process. As the messages are not exclusively offers, this protocol is

called an alternating turn protocol, in which the agents alternate in taking their turns.

Software agents can send one out of a set of messages determined by the protocol:

offer, reject, agree, or quit. While a message of the type offer proposes one of the

possible settlement of the negotiation object as agreement, which the opponent can

accept or not, the other three message types are necessary for controlling the

negotiation process.

An offer message constitutes a proposal for settling the negotiation. In human

negotiations, there are many different kinds of messages besides offers, like threats,

provision of or request for information, all aiming to influence the final outcome of the

negotiation. However, it is argued that, while other messages are important, offers

are the main type of messages in negotiations, as they promote proposals for the

settlement. In order to be a proposal for settling the negotiation, an offer has to

provide options for all issues of the negotiation object. The interaction protocol not

only demands full package offers due to this, there are other protocols that work on

an issue-by-issue basis or allow partial package offers, but the emphasis is on the

opportunities to reach mutually beneficial agreements through package offers, which

allow to tradeoff issues of lower importance against issues of higher importance.

If a software agent sends a reject message, it means that in this turn it does not

propose a new offer, or make any other changes to the current state of the

negotiation, but insist on its last offer. This message represents a strategy to avoid

unfairly small concessions and exploitation by the opponent. Sending a reject

message enables the software agent to discontinue the offer generation strategy it

normally follows, according to which it would make some predetermined offer, for

some reasons, without necessarily terminating the negotiation [Lin R. et al., 2009 a].

Several bargaining games in non-cooperative game theory do not require the

explicit acceptance of an offer, but to terminate the negotiation, if the offers of the

parties are compatible, that is if for both agents the demanded utility of their offer is

lower than or equal to their utility of the offer proposed by the opponent. If the offers

do not coincide, division rules can be used to split the surplus or choose one of the

compatible offers as agreement. For this purpose, equal division of the surplus or

some kind of arbitration, where either offer is chosen with equal probability, is usually

applied. The problem of taking one out of two compatible offers by some arbitration

rule mainly arises from the fact that in the above mentioned bargaining games agents

have to make offers simultaneously. A software agent in the situation to send a

message will first compare the opponent’s last offer with his own offer to be sent

next. If the opponent’s offer affords higher or equal utility, the software agent accepts

it, rather than proposing its next offer. So, the software agents in the sequential

interaction protocol detect and use compatible offers themselves, rather than relying

on the interaction protocol to do so. On the other hand, splitting procedures are only

applicable if the zone of possible agreements is an area, rather than a set of points,

 34

furthermore splitting does not definitely specify the actual outcome of the negotiation,

as more than one of these possible settlements may afford the same utility to the

parties. Therefore, splitting procedures, without additional refinements, are actually

only applicable in a single-issue negotiation with continuous options for this single

issue. Sending an agree message means that the agent accepts the last offer of the

opponent as agreement. This clearly determines what the negotiation was settled for,

as the last offer of the opponent is required to be a full package offer with options for

all issues of the negotiation object.

Like in negotiations between humans, which do not need to end with an

agreement [Beam C. and Segev A., 1997], an interaction protocol can allow the

software agents to send a quit message. Sending this message fulfills one of the

termination criteria of the interaction protocol and negotiations will end without

agreement. Therefore, quit messages can be used by the software agents to break

off negotiations, if they decide this is in their interest in the given context. For

software agents following continuous concession strategies, the quit message is a

mean to permanently interrupt the offer generation strategy the agent normally would

follow, in not only denying to propose the next offer, as in case of the reject message,

but in aborting to negotiate at all.

The interaction protocol terminates the negotiation either if:

a) a software agent sends an agree message, accepting the last offer of the

opponent;

b) a software agent sends a quit message, breaking off the negotiation;

c) two subsequent messages of the two software agents were reject messages.

This last termination criterion is applied to avoid an infinite negotiation without

progress towards an outcome, if this is an agreement or a break off for negotiation.

When a software agent sends a reject message, this does not change its internal

state, and means that the same message will also be sent in its next turn. If a

message of the opponent causes state changes and, due to a different situation, the

message of the software agent could be different from that of the previous round. If

both agents send reject messages subsequently, there will be no state changes that

lead to either agreement or break off of the negotiation anymore, but only an infinite

number of alternating reject messages and the protocol terminates negotiations if this

would occur. Repeating the same offer would have the identical effect as sending a

reject message, representing no changes in the state of the negotiation. The offer

generation strategies are designed in a way that they do not repeat offers, but send

reject messages to interrupt concession making. However, this repetition of offers

could easily be detected by the interaction protocol and treated the same as if a

reject message was sent, or software agents could be allowed to repeat the previous

offer, rather than to propose a new offer and the interaction protocol terminates

negotiations if the two software agents subsequently repeated their last offers.

 35

2.5.3. Automated Negotiation Agent Strategies

The strategies of most software agents, used in automated negotiation, are

based on evolutionary computing, learning mechanisms, or time-dependent

concession functions. These software agents are not readily applicable to actual

automated negotiation, for an implementation in operative systems, for various

reasons. First, time-based concession functions are not suitable due to the fast

proceeding and therefore time insensitivity of automated negotiation, and the aim to

improve outcomes over those reached by the human negotiation behavior these

strategies imitate. The impatience of the negotiator or the costs associated with the

mechanism of negotiation are good arguments for the decrease of the utility level

demanded over time, which is the way time-based strategies are actually modeled.

The possible variety and complexity of negotiation problems and opponent

strategies in automated negotiation causes problems for software agent strategies

based on evolutionary computing or learning mechanisms. Software agents for

automated negotiation can easily be programmed by or for human users. The media

openness for automated negotiation, for new software agents acting on behalf of

users with various preferences and for many different negotiation problems, has to

be considered, when designing decision making algorithms. Software agent

strategies based on evolutionary computing or learning algorithms are not flexible

and generic enough to cope with this variety of possible new opponents, negotiation

objects, and therefore transaction problems, determined by the various preferences

over various objects. Evolutionary computing-based strategies, especially those

implementing sequential threshold rules, might not have the chance to have the large

number of interactions with the same opponent and for the same negotiation

problem. These software agents need to reach good agreements by means of co-

evolution [Beam C. and Segev A., 1997; Tu M.T. et al., 2000], and models of the

opponent held by learning strategies might be inadequate for the variety of new

opponent strategies.

Due to these concerns about existing approaches to determine the software

agents’ decision making algorithms, the focus is on the class of continuous

concession strategies. These rule-based and rather deterministic algorithms, neither

model their opponent, nor try to learn something about the opponent’s preferences or

strategy, but are reusable for various negotiation problems with different opponents.

2.6. Syntactic Interoperability

XML (Extensible Markup Language) standards are used as a way of providing a

common syntax for exchanging heterogeneous information. So, in order to

interchange information between both trading partners, it is necessary to define

documents based on XML.

 36

XML is the basis for integrating data within an enterprise and across supply

chains, substantially reducing the cost of information interchange. In B2B area, there

are different standards for describing interchanged business documents based on

XML standard.

XML is a self-describing, text-based structured data format. The power of XML

lies not so much with XML itself, but with the set of available tools for working with it.

Web browsers can visualize it and commercial XML editors are available. The XSLT

(Extensible Stylesheet Language Transformations) pattern language can be used to

write simple scripts that transform an XML document into a new XML document in a

different format, or into a non-XML document. Many high quality parsers and APIs

are available for working with XML from Java programs [Friedman-Hill E., 2003].

XML is not a replacement for HTML (HyperText Markup Language). XML and

HTML were designed with different goals. XML was developed to transport and store

data, with focus on what data is, while HTML was designed to display data, with

focus on how data looks. HTML refers at displaying information, while XML focus on

carrying information.

The tags in XML are created by the author of the document. XML language has

no predefined tags and allows the author to define the tags and the document

structure. The tags used in HTML are predefined. HTML documents can only use

tags defined in the HTML standard.

XML documents must contain a root element. This element represents the

parent of all other elements. The elements in an XML document form a document

tree. The tree starts at the root and branches to the lowest level of the tree. All

elements can have sub-elements. Parent elements have children. Children on the

same level are called siblings. All elements can have text content and attributes, as

in HTML.

XML is extensible because, unlike HTML, the markup symbols are unlimited

and self-defining. XML is a simpler subset of SGML (Standard Generalized Markup

Language), the standard describing how to create a document structure. HTML and

XML can be used together in many Web applications. XML markup may appear in a

HTML page.

While many syntactic problems associated to the information interchanged in

B2B have been solved using the XML standard, the notion of semantic

interoperability still has problems. The difficulties associated to semantic

interoperability occur due to the context dependency, therefore, it can only be

understood in the context of its original source and purpose. A way to overcome this

problem is to employ an explicit context model that can be used to re-interpret

information in the context of a new information source and a new application. The

use of ontologies is a promising approach, in order to show contextual information

and to make a semantic preserving translation possible.

 37

An ontology is a way of categorizing objects, such that they are semantically

meaningful to a software agent. Ontology defines the relationship between similar

products [Kholief M. et al., 2012].

To face the new global market, enterprises need to carry out collaborative

relationships with their suppliers and customers on the Internet. However, the

main obstacles are the syntactic and semantic interoperability at information level.

XML technologies allow the syntactic interoperability.

An effective collaborative relationship between trading partners will not be

successfully, until an environment to support the semantic integration will be

developed. Some ontology based tools for solving the semantic interoperability

between heterogeneous information systems could help. However, these tools do not

support the entire ontology lifecycle or do not provide a collaborative environment. A

support for collaborative engineering to maintain the shared ontology is the basic

requirement. Furthermore, the ontology environment has to support the language

interoperability.

 38

Chapter 3. Knowledge Representation and Learning

3.1. Knowledge Representation for Negotiation Strategies

3.1.1. Knowledge Representation Using Rules

A framework for agent negotiations should contain the negotiation

infrastructure, the generic negotiation protocol, and the negotiation rules and

strategy.

The negotiation infrastructure defines roles of negotiation participants and of a

facilitator. Participants negotiate by exchanging proposals. Depending on the

negotiations type, the facilitator can also play the participant role.

The negotiation protocol defines the three phases of a negotiation: admission,

exchange of proposals, and agreement formation, in terms of how and when

messages should be exchanged between the facilitator and the participants.

Negotiation rules are used for enforcing the negotiation mechanism. Rules are

organized into a taxonomy [Badica C. et al., 2005]:

- rules for participants’ admission to negotiations;

- rules for checking the validity of negotiation proposals;

- rules for protocol enforcement;

- rules for updating the negotiation status and informing participants;

- rules for agreement formation;

- rules for controlling the negotiation termination.

In a rule-based system, the inference engine controls the process of applying

the rules to the working memory, in order to get the results of the system. An

inference engine works in cycles, as described below [Friedman-Hill E., 2003]:

a) All the rules are compared to the working memory to decide which ones

should be activated during this cycle. This unordered list of activated rules, together

with any other rules activated in previous cycles, forms the conflict set.

b) The conflict set is ordered to form the agenda, which is the list of rules whose

right-hand sides are executed. The process of ordering the agenda is called conflict

resolution. This strategy for a given rule engine depends on many factors, only some

of which are under the programmer’s control.

c) In order to complete the cycle, the first rule on the agenda is fired, possibly

changing the working memory, and the entire process is repeated. This repetition

implies a large amount of redundant work, but many rule engines use different

techniques to avoid most or all of the redundancy. In particular, results from the

pattern matcher and from the agenda’s conflict solver can be preserved across

cycles, so that only the essential, new work needs to be done.

 39

3.1.2. JESS and RuleML

JESS (Java Expert System Shell) is a rule-based system, implemented in Java

language. It was developed starting from the expert system CLIPS (C Language

Integrated Production System), but it evolved into a complete and distinct rule-based

system [Florea A.M. et al., 2008].

Using Jess, it is possible to write applets and Java applications, which have the

capacity to reason, using the knowledge from the declarative rules. Jess offers easy

integration with other Java based software.

An expert system has a set of rules, which could be applied many times on a

set of facts. Jess uses a very efficient algorithm, called Rete, in order to unify rules

and facts.

An expert system based on Rete algorithm constructs a set of nodes, where

each node, with the exception of the root, refers to a pattern, which is present in the

left hand side of a rule. The path from the root node to a leaf node defines completely

the left hand side of a rule. Each node memorizes the facts which satisfy that pattern.

When new facts are added or modified, these are propagated along the network,

labeling the nodes when the fact matches with that pattern. When a fact or a

combination of facts does all the patterns for a given rule to be fulfilled, a leaf node is

reached and the respective rule is executed.

So, Jess uses the fast and efficient Rete algorithm for pattern matching. The

strength of Rete is that it uses a set of memories to keep information about the

success or failure of pattern matches during previous cycles. The Rete algorithm

involves building a network of pattern matching nodes. Jess uses many different

kinds of nodes to represent the different kinds of pattern matching activities

[Friedman-Hill E., 2003].

Jess offers the basic elements of an expert system [Florea A.M. et al., 2008]:

a) the list of facts and the list of instances – the global memory for data;

b) the knowledge base – contains all the rules, that is the rule base;

c) the inference engine – controls the rules’ execution.

A program written in Jess can contain rules, facts and objects. The inference

engine controls which rules should be executed and when they should be performed.

A rule-based expert system, written in Jess, is a data driven program, in which facts

and objects represent data which generated the execution, using the inference

engine.

Jess executes always the actions from the right hand side of a rule with the

highest priority. After that, the rule is removed and the next rule is executed, in

decreasing order of priorities.

Jess offers two different ways to solve the conflicts: depth-first (LIFO – Last In

First Out) and breath-first (FIFO – First In First Out). In the case of depth-first

strategy, the most recently activated rules are used, before the rules activated not so

recently and which have the same priority. In the case of breath-first strategy, the

 40

rules with the same priority are applied, in the order in which they have been

activated. It is difficult to decide which strategy is better, without considering the

specific application.

In Jess, modules allow a knowledge base to be partitioned. Every construct

defined must be placed in a module. The programmer can explicitly control which

constructs in a module are visible to other modules and which constructs from other

modules are visible to a module. The visibility of facts between modules can be

controlled in a similar manner. Modules can also be used to control the flow of

execution of rules.

Jess stores the contents of the working memory using a set of customized

indices that make looking up a particular piece of information very fast. Even though

Jess uses a data-centric index internally, the view of the working memory looks like a

simple list. Each item in the working memory appears on this list in the order in which

it was added [Friedman-Hill E., 2003].

The combination of forward-chaining inference rules and backward-chaining

infrastructure rules is a powerful and common pattern in Jess systems.

RuleML (Rule Markup Language) is an open language, based on rules

XML/RDF (Extensible Markup Language / Resource Description Framework). This

allows the exchange of rules between different systems, including distributed

software components on the Web and heterogeneous client-server systems. RuleML

offers the XML syntax for interoperable knowledge rules representation between the

main rules systems.

RuleML contains a hierarchy of rules, starting from reaction rules (event-

condition-action rules), integrity constraint rules, derivation rules, up to facts

(derivation rules without premises).

The rule hierarchy in RuleML constitutes a partial ordering, on the first level

being the reaction rules. The second level contains the integrity constraint rules and

the derivation rules. The third level specialises the derivation rules into facts, as

shown in Figure 3.1.

Figure 3.1. RuleML Rules Hierarchy

Integrity Constraint Derivation Rules

Facts

Reaction Rules

 41

3.1.3. Knowledge Representation using Ontologies

An ontology can be viewed as a formal representation of a set of concepts from

a certain domain, and also of the relations between these concepts.

The main reasons for using ontologies are [Noy N.F. and McGuinness D.L.,

2001]:

a) to have a common understanding about the information structure – suppose

that a set of Web sites contains medical information and delivers medical services of

e-commerce type [Serbanati L.D. and Radu S., 2013]. If these sites have as basis

the same ontology for their terms, then the Web agents can extract and compose the

information from these different sites. The agents can use this compound information

to answer the user queries or as input data to other applications;

b) to allow the knowledge reuse from the domain – the models from different

domains must have a representation for the notion of time, which includes the

notions of time interval, moments in time, time measurement units. If such an

ontology is already developed, it can be reused in different domains. If it is necessary

to develop a complex ontology, then it is possible to integrate the existing ontologies,

which describe parts of the domain;

c) to express the hypotheses used in that domain – it is possible to easily

change these hypotheses, when the knowledge of the domain is changing;

d) to separate the knowledge of the domain from its implementation;

e) to analyze the domain knowledge – the formal analysis of terms is very

useful when reusing or extending ontologies.

Developing an ontology is like defining a data set and its structure, in order to

be used by a program. An ontology in an explicit formal description of the concepts

from a domain: classes of the properties of each concept, which describe different

features and attributes of the concepts (also called roles), and attribute

characteristics or restrictions (implications, also called role restrictions).

3.1.4. OWL Language

OWL (Web Ontology Language) is a language used to represent ontologies.

OWL is an extension of RDF Schema. Data described by an OWL ontology are

interpreted as a set of figures and a set of properties, based on which the figures are

related.

An OWL ontology consists of a set of axioms, based on which constraints are

associated to the group of figures and types of relations allowed between them.

These axioms give the semantics which permits the system to deduce the additional

information, based on data given explicitly.

OWL specification includes the definition of three OWL components [Horrocks I.

et al., 2003]:

 42

a) OWL Lite was developed to support hierarchical classifications and simple

constraints. The restrictions cardinality could be 0 or 1, and it is possible to specify a

part or all the values of the property upon which the restriction is applied. Also, it is

possible to specify classes or properties which are equivalent (it is very useful to

specify the fact that two concepts in different ontologies represent the same thing),

and the fact that the properties could be functional, symmetric, transitive or inverse;

b) OWL DL is a more advanced language, based on a decidable subset of

description logic. There are possible relations on disjunctions of classes or union,

intersection or complement between classes. Also, it is possible to specify

cardinalities for restrictions in the form of any natural number;

c) OWL Full is based on the semantics of OWL Lite and OWL DL and was built

to keep some compatibilities with RDF Schema. OWL Full allows an ontology to

develop the meaning of the predefined vocabulary (RDF or OWL).

Each of these sub-languages is a syntactic extension of its predecessor, that is

every OWL Lite ontology is also an OWL DL valid ontology, and every OWL DL

ontology is also an OWL Full valid ontology.

Domain ontologies describe the vocabulary related to a generic area. These

model a certain domain or a part of the world. They represent the particular sense for

the terms which are applied to the respective domain.

Level ontologies describe very general concepts, such as: space, time, matter,

object, event, action, which are independent from a particular problem or from a

domain. Such an ontology is a model regarding the common objects which can be

applied in different domain ontologies.

3.2. Learning Algorithms

3.2.1. ID3 Algorithm

In decision tree learning, ID3 (Iterative Dichotomiser 3) is an algorithm used to

generate a decision tree [Murthy S.K., 1998]. It prefers smaller decision trees

(simpler theories) over larger ones. However, it does not always produce the smallest

tree, and is therefore a heuristic.

Each level of the tree is associated to one attribute. Alternate branches starting

from one node are labeled with the values of the attribute associated to that level.

The leaves of the tree are tagged with the classes associated to the objects to be

classified.

First, the decision tree is built and then it is used on unknown instances, in

order to classify them.

Each branch associated to a value of the attribute is labeled with all the

examples that have the same value for the attribute. This process continues on each

level associated to an attribute, until a node is obtained, for which the associated

 43

examples are all in the same class. This node becomes a leaf and is labeled with that

class.

Suppose there is a set of training instances C. The ID3 algorithm performs the

following steps:

Step 1: If all the instances in C are positive then create Yes node and stop;

If all the instances in C are negative then create a No node and stop;

Else, select an attribute A, with values v1, …, vn and create a decision

node.

Step 2: Partition the training instances in C into subsets C1, C2, …, Cn,

according to the values of A.

Step 3: Apply the algorithm recursively to each of the sets Ci.

Each attribute of an instance is considered to have a certain informational

contribution for classifying that instance. The heuristic of the ID3 algorithm measures

the informational gain brought by each attribute and chooses to test in the root of the

decision tree the attribute A, which maximizes the informational gain.

In order to measure the informational content from a message, the information

theory is used. A message is regarded as an instance from a set of all possible

messages. Sending a message is equivalent with selecting a certain message from

this set. The informational content of a message depends on the set size and the

frequency of each message. The informational content of a message is defined as

the probability of occurrence for any possible message. Having a set of messages: M

= {m1, m2, …, mn} and a probability p(mi) of occurrence for each message, the

informational content of a message from M is defined by:

))((log)()(2

1

i

n

i

i mpmpMI ∗−=∑
=

 (3.1)

The ID3 algorithm uses the information theory in order to select the attribute,

which gives the highest informational gain, when classifying the instances from the

training set. A decision tree is considered as having information about the

classification of the examples from the training set. The informational content of the

tree is computed using the probabilities for different classifications.

For a certain attribute A, the informational gain obtained by selecting this

attribute as the root of the decision tree is equal to the total informational content of

the tree minus the informational content necessary to finish the classification

(building the tree), after selecting the attribute A as the root of the tree:

)()()(AETIAG −= (3.2)

The informational quantity needed to finish constructing the tree is the weighted

average of the informational content from all the subtrees. The weighted average is

computed by multiplying the informational content for each subtree with the instances

percent from that subtree, and then summing up these products.

Suppose that there is a set of training instances C. If the attribute A with n

values is put in the root of the tree, this determines the partition of the set C into the

 44

subsets {C1, C2, …, Cn}. The estimation of the informational quantity needed to

construct the decision tree, after the attribute A was chosen as the root, is given by:

)(
||

||
)(

1

i

n

i

i CI
C

C
AE ∗=∑

=

 (3.3)

3.2.2. C4.5 Algorithm

C4.5 algorithm represents an extension of the ID3 algorithm, which takes into

account the possible input and output noise, works with inadequate attributes, and

could have unknown values for an attribute [Mazid M.M. et al., 2010].

C4.5 algorithm constructs decision trees from a set of training data in the same

manner as ID3. Any correct decision tree will classify the objects proportionally with

their representation in the set of training instances. When a decision tree is used to

classify unknown objects, it will return a certain class.

In the case when there are no objects which has a certain value for an attribute,

the ID3 algorithm labels the leaves with null or failure, so it is not possible to make

the classification. As an improvement, the C4.5 algorithm generalizes and assigns to

the leaf the class which appears most frequently in the set of training instances.

The errors which could appear in the training set give raise to inadequate

attributes and to decision trees with higher complexity than necessary. If there are

missing attributes in the training set, it is assigned the value, which appears with the

highest frequency, or there are used probabilities to determine the distribution

probability for the values of the attribute A in the training set C, depending on the

membership to a class:

)(

)(
)|(

Pclassprob

PclassAAprob
PclassAAprob i

i
=

=∧=
=== (3.4)

and it is chosen the value with the highest probability.

Another solution used by the C4.5 algorithm, when evaluating the informational

gain, is to assign to unknown value objects, values distributed over the values of the

attribute, proportional with the relative frequency of these in the training set. The

unknown values will decrease the informational gain.

When the attribute A has many symbolic values, the separation information is

used. This is the information quantity necessary to determine the value of an attribute

A in a learning set C. Let be PAC the distribution probability for the values of the

attribute A:

)
||

||
,...,

||

||
(1

C

A

C

A
P v

AC = (3.5)

The separation information (SI) measures the informational content of the

answer of the value for the attribute A:

np

np

np

np
ASI ii

v

i

ii

+

+
∗

+

+
−= ∑

=

2

1

log)((3.6)

 45

The improvements of the C4.5 algorithm with respect to the ID3 algorithm refers

at dealing with continuous and discrete attributes, processing training data which

have missing attribute values, taking into account attributes with different costs, and

pruning trees after creation.

3.2.3. Reinforcement Learning

Reinforcement learning (RL) is the problem faced by an agent that learns

behavior through trial-and-error interactions with a dynamic environment [Kaelbling

L.P. et al., 1996].

There are two main strategies for solving reinforcement learning problems. The

first is to search in the space of behaviors in order to find one that performs well in

the environment. This approach has been taken in genetic algorithms and genetic

programming. The second strategy is to use statistical techniques and dynamic

programming methods to estimate the utility of taking actions in states of the world. In

the standard reinforcement learning model, an agent is connected to its environment

via perception and action, as presented in Figure 3.2 [Kaelbling L.P. et al., 1996].

Figure 3.2. Standard Reinforcement Learning Model [Kaelbling L.P. et al., 1996]

On each step of interaction, the agent receives as input, i, some indication of

the current state, s, of the environment. The agent then chooses an action, a, to

generate as output. The action changes the state of the environment, and the value

of this state transition is communicated to the agent through a scalar reinforcement

signal, r. The agent's behavior, B, should choose actions that tend to increase the

long-run sum of values of the reinforcement signal.

Reinforcement
Function

Input
Functio

Current
State

Action
Functio

Environment

Transition
Function

Input Function

Reinforcement
Signals

Agent

Behavior

 46

The RL model consists of a discrete set of environment states, S, a discrete set

of agent actions, A, a set of scalar reinforcement signals, R, an input function I, which

determines how the agent views the environment state; it is assumed that it is the

identity function (that is, the agent perceives the exact state of the environment), and

an environment transition function, T.

The value of a state is the total sum of a reward, which an agent hopes to gain

in the future, starting from a certain situation. The value of a state can be seen as the

long run reward prediction. States with high values are searched, not with high

rewards. The reward is given directly from the environment, but the value should be

estimated by the agent, through experience. The agent should find a policy ππππ: S →→→→ A,

which is a function connecting states with actions, maximizing a measure of the long

run reward. The agent should learn an optimal behavior, which is a policy that

produces the maximum estimated value. The optimal policy is denoted ππππ
*.

There are different behavior models for the agent. In the finite horizon model,

the agent go through a number of n states and reaches the final state, this

representing an episode, then the process is repeated. The estimated reward U is

computed with respect to the reward received in the state St in the future:

)()(
0

∑
=

=
n

t

tt SRSU (3.7)

In the infinite horizon model, the agent lives forever and optimizes the long

run reward:

∑
∞

=

=
0

)()(
t

tt SRSU (3.8)

The discounted infinite horizon model optimizes the long run reward, but

future rewards are decreased with a discount factor δδδδ, where 0 ≤≤≤≤ δ < 1:

)()(
0

t

t

t

t SRSU ∗=∑
∞

=

δ (3.9)

3.2.4. Q-Learning

Q-learning is a reinforcement learning technique that works by learning an

action-value function that gives the expected utility of taking an action in a certain

state and then following a fixed policy [Manju S., Punithavalli M., 2011]. One of the

strengths of Q-learning is that it is able to compare the expected utility of the

available actions, without requiring a model of the environment.

The model consists of an agent, states S and a set of actions per state A. By

performing an action a∈∈∈∈A, the agent can move from a state into a next state. Each

state provides the agent a reward. The goal of the agent is to maximize its total

reward. It does this by learning which action is optimal for each state.

In Q-learning, instead of utilities, action-value pairs are learned. The function Q

assigns an estimated utility, when executing an action in a certain state: Q: A*S →→→→ U.

 47

Q(a,s) represents the discounted estimated sum of the future rewards, obtained

starting from state s, choosing action a and following an optimal policy:

)),()','(max)((),(),(' saQsaQsRsaQsaQ a −∗+∗+← δα (3.10)

This is computed after each transition from state s to state s’, where δδδδ is the

discount factor and αααα is the learning rate. The formula can be rewritten as:

))','(max)(()1(),(),(' saQsRsaQsaQ a∗+∗+−∗← δαα (3.11)

3.2.5. Learning Classifier Systems

Learning classifier systems are a kind of rule based systems, which have

general mechanisms for parallel processing rules, for adaptive generation of new

rules and for effectively testing the existing rules [Bull L., 2004]. Learning classifier

systems are machine learning systems, which are based on reinforcement learning

and genetic algorithms.

Learning classifier systems can be divided into two types, with respect to the

way in which the genetic algorithms are applied. The first type is represented by

Pittsburgh learning classifier system, which has a population of separate set of

rules, in which the genetic algorithms recombine and give the best from the sets of

rules. The second type is described by the Michigan learning classifier system, in

which there is only one population and the algorithm action is concentrated on

selecting the best classifiers from the rules set. The Michigan type learning classifier

systems has two possibilities to define the fitness: strength-based (ZCS) and

accuracy-based (XCS).

A strength-based classifier (ZCS) could be represented as a triple <c,a,p>,

where c is the condition, a is the action, and p is an estimation of the expected

reward, which an agent could receive if it uses this classifier. In this classifier type

there is no message list and the Q-learning algorithm is used in the learning process.

An accuracy-based classifier (XCS) has a different form of rules, instead of

condition → action, the rules has the form condition, action → effect. By effect it is

understood the expected effect (the next state) corresponding to the action.

A learning classifier system is an adaptive system, which learns to perform the

optimal action, which will receive the best reward from the environment. The rules

evolve based on a match set, which is the set of classifiers satisfying the current

state. Using a mechanism based on fitness, the action to be executed is selected.

 48

Chapter 4. Adaptive Negotiation Strategies

4.1. The Negotiation Mechanism

Designing a negotiation mechanism means defining a negotiation protocol and

a negotiation strategy for the agents in the system. The choice of the negotiation

protocol in conjunction with the negotiation strategies adopted by the agents

determines the type of outcome that is produced by the mechanism. A protocol used

for bilateral negotiations is the monotonic concession protocol [Rosenschein J.S. and

Zlotkin G., 1994].

A buyer agent can negotiate over multiple issues in parallel and, for each issue,

the agent concurrently negotiates with its trading partners. If the buyer doesn’t know

how to set the price of each of the issues, one approach is to negotiate over all the

issues in parallel [An B. et al., 2010]. For each issue, there are multiple trading

partners and the agent concurrently negotiates with all of them. Generally, a buyer

obtains more desirable negotiation outcomes, when it negotiates concurrently with all

the sellers in competitive situations, in which there is information uncertainty and

there is a deadline for the negotiation to complete. Inefficiency may arise in

sequential negotiation, when considering the overall time cost to complete all the

necessary negotiations [Fatima S.S. et al., 2006].

As agents can choose to decommit from agreements, negotiation consists of a

bargaining stage and a decommitment step for each negotiation thread. A pair of

buyer and seller agents negotiates by making proposals to each other. At each

round, one agent makes a proposal. Many buyer-seller pairs can bargain

simultaneously, since each pair is in a negotiation thread. If the seller accepts the

proposal of the buyer, negotiation terminates with a tentative agreement. If the seller

rejects the proposal of the buyer, negotiation terminates with no agreement. If the

seller makes a counterproposal, bargaining proceeds to another round and the buyer

can accept the proposal, reject the proposal, or make a counterproposal.

Bargaining between two agents terminates: when an agreement is reached or

with a conflict (no agreement is made), when one of the two agents’ deadline is

reached or one agent quits the negotiation. After a tentative agreement is made, an

agent has the opportunity to decommit from the agreement and it pays the penalty to

the other party involved in the decommited agreement [Sandholm T. and Lesser V.,

2001].

The multi-agent system involved in negotiation should have the following

properties [Kumar S., 2012]:

a) The individual agents in the system are autonomous, rational, and self-

interested. These agents might be owned by different organizations, and therefore,

they make independent decisions and attempt to maximize the expected utilities for

their owners;

 49

b) The agents encounter situations where they cannot satisfy their goals by

themselves. They have to cooperate with other agents and arrive at mutually

beneficial agreements in order to further their own selfish interests;

c) The agents have to cooperate in situations where there is a conflict of

interest. Multi-agent interactions in the system can be modeled as constant-sum

games, where an agent’s gain is always at the expense of others in the system;

d) There can be an arbitrarily large number of agents in the system. However,

each agent can interact with only a small subset of other agents in the system.

In a negotiation mechanism there are many desirable properties [Goradia H.J

and Vidal J.M., 2007]. Efficiency is the most important property for a mechanism. By

economic efficiency it is understood that the agreement mechanism yields should be

close to optimal. Optimality can be measured in many ways, and is domain-specific.

It is desirable a mechanism to be computationally efficient for an obvious reason:

faster the agreement is reached, less time is consumed in negotiation. A mechanism

that involves less communication between the agents during the negotiation process

would be preferred in a real-world setting.

Another desirable property in a mechanism is stability. A mechanism is stable

if it provides all agents with a desire to behave in a particular way. Even for many

settings with cooperative agents, it is assumed that the agents work towards

improving their individual utilities.

Distribution of command and decision-making are essential in certain settings,

where the nature of the problem makes it infeasible to aggregate all the necessary

data. Distribution is desirable also for systems that are not inherently decentralized,

as it avoids a single point of failure and minimizes performance bottleneck.

Scalability is another important issue in settings where there are a lot of

agents. The mechanism should not be affected by the increasing number of agents in

the system.

Suppose there are many businesses in an electronic marketplace, each

specializing in offering certain goods or services for a price [Wellman M.P. and

Wurman P.R., 1998]. Their concern is maximizing their profits by asking the highest

possible price for the goods or services they offer. These businesses may not be

able to complete a task alone, because they do not possess all the capabilities

needed to handle the task completely. In such cases, they have to collaborate with

each other to fulfill customer requests in the marketplace.

4.2. Negotiation using Decision and Game Theory

A framework for one-to-many negotiation by means of conducting a number of

concurrent coordinated one-to-one negotiations is presented in [Rahwan I. et al.,

2002 a]. In this framework, a number of agents, all working on behalf of one party,

negotiate individually with other parties. After each negotiation cycle, these agents

report back to the facilitator, which evaluates how well each agent has done, and

 50

issues new instructions accordingly. Each individual agent conducts reasoning by

using constraint-based techniques. It is outlined that two levels of strategies can be

used, the individual negotiation type, and the coordination level. It is also showed that

the one-to-many negotiation architecture can be directly used to support many-to-

many negotiations. In the prototype Intelligent Trading Agency (ITA), agents

autonomously negotiate multi-attribute terms of transactions in an e-commerce

environment tested with a trading scenario.

A multi-agent framework for a negotiation system that supports the evaluation of

messages, the management of the negotiation messages, and the messages

exchange among the negotiation agents is designed in [Choi H.R. et al., 2005]. It is

dealing with a simple problem, where the agents exhibit common attributes that do

not need a complex classification scheme. It means that their study focuses on

strategy, rather than ontology, in the development of an automated negotiation

system.

An adaptive bilateral negotiation between software agents in e-commerce

environments is studied in [Narayanan V. and Jennings N. R., 2005]. The research

supposes that the agents are self-interested, the environment is dynamic, and both

agents have deadlines. Such dynamism assures that the agents’ negotiation

parameters depend on the state of the encounter and the environment. The study

presents an algorithm, which the agents can use to adapt their strategies to

modifications in the environment, to get a deal with respect to their deadlines and

before the available resources for negotiation are exhausted. An adaptive negotiation

model is defined as a Markov Decision Process. Using a value iteration algorithm, a

possibility to find optimal policies for the negotiation problem is described, without

explicit knowledge of the dynamics of the system. A representative negotiation

decision problem using this technique is described and it is showed that it is a

promising approach for analyzing negotiations in dynamic settings. With empirical

evaluation, it is concluded that the agents using this algorithm learn a negotiation

strategy that adapts to the environment and allows reaching agreements.

An adaptive approach in agent-based negotiation involving on-line prediction of

the opponent behavior based on the parametric non-linear regression analysis is

proposed in [Brzostowski J. and Kowalczyk R., 2006]. A decision-making

mechanism, using the information obtained by the regression mechanism, is also

proposed. The predictive decision-making mechanism for the negotiation agent is

based on the history of offers in the current negotiation encounter. The approach

proposed allows the negotiation agents to predict more complex behavior of the

negotiation opponent, in terms of the mixture of its time-dependent and behavior-

dependent tactics. They perform experiments in order to validate the proposed

approach. The results show that the predictive decision-making gives better results in

terms of the utility gains for the adaptive negotiation agent, as compared with a range

of non-predictive negotiation strategies.

 51

A multi-issue negotiation between self-interested autonomous agents is

analyzed in [Fatima S.S. et al., 2007]. The agents have time constraints in the form of

both deadlines and discount factors. There are n issues for negotiation, where each

issue is viewed as a pie of size one. The issues are indivisible, that is the individual

things cannot be split between the parties and each issue must be allocated entirely

to an agent. The problem is for the agents to decide how to allocate the issues

between themselves, such that to maximize their individual utilities. For such

negotiations, the equilibrium strategies are obtained, for the case where the issues

for negotiation are known a priori to the parties. Then, it is analyzed their time

complexity and showed that finding the equilibrium offers in an NP-hard problem,

even in a complete information setting. In order to overcome this computational

complexity, approximately optimal negotiation strategies are presented, which are

computationally efficient, and it is shown that they form an equilibrium.

Bilateral multi-issue negotiation is analyzed in [Fatima S.S. et al., 2010]. In this

framework, the issues are divisible, there are time constraints in the form of deadlines

and discount factors, and the agents have different preferences over the issues. The

objects are negotiated using the package deal procedure. The set of issues to be

negotiated represent a choice variable, that is the agents can decide what issues to

bargain. This set is called the negotiation agenda. Since the negotiation outcome

depends on the agenda, it is important to determine which agenda maximizes an

agent’s utility and is therefore the optimal one. In this approach, polynomial time

methods are presented, for finding an agent’s optimal agenda.

A comprehensive reasoning model for service-oriented negotiation is described

in [Sierra C. et al., 1997]. This determines which potential servers are contacted,

whether negotiation proceeds in parallel with all servers or whether it runs

sequentially, what initial offers are sent out, what is the range of acceptable

agreements, what counteroffers are generated, when negotiation is canceled, and

when an agreement is reached.

A formal account of a negotiating agent’s reasoning component is presented.

The focus is on the processes of generating an initial offer, evaluating incoming

proposals, and creating counterproposals. The model specifies the key structures

and processes involved in this setting, and defines their inter-relationships. The

model was shaped by practical considerations and insights, starting from the

development of a system of negotiating agents for business process management.

The main contributions of this work are: a) it allows flexible bargaining schemes to be

defined; b) it is based on assumptions which are realistic for autonomous

computational agents; and c) it presents some initial results on the convergence of

negotiation.

 52

4.3. Learning Algorithms used in Negotiation

A multi-agent system for supply chain management is described in [Chen Y. et

al., 1999]. In this framework, functional agents can join in, stay, or leave the system.

The Supply Chain Management System (SCMS) functionality is implemented through

agent-based negotiation. When an order arrives, a virtual supply chain may emerge

from the system through automated or semi-automated negotiation processes

between functional agents. A framework is presented and a number of negotiation

performatives are described, which can be used to construct pairwise and third party

negotiation protocols for functional agent cooperation. It is also explained how to

formally model the negotiation process by using Colored Petri Nets (CPN) and it is

provided an example of establishing a virtual chain by solving a distributed constraint

satisfaction problem.

The multi-agent meeting scheduling problem in defined in [Crawford E. and

Veloso M., 2005], in which distributed agents negotiate meeting times on behalf of

their users. While many bargaining approaches have been proposed for scheduling

meetings, it is not well understood how agents can negotiate strategically in order to

maximize their users’ utility.

In order to negotiate strategically, agents need to learn choosing good

strategies for bargaining with other agents. The playbook approach, introduced for

team plan selection in small-size robot soccer, can be used to choose strategies.

Selecting strategies in this manner offers some theoretical guarantees about regret.

The experimental results prove the effectiveness of the approach. The space of

negotiation strategies is huge, and thus it is not possible for an agent to learn how to

negotiate in the complete space. The plays-based approach cuts the strategy space

down to a set of procedures that are effective in different situations, allowing an

agent to learn which of these strategies work best with different fixed-strategy agents.

An adaptive one-to-many negotiation strategy for multi-agent coalition formation

in dynamic, uncertain, real-time, and noisy environments is proposed in [Soh L.K.

and Li X., 2004]. The strategy focuses on multi-issue negotiations, where each issue

is a request from the initiating agent to the responding agent. The initiating agent

conducts concurrent negotiations with responding agents and in each negotiation it

employs a pipelined one-at-a-time approach, or a confidence-based, packaged

approach. In the first case, lacking knowledge on the responding agent, it negotiates

one issue at a time. In the second case, with confident knowledge of the past

behavior of the responding agent, it packages multiple issues into negotiation. This

adaptive strategy is incorporated into a multi-phase coalition formation model

(MPCF), in which agents learn to form coalitions and perform global tasks.

The creation of effective and efficient negotiation mechanisms for real-world

applications is a challenging problem, because negotiations in such a context are

characterized by combinatorial complex negotiation spaces, tough deadlines, very

limited information about the opponents, and volatile negotiator preferences. So,

 53

practical negotiation systems should have effective learning mechanisms to obtain

dynamic domain knowledge from the possibly changing negotiation contexts.

Adaptive negotiation agents are presented in [Lau R.Y.K. et al., 2006], which have

robust evolutionary learning mechanisms to deal with complex and dynamic

negotiation contexts. The experimental results show that genetic algorithms-based

adaptive negotiation agents outperform a theoretically optimal negotiation

mechanism that guarantees Pareto optimality. This allows the development of

practical negotiation systems for real-world applications. Genetic algorithm-based

adaptive negotiation agents are empowered by the effective evolutionary learning

mechanisms, such that these agents can learn the opponents’ preferences gradually

and continuously adapt to the changing negotiation contexts. The design of genetic

algorithm-based adaptive negotiation agents fulfills all the requirements of practical

negotiation systems, because these agents can simulate a wide spectrum of

negotiation attitudes, identifying near optimal solutions, based on limited information

about the negotiation spaces, continuously learning the opponents’ preferences, and

adapting to the changing negotiation contexts.

A negotiation model, which contains a set of self-interested cognitive agents,

capable to reason on different issues about the object to be negotiated is proposed in

[Florea A.M. and Kalisz E., 2008]. A model of heuristic negotiation between self-

interested agents is presented, which allows the use of arguments, negotiation over

multiple issues of the negotiation object, single and multi-party negotiation, and

learning of the agent’s negotiation primitives. This model uses negotiation objects

and negotiation frames to separate the object of negotiation from the negotiation

process. In order to negotiate strategically, the agents use a reinforcement learning

algorithm applied on a specific state space representation of the negotiation process.

A Belief-Desire-Intention model of agents, required in order to support the

extended set of primitives, is presented in [Bratman M.E., 1999]. In a BDI model, the

agents are endowed with beliefs about the environment and the other agents in the

environment, with intentions to execute actions structured into plans and desires,

which represent the outcomes the agents want to achieve. A consistent subset of

desires forms the agent goals, towards which plans should be developed. It is

proposed a reinforcement learning approach that may permit the negotiator to learn

which negotiation primitive to use in a certain state of negotiation.

4.4. Negotiation Systems using Argumentation

A model of negotiation between self-interested agents is described in [Florea

A.M., 2002], that captures different negotiation situations and objects, including

arguments in favor of successful contracts. The negotiation protocol is specified

using two alternate representations: negotiation trees and negotiation definite clause

grammars. A reinforcement learning algorithm is proposed, that can be used by the

negotiator to learn its negotiation strategy, when faced with multiple negotiation

 54

primitives. The reinforcement learning approach is based on utilities of negotiation

objects and negotiation states.

The negotiation technique used is a combination of a heuristic approach with an

argumentation-based negotiation. The negotiator A issues a request for action, or

service to be performed, or service to be offered, the request being directed to agent

B. The agent B may accept the request, may reject it, may modify the request by

changing the value of an attribute of the negotiation object or by adding a new

attribute. Negotiation may continue by performing several consecutive steps, in which

one or the other agent modifies the negotiation object, a successful contract has

been concluded or the negotiation failed.

A multi-agent system, in which agents are able to negotiate in order to satisfy

their goals and desires, is presented in [Carabelea C., 2002]. The system is open,

the agents in the system are self-interested and are using argument-based

negotiation to reach agreements regarding cooperation and goal satisfaction.

Negotiation is performed using different types of arguments, varying from quantitative

ones, such as money or trade objects, to qualitative arguments, such as promises,

appeal to past promises and past examples.

The objects being negotiated are virtual objects, which may represent physical

objects, actions performed on their behalf, desires of other agents, other agents’

preferences, or money. The argument-based negotiations are covering both

economic type negotiations and symbolic daily life ones. The agents are adapting

their negotiation plans according to an evolved model of the other agents in the

system.

An argumentation based negotiation protocol is proposed in [Kakas A. and

Moraitis P., 2006], in which offers of the negotiating parties are linked to different

arguments they can build, according to their individual negotiation strategy. This

protocol is able to take into account the different roles of agents and the context of

interaction, where the strength of the arguments supporting an offer can depend on

these factors. The agents can adapt their negotiation strategies and offers, as their

environment changes, in particular during the course of the negotiation, as they

exchange information. In addition, using abduction alongside with argumentation,

agents can find negotiating conditions to support an argument for an offer, thus

extending the negotiation object in order to help finding an agreement. To illustrate

further the advantages of the approach, the negotiation strategies are extended with

another negotiation mechanism, that is bargaining with multiple parties.

4.5. Negotiation Systems with Ontologies

In a multi-agent system, presented in [Dong H. et al., 2008], a business may

start by two agents that have the desire of trading, and negotiation is an inevitable

procedure for building the business relationship. In the context of e-business, agents

 55

that represent humans have the potential ability to start automated negotiation

activities.

Traditional negotiation research focuses on providing approaches for generating

negotiation strategies and protocols to enhance the ability of agents. However, there

are some issues in this field – the inadaptability of agents to evolving negotiation

protocols, and agents’ negotiation term ambiguity.

Ontology is a semantic web technology for defining domain knowledge and

solving semantic ambiguity, which can be extended into the field of automated

negotiation research. A survey of the existing negotiation ontologies is performed,

and the current status of the negotiation ontology research is explored.

Semantic web technology to automated negotiation is applied in [Tamma V. et

al., 2005]. In this approach, agents could negotiate in any type of marketplace,

irrespective of the negotiation mechanism. Protocols are described in terms of a

shared ontology, which is an explicit and declarative representation of the negotiation

protocol. The ontology is used to change agents’ strategies to a certain protocol

employed.

An agent entering an interaction should acquire the negotiation protocol, which

controls the interaction, from the marketplace itself, through an advertisement of the

type of protocol used. In order to allow interoperability, the protocol is defined like a

shared ontology of negotiation, which gives the basic vocabulary that agents must

share, in order to discuss the participation terms in the negotiation.

Regarding the use of the ontology as input for changing the agent strategy to a

certain type of protocol, it is described the complexity of the protocol defined by a

given mechanism and recommends a potential solution technique. For some

mechanisms, it is possible to find an optimal strategy using computational

techniques. For more complex mechanisms, this approach can be used to

recommend a strategy, based on a class of learning algorithms.

4.6. Negotiation Systems in Auctions

The multi-agent paradigm and its application to multi-item auctions is discussed

in [Benameur H. et al., 2002]. It is proposed a formal model for auction based

automatic negotiations. This model is implemented using multi-agent systems and is

tested and evaluated with simulation experiments.

Multi-item auctions have addressed the combinatorial issue that allows bids on

combinations of items, as opposed to only single items. These approaches suppose

two simplifying conditions: the quantity of items to sell is fixed, as well as the

quantities requested by the buyers. These two hypotheses do not meet the

requirements of many situations, where auctions are used. In some auctions, it is

desirable that the available quantity is not fixed. In this way, quantities can change

during the auction, as it is for example the case for stock values. A model based on

 56

an English auction is presented, with multiple items with private valuations and

variable quantities requested.

4.7. Heuristic Negotiation Systems

The design and implementation of an environment for automated negotiations,

offering support for the use of various existing bargaining models, together with their

respective negotiation strategies, is presented in [Silva A. et al., 2007]. It is possible

to integrate different models, approximating the automated negotiations to the way

the real world works.

An open architecture for the negotiation environment is proposed, where the

number of buyers and sellers, or the offer and demand for services or products, can

be changed during execution time. In a flexible way, the negotiator agent can

increase the set of negotiation strategies and also the number of business domains.

These characteristics were implemented in the proposed environment with ontology

concepts and production rules.

The use of ontology enabled the negotiator agents to be implemented, a priori,

for any type of business domain. The fact is that the environment supplies a protocol

for the agents to interact on the same ontology, allowing an agent to be detached

from the various business domains it may be possible to negotiate. The individuality

of each negotiator agent is therefore tied to the rules it possesses.

Price negotiations are one of important aspects of e-commerce transactions

[Badica C. et al., 2007]. A rule-based implementation of automated price

negotiations, used in a multi-agent system that models an e-commerce environment,

is presented. A brief description of the conceptual architecture of the system and a

simplified scenario that involves multiple buyer agents participating in multiple

English auctions performed in parallel are described.

Dominant-strategy mechanisms in allocation domains, where agents have one-

dimensional types and quasilinear utilities, are studied [Naroditskiy V. et al., 2013].

Considering as input an allocation function, an algorithmic technique for finding

optimal payments is presented, for a class of mechanism design problems. Optimality

of payment functions is linked to a geometric condition. When the condition is true,

an optimal payment function that is piecewise linear in agent types is described.

Mechanism design problems that have no objective functions, but seek

payments fulfilling a combination of constraints, are reduced at solving a system of

linear inequalities. These reductions give solutions of mechanism design problems

that are otherwise difficult to solve.

In Table 4.1 are presented the types of research on automated negotiation and

the authors.

 57

Table 4.1. Types of Research and Authors

Types of Research Authors

Negotiation using

Decision and Game

Theory

Kraus S., 1997

Sierra C., Faratin P., Jennings N.R., 1997

Kraus S., 2001

Rahwan I., Kowalczyk R., Pham H.H., 2002

Osborne M.J., 2004

Narayanan V., Jennings N.R., 2005

Choi H.R., Kim H.S., Hong S.G., Park Y.J., Park Y.S., Kang M.H.,

2005

Brzostowski J., Kowalczyk R., 2006

Fatima S., Wooldridge M., Jennings N.R., 2007

Fatima S., Wooldridge M., Jennings N.R., 2010

Learning Algorithms

used in Negotiation

Chen Y., Peng Y., Finin T., Labrou Y., Cost S., 1999

Soh L.-K., Li X., 2004

Lau R.Y.K., 2005

Crawford E., Veloso M., 2005

Lau R.Y.K., Tang M., Wong O., Milliner S.W., Chen Y-P.P., 2006

Florea A.M., Kalisz E., 2008

Negotiation using

Argumentation

Florea A.M., 2002

Carabelea C., 2002

Kakas A., Moraitis P., 2006

Rahwan I., Ramchurn S.D., Jennings N.R., McBurney P., Parsons

S., Sonenberg L., 2002

Negotiation

Ontologies

Dong H., Hussain F.K., Chang E., 2008

Negotiation in

Auctions

Benameur H., Chaib-draa B., Kropf P., 2002

Table 4.2 describes the main characteristics of each negotiation model

developed in the researches presented in this chapter.

Table 4.2. Main Characteristics for Negotiation Models

Research Authors Name/

Language

Adaptation Learn Single/

Multi

Sierra C. et al.,

1997

CLIPS and

PROLOG

Fuzzy Control

Techniques

No Multi

Bratman M.E.,

1999

Theoretical

Framework

Heuristic Strategies Reinforcement

Learning

Single

Chen Y. et al., 1999 Supply Chain

Management

System

Colored Petri Nets Distributed

Constraint

Satisfaction

Problem

Multi

 58

Benameur H. et al.,

2002

Java Finite State Machines No Multi

Carabelea C., 2002 Jade Argumentation

Strategies

Reinforcement

Learning

Multi

Florea A.M., 2002 Java Argumentation

Strategies

Reinforcement

Learning

Multi

Rahwan I. et al.,

2002

Intelligent Trading

Agency (ITA)

Constraint-based

Techniques

No Multi

Soh L.K. and Li X.,

2004

Java Multi-Phase Coalition

Formation

Form Coalitions,

Perform Global

Tasks

Multi

Choi H.R. et al.,

2005

Server Sales Agent

System / Java

Scheduling Agent / Price

and Due Date Agent

No Multi

Crawford E. and

Veloso M., 2005

Java Playbook Approach Experts Problem /

Regret

Multi

Narayanan V. and

Jennings N.R.,

2005

Java Markov Decision

Process

Non-Stationary

Value Iteration

Algorithm

Multi

Tamma V. et al.,

2005

DAML + OIL /

Protege

Semantic Web

Technologies

Q-learning Multi

Brzostowski J. and

Kowalczyk R., 2006

Java Non-linear Regression Predictive Decision

Making

Multi

Kakas A. and

Moraitis P., 2006

Java Argumentation

Strategies

Abduction Multi

Lau R.Y.K. et al.,

2006

Web Service

Description

Language (WSDL)

Genetic Algorithms Evolutionary

Mechanisms

Multi

Badica C. et al.,

2007

Jade and Jess Multiple English

Auctions Performed in

Parallel

No Multi

Fatima S.S. et al.,

2007

Theoretical

Framework

Equilibrium Strategies Approximately

Optimal

Multi

Silva A. et al., 2007 Java Neural Networks Q-learning Multi

Dong H. et al.,

2008

Protege and Jade Semantic Web

Technologies

No Multi

Florea A.M. and

Kalisz E., 2008

Java Heuristic Strategies Reinforcement

Learning

Multi

Fatima S.S. et al.,

2010

Theoretical

Framework

Time Constraints Polynomial Time

Methods

Multi

Naroditskiy V. et

al., 2013

Theoretical

Framework

Dominant Strategy

Mechanisms

Optimal Payment

Function

Single

 59

Part II. An Adaptive Negotiation Multi-Agent System

Chapter 5. Automated Negotiation using Profiles and

Clustering of Agents

This chapter presents a model of self-interested agents acting in an open

environment, which capture the most relevant elements of agents’ behavior related to

negotiation with other agents. The agents’ behavior is mainly motivated by the gain

they may obtain while fulfilling their goals and negotiating, but their behavior can

change during negotiation, according to previous interactions with other agents in the

system.

5.1. Multi-Agent System Description

A series of negotiation strategies and studies already exist in the literature, for

example [Jennings N.R. et al., 2001; Ito T. et al., 2007; Jonker C. et al., 2007; Lin R.

et al., 2008; Lin R. et al., 2009 a], in which the agents are able to choose different

strategies. The automated negotiation process usually takes place in open

environments. These environments don’t have a way to control the agents’ behavior,

and it is also possible to have humans in these environments, whose behavior is

unpredictable [Florea A.M. and Radu S., 2007; Lin R. et al., 2008]. Some negotiation

strategies are based on agent profiles, which can define statically or develop

dynamically agents’ preferences. There are advantages for creating agents’

negotiation profiles. This allows the agents to build good strategies. Using these

profiles, agents obtain better results than those in case of fixed negotiation strategies,

that is increase the agents’ gain from negotiation [Florea A.M. and Kalisz E., 2007;

Radu S. and Florea A.M., 2012].

Changing the behavior of the agents may refer to either the use of different

negotiation strategies or to concessions made for other agents, with which they have

successfully negotiated in the past. Sometimes, the agents are also motivated by the

necessity to cooperate with other agents for achieving their goals. The key element in

the agent behavior is their capability to develop a set of negotiation profiles. These

profiles help the agents to conduct their negotiation [Radu S. et al., 2013 a]. Different

approaches to the development of these profiles are presented in this chapter.

The set of negotiation profiles the agents are able to evolve consists of:

(1) the preference profile, defining the agent negotiation strategy;

(2) the partner cooperation profile, which takes into account the agent

interaction with the other agents in the system;

(3) the group-of-partners’ negotiation profile, which clusters the profiles of

several agents.

 60

The first two profiles characterize individuals, while in a group negotiation profile,

several agent profiles are clustered according to commonly discovered features.

The outcome of negotiation is evaluated for different strategies, encoded in the

preference profile. In the system there are different agents and a facilitator, which

can be used by the agents, either to register or, to register and facilitate negotiation.

The three types of negotiation profiles are described and discussed, as well as

the uninformed and informed negotiation strategies. Negotiation strategies are

implemented in the form of production rules. In this approach, preference

coefficients can be assigned to these rules and dynamically modified, according to

the negotiation situation.

The proposed model of negotiation is tested in the framework of a multi-agent

system, for different business models. The results are presented in detail in Chapters

8 and 9.

5.2. Overview of the Approach using Profiles and Clustering of

Agents

A model of heuristic negotiation between self-interested agents is described in

[Florea A.M. and Kalisz E., 2007]. The system allows bargaining over multiple issues

of the negotiation object, comprises different types of negotiation primitives, including

argument based ones, and a set of rules to conduct negotiation. In order to negotiate

strategically and to adapt bargaining to different partners, the agents use rewards

associated to negotiation objects and the notion of regret to compare the achieved

outcomes with the best possible results that could have been obtained both in a

particular negotiation and in selecting the partner agent.

The decision process during the negotiation is modeled as an adversarial bandit

problem with partial information and uses the computed probabilities of negotiation

rules to select the best rule to be used at a certain moment during bargaining.

Rewards were defined depending on the attributes of the negotiation object at a

given negotiation round or, in case adaptation of partner selection is sought,

depending on the negotiation object with which the negotiation is concluded.

Moreover, it is shown how the problem can be modeled if not all rules can be

selected at a given decision point (equivalent with not all experts being available for

consultation).

The Q-learning algorithm is applied to analyze and learn customer behaviors

and then recommend appropriate products in [Srivihok A. and Sukonmanee P., 2005].

As compared to the current approach, the user profile is not used for negotiation, but

to personalise the information to the customer interests. There are used weighting

features to recommend products to the user. In this chapter, weights to represent the

preference coefficients are employed.

A software framework for negotiation, in which the bargaining mechanism is

represented by a set of rules, as in the current chapter, is proposed in [Bartolini C. et

 61

al., 2005]. The rules are organized in a taxonomy and can be used in conjunction

with a simple interaction protocol. The negotiation language is based on OWL-Lite.

Although the rules allow flexible definition of several negotiation strategies, there are

no negotiation profiles and the possibility to modify the negotiation, according to

these profiles, as in the current chapter.

An implementation of automated negotiations in an e-commerce modeling multi-

agent system is described in [Badica C. et al., 2006 b]. A specific set of rules is used

for enforcing negotiation mechanisms. An experiment involving multiple English

auctions performed in parallel is discussed.

A system for automated agent negotiation, based on a formal and executable

approach to capture the behavior of parties involved in a negotiation is shown in

[Skylogiannis T. et al., 2007]. The negotiation strategies are expressed in a

declarative rules language, defeasible logic, and are applied using the implemented

system Dr-Device.

The system GENIUS (General Environment for Negotiation with Intelligent

multi-purpose Usage Simulation) is presented in [Lin R. et al., 2008]. It supports the

design of different strategies for agent negotiation, and the evaluation of these

strategies in a simulated environment. The system allows the negotiation between

automated agents, but also between agents and humans. The designer of a strategy

can select from a repository a negotiation domain and a preference profile for the

agent. Both are represented in a tree-like structure, which enables to specify

priorities related to outcomes of negotiation. As compared to this system, in the

current chapter, there are several negotiation profiles, which are evolved during

interactions, and the negotiation domain is specified by the agent rules.

5.3. Framework for Automated Negotiation

The negotiation agent behavior is defined in a framework of a multi-agent

system in an open environment. The system includes the facilitator, which can be

used or not by the agents during negotiation, depending on the preference profile.

Because the environment is open, other agents can enter or exit the system

dynamically, as presented in Figure 5.1. When entering the system, the agent has to

register with the facilitator, and the facilitator will inform other agents about the new

agent arrival.

There are two interaction possibilities, each one with its advantages and

disadvantages. When an agent wants to negotiate, it either sends a broadcast

message to all the agents in the system, or sends a single message to the facilitator,

asking it to find other agents appropriate to negotiate with.

In the first approach, in which the agent sends messages to all the other agents

in the system, the agent waits for answers from possible partners. Some of the agents

will answer with proposals and others will not answer at all. The advantage is that the

 62

facilitator has fewer messages to process, but the disadvantage is that there are too

many messages sent over the network, which can slow down the transaction.

Figure 5.1. The Multi-Agent System Open Environment

In the second approach, the agent will send to the facilitator two types of

messages: a message presenting its abilities, and a message asking help for a

negotiation, for instance, to buy or sell an item. It is the facilitator which will query the

agents with the required abilities, and will inform the agent about the outcome. The

advantage of this approach is that not all the agents are queried, but the disadvantage

is that the facilitator has a lot of messages to process and can become a bottleneck in

the system.

The negotiation between agents is a single-issue negotiation, where the price of

the products is bargained. The type of negotiation implemented is a heuristic

negotiation, in which the agent computes the gain, as compared to its private value for

an object. The agents negotiate following the Iterated Contract Net protocol. Each

agent takes into account a private value for any item (product or service) to trade (sell

or buy). Also, there is a deadline for the number of negotiation rounds. In a buying

negotiation, an agent will look for a lower value than its private one, while in a selling

negotiation, its main goal is to obtain more than the item’s private value.

The agent behavior is mainly motivated by the gain, but also, depending on a

specific context, by the desire to achieve cooperation with other agents. For example,

as a general rule, the agent will not accept a price lower than its private value.

However, when the agent wants to cooperate, it can accept a lower price. The agent

behavior is set up by the negotiation strategy.

The negotiation model proposed in this chapter can be easily extended to multi-

issue negotiation, as described in Chapter 6. In this case, the agent will trade the

 Communication between Agents

 Communication with Facilitator

Agent

Facilitator

Agent 1

Agent 3

Agent 2

 63

negotiation object (NO). A negotiation object is the range of issues over which

agreements must be reached, as defined in [Jennings N.R. et al., 2001]. The object of

a negotiation may be an action which the negotiator agent A asks another agent B to

perform for it, a service that agent A asks to B, or, alternatively, an offer of a service

agent A is willing to perform for B, provided B agrees to the conditions of A. The agent

A may have a plan to achieve one of its desires, but may be unable to carry out some

of the necessary actions, therefore it will ask B to execute these actions for it, if it

believes the actions belongs to B's abilities.

The agents are mainly designed according to the BDI model, and have a set of

goals, selected from the set of desires. In order to achieve their goals, they develop

plans, as a sequence of actions to be performed, or they provide services or ask for

services from the agents, such as buying or selling objects. Some actions can not be

executed by the agent itself, and they also become, together with the services,

objects to be negotiated by the agents. To unify these two cases, the agents are

using negotiation objects, which can wrap up one or several negotiation attributes.

Each agent has an associated set of rules, divided in two: behavior rules,

which implement the way the agent fulfills the goals assigned to it, and negotiation

rules, which describe the negotiation strategy. In Figure 5.2 is presented the

structure of a BDI negotiating agent. Agents based on models different from BDI

may enter the system, providing that they use the same negotiation protocol. During

negotiation and interaction with other agent, a BDI agent develops a set of

negotiation profiles.

Figure 5.2. BDI Negotiation Agent Structure

The agents have different reasoning capabilities, designed to conduct successful

negotiation and the fulfillment of agents’ goals. During negotiation, the agents gather

 64

information about the partner agents, and store it in the associated cooperation

profiles [Radu Ș. et al., 2013 a].

Figure 5.3. The Agent Main Components

Each agent is endowed with a set of negotiation profiles, outlined in Figure 5.3:

- the preference profile, which specifies the agent negotiation strategy;

- the partner cooperation profile, which keeps track of the agent interactions

with the other agents in the system;

- the group-of-partners’ negotiation profile, which deals with a group of

negotiation partners.

The partner cooperation profile describes the preferences regarding the agents

with which an agent prefers to cooperate. The partner cooperation profile of an agent

is implemented as a structure which evolves dynamically. For each agent

encountered during the negotiation process, knowledge about the outcome of different

negotiations is stored in this structure.

The partner cooperation profile is a characteristic of each agent and is stored as

a matrix. Each line contains the agent name and a set of associated attributes, upon

which the agent dynamically changes its preferences. The cooperation profile is

updated during the negotiation process, at the end of each negotiation. Table 5.1

presents an example of a partner cooperation profile for an agent.

An entry in the matrix, defining the partner cooperation profile for an agent, has

the fields presented below, representing the cooperation attributes.

1. The first field represents the name of the partner agent, stored as a string of

characters.

2. The second field contains how many times the agent negotiated with its

partner, and is represented as a natural number.

3. The third field stores the number of successful negotiations, as an integer

number.

Reasoning
Module

Communication
Module

Behavior
Rules

Strategy
Rules

Preference
Profile

(Strategy)

Cooperation
Profile

Group of Partner
Profile

 65

Table 5.1. Partner Cooperation Profile of an Agent

1. Partner Agent Name Agent 1 Agent 2

2. No. of Negotiations 7 5

3. Successful Negotiations 4 3

4. Total Gain 3 2

5. Gain Ratio 80 60

6. Negotiation Rounds 6 4

7. Interesting Degree 3 2

8. Partner Classification very cooperative cooperative

4. The fourth field points out the connection between the outcome of negotiation

and the private value of the agent for the negotiation object, showing the total gain

obtained. This is stored as a positive or negative integer number.

Each agent has two prices, the minimum price (MinPrice) and the maximum

price (MaxPrice), between which it accepts offers. The buyer computes its gain as

the difference between the maximum price it is willing to pay and the price of the

current offer. The seller computes its gain as the difference between the price of the

current offer and the minumum price it is willing to accept.

Based on heuristic criteria, an agent can accept a price greater than its private

value in order to buy a product, or can sell a product at a price lower than its private

value. These decisions are based on the information stored in the preference profile of

the agent and are specified by the strategy rules.

5. The fifth field shows the gain percentage, namely how much is the gain

obtained while negotiating with the partners, as a percentage of the agent total gain.

6. The sixth field is the number of negotiation rounds, during the last

negotiation, and is an integer number.

7. The seventh field tries to capture the agents’ beliefs about the partner abilities

and/or credentials. This attribute is called the interesting degree of the partner,

which is quantified as: very interesting, interesting, moderately interesting, and

not interesting (4…1). For example, if the partner has an ability to perform a task,

which is lacking to the agent, then the partner is interesting or very interesting to the

agent. Moreover, if the negotiation is successfully concluded in a small number of

steps, and the gain is positive, then the partner is very interesting.

8. The eighth field contains the classification of the partner agent, which

represents the current agent belief about the cooperation potential of the partner. The

partners are classified in six cooperation classes: highly cooperative, very

cooperative, cooperative, slightly cooperative, non cooperative, and unknown.

The attributes from 1 to 7 described above are updated by the agent after each

negotiation with a specific agent. The last attribute (8) will be filled in by a more

elaborate process, to be described further on.

The representation of the agents’ cooperation profiles as a set of attributes is

able to characterize the cooperation potential of a partner, with a high degree of

 66

granularity. It is necessary to describe the cooperation potential of a partner agent in a

broader sense. To this aim, it is proposed the clustering of partners into cooperation

classes, specified in field 8 [Radu S. et al., 2013 b]. This classification is achieved by

using the C4.5 learning algorithm [Quinlan J.R., 1993], in which the fields from 2 to 7

are used as classification attributes and field 8 represents the class. There are two

methods to generate training examples for the learning algorithm. In the first

approach, the system run and collect gathered information. In the second approach, a

training set of virtual agents is generated, with which an agent has virtual negotiations.

After these negotiations are performed, the matrix is filled with the results, according

to the fields described before.

The information stored in this way in the matrix will allow the classification of real

negotiations. The classification is improved, as more negotiations take place and the

matrix is filled with the correct real values. After that, the C4.5 algorithm will classify

correctly the negotiation instances.

5.4. Agents Classification and Strategies

The characterization of the cooperation potential of a partner agent is done by

classifying the partners into cooperation classes, which divides the cooperation ability

of the partner into six classes. The classification is done using the C4.5 learning

algorithm, in which a decision tree is a classifier for the cooperation degree,

expressed as a recursive partition of the instance space. In the decision tree, the

attributes are represented by the first seven fields of the partner cooperation profile

and the class by the partner classification field.

Decision trees are capable of handling datasets that may have errors. Also,

they can handle datasets that may have missing values, like the gain value in the

current case.

A tree is either a leaf node labeled with a cooperation class, or a structure

containing a test for an attribute, like the number of successful negotiations, linked to

two or more nodes (or sub-trees). So, to classify some instance for the cooperation

potential, first it is obtained its attribute-vector, and then this vector is applied to the

tree. The tests are performed with these attributes, like the number of successful

negotiations, the gain, the gain percent, reaching one or other leaf, to complete the

classification process.

Through a top-down decision tree and a heuristic selection criterion, the

process chooses the best test to split the data, creating a branch.

In order to build the classification tree, a set of training instances is necessary,

with associated attributes, and a corresponding class. There are two possibilities to

obtain the set of training instances. The first possibility is to let the system run and

collect information, based on agent interaction. The tree is built after a number n of

negotiations, and then rebuilt at successive times, n+1, n+2, increasing thus the

accuracy of the classification.

 67

The other possibility is to create a set of training instances, and run the C4.5

algorithm on this set. An initial classification tree will be thus obtained, which may be

later on rebuild and refined, after the actual negotiation will take place.

The C4.5 algorithm should work with inadequate attributes and should obtain

correct results. Also, it should decide if testing some supplementary attributes will

increase or not the predictive accuracy of the decision tree. Considering an attribute

A with random values, choosing this attribute will give a high informational gain. The

benefit should be greater than a given threshold, in order to eliminate the non

relevant attributes.

There are cases when the classification can’t be done. This happens when a

leaf is obtained, in which not all the objects belong to the same cooperation class. In

this case, the notion of membership to a cooperation class with a certain probability

is used or the leaf is labeled with the cooperation class with the largest number of

instances. If the classification ends in a leaf with an equal number of instances from

two cooperation classes, the decision about the correct classification in a cooperation

class is done randomly.

When there are missing attribute values in the training set, for instance, the

interesting degree of a partner, it is assigned the value of that attribute, which appear

most often. A different approach for missing attributes is to assign values distributed

over the values of the attribute A proportionally to the relative frequency of these

values in the set of objects.

Figure 5.4 presents a part of the decision tree used for classifying the instances.

While interacting with the partners, the agents are classified in the right class. At

the end of negotiation, an agent can change its cooperation class. There is a tradeoff

between how often the agent cooperation class is updated, which may be time

consuming, and the accuracy of the classification.

The group-of-partners’ negotiation profile is defined by grouping into classes the

partner agents, with which the agent interacted in the system. For each of the six

values of the cooperation classes (highly cooperative, very cooperative, cooperative,

slightly cooperative, non cooperative and unknown), the group-of-partners’ negotiation

profile contains the list of all agents that belong to a given class. The agents, for

which no class was found out yet, belong to the unknown class.

The preference profile of an agent describes its strategy. This is represented as

a set of negotiation rules. These can be heuristic negotiation rules, which refer to

partner cooperation profiles, or rules which encode certain negotiation strategies.

The negotiation strategy of an agent may show how much and how quickly the

prices are decreased and if the price is lower than the agent’s private value. An agent

can use a tradeoff in negotiation. In the case of cooperative agents, an agent can gain

more once, and then can sell cheaper. This is a kind of global evaluation on previous

deals.

 68

Figure 5.4. Classification using the Partner Cooperation Profile

The negotiation strategy is implemented in the form of production rules, each

agent keeping a history of its interactions. If in a given situation, several rules are

eligible, then the negotiation strategy decides which rule, from the conflict set, to be

applied. A possible approach to solve the conflicts is to assign priorities between

rules. The solution is to apply the rule with the highest priority. Using a feedback, it is

possible to apply the same rule or another rule.

The rule’s priorities are dynamically modified, and the preference coefficients are

not built-in, they are dynamically changed, according to the negotiation situation.

Each rule has an associated preference coefficient, which indicates, in case two

or more rules apply in a given situation, which rule should be preferred. In this way,

the strategy can be explicitly set up when designing the system, and can be changed

from one use of the system to another, simply by changing these coefficients. Another

use of the coefficients is that they can be dynamically modified by a reinforcement

learning algorithm, in a similar manner to a learning classifier system [Butz M.V.,

2010]. Learning classifier systems are a machine learning technique that may be

categorized between symbolic production systems and sub-symbolic connectionist

systems.

It is possible to have more than one strategy in the system, for instance, at each

negotiation step, the price is decreased by 1, or is decreased by 3. Another strategy

rule tells what happens when the price increases with 10 % above the private value, if

the offer is instantly accepted or not.

In order to show an example of strategy rules, the following Contract Net

protocol is considered:

 69

1) cfp(A, X, NO, P) is the communication primitive, which represents a call for

proposals from agent A to all the acquaintances X, regarding a negotiation object NO,

with an associated cost P

2) propose(X, A, NO, P, Step) is the communication primitive, which represents

the response of agent X to the cfp, with the negotiation object NO, price P and

negotiation step Step

3) accept(X, NO) indicates the acceptance of a proposal issued by X, for the NO

4) reject(X, NO) indicates the rejection of a proposal issued by X, for the NO

5) counterpropose(A, X, NO1, P1, Step) defines a communication primitive,

which represents the counterproposal of agent A to the proposal of agent X, with the

negotiation object NO1, price P1 and negotiation step Step

A Prolog-like language [Florea A.M. et al., 2007] is considered and also a set of

predicates, defined as follows:

• propose(X, A, NO, P, Step) defines a predicate, which is true when agent A

receives the response (2) of agent X to the cfp, with the negotiation object NO,

price P and negotiation step Step

• accept(X, NO) defines a predicate which, when true, triggers an acceptance

message (3) of a proposal issued by X, for the NO

• reject(X, NO) defines a predicate which, when true, triggers a rejection

message of a proposal issued by X, for the NO

• counterpropose(A, X, NO1, P1, Step) defines a predicate which, when true,

represents the counterproposal (5) of agent A to the proposal of agent X, with

the negotiation object NO1, price P1 and negotiation step Step

• tp(Ag_Name, Atr_Name, Value) is a predicate which selects from the partner

cooperation profile, for a given agent name (Ag_Name), the value (Value) of

the attribute (Atr_Name) in the associated field.

Considering the above described predicates, some examples of strategy rules of

an agent are given in Table 5.2.

During negotiation steps, the C4.5 learning algorithm can classify the partner in

another cooperation class, if the criteria used as attribute in the algorithm are

changed.

So, instead of having a negotiation strategy which applies all the rules that

match at a certain moment, the classification with the C4.5 learning algorithm

decreases the number of eligible rules.

At a higher degree of granularity, instead of writing negotiation rules for a

partner cooperation profile, we can write negotiation rules for a group-of-partners’

negotiation profile. Moreover, the group-of-partners’ negotiation profile can be used

in other ways to tailor the agent behavior.

 70

Table 5.2. Example of Strategy Rules

Id Rule

r1 propose(John, Tom, House, 1000, S),

tp(John, No_Successful_Negotiations, v1),

tp(John, No_Negotiations_with_Partner, v2), v1 > v2 – 2,

tp(John, Interesting_Degree_of_Partner, v3), v3 > 3, tp(John, Gain_Percent, v4), v4 > 20 →→→→

accept(John, House) PC1

r2 propose(John, Tom, House, 1000, S),

tp(John, No_Successful_Negotiations, v1), v1 > 5,

tp(John, Gain, v2), v2 > 100,

tp(John, Interesting_Degree_of_Partner, v3), v3 = 4 →→→→ accept(John, House) PC2

r3 propose(John, Tom, House, 1000, S),

tp(John, No_Successful_Negotiations, v1),

tp(John, No_Negotiations_with_Partner, v2), v1 < 0.5 * v2 ,

tp(John, Interesting_Degree_of_Partner, v3), v3 < 2 → reject(John, House) PC3

r4 propose(John, Tom, House, 1000, S),

tp(John, No_Successful_Negotiations, v1),

tp(John, No_Negotiations_with_Partner, v2), v1 < 0.5 * v2 ,

tp(John, Interesting_Degree_of_Partner, v3), v3 > 3 →→→→

counterpropose(Tom, John, Car, 500, S1) PC4

r5 propose(John, Tom, House, 1000, 1),

tp(John, Classification, v1), v1 = ‘highly cooperative’ →→→→ accept(John, House) PC5

r6 propose(John, Tom, House, 1000, S),

 tp(John, Classification, v1), v1 = ‘unknown’, Price > private_value(House) →→→→

reject(John, House) PC6

r7 propose(John, Tom, House, 5000, 1),

tp(John, Classification, v1), v1 = ‘unknown’, private_value(House) = p, p < 5000,

tp(John, Gain, v2), v2 = 5000 - p →→→→ accept(John, House),

tp(John, No_Negotiations_with_Partner, 1),

tp(John, No_Successful_Negotiations, 1) PC7

5.5. Preference Coefficients Determination

The preference profile implements the negotiation strategy using rules, with

the associated preference coefficient [Radu S. et al., 2013 b].

There are two types of rules used in the strategy. The first category of rules is

used when the negotiation begins and is called uninformed strategy rules. The

second category is employed when there is enough information about the partner

and is called informed strategy rules. When negotiation begins, uninformed

strategy rules can be applied. According to the success or failure of the

negotiation, the preference coefficients are changed accordingly.

In order to update the preference coefficients, it is established a formula,

which makes the connection between the preference coefficients and how much

the agent gains using the rules associated to these coefficients. It is supposed that

 71

all the rules applied during negotiation have an equal contribution to gain or to

loss. For a certain agent acting in different negotiations, if there are n possible

rules to be applied, a priority between the rules will be established, according to

the preference coefficients. Suppose that NR represents how many times the rule R

was applied in a negotiation and M is the number of negotiation steps. Denote by α

the ratio between NR and M.

MNR /=α (5.1)

The preference coefficient is updated according to the situation, if the

negotiation ends with a deal or not. If a deal is reached at the end of the

negotiation, then the preference coefficient is updated by the formula (5.2):





>÷∗+

∈∗+
=

12)1(

]10[)1(

oldold

oldold

new
PCPC

PCPC
PC

α

α K
 (5.2)

If a negotiation is ending without a deal, then the preference coefficient is

updated by the formula (5.3):

newPC =

oldPC∗−)1(α (5.3)

Some predefined values for the preference coefficients are put in the

beginning. Also, there is a mechanism used to adjust the coefficients and to realize

a combination between the initial preferences of the user for the rules and the

change in time of the coefficients, according to the result of the negotiation.

A second approach used to update the preference coefficients is a

reinforcement learning algorithm. In reinforcement learning, agents revise their

strategies based on observed failure or success. In Q-learning [Tesauro G. and

Kephart J., 2002], a reward function provides feedback on actions taken in order to

estimate a ranking of state-action pairs.

To apply the Q-learning algorithm in this situation, it is considered that each

preference coefficient is indexed on a state and an action, for taking into account

the preference coefficients. The actions from the Q-learning algorithm are

represented by the rules applied by an agent when negotiating. The states from

the Q-learning algorithm represent now the internal states of the agents. For each

tuple (s, a), where s is the internal state of the agent and a represents the rule

applied during negotiation, the preference coefficients are updated using a

formula, in a similar manner to the Q-learning algorithm:

)],()','(max)([),(),(
'

asPCasPCsrasPCasPC
a

−++← γα (5.4)

where:

)','(max
'

asPC
a

 is the expected preference coefficient of the next internal state of

the agent s’, when applying the action a’;

α is the learning rate representing the impact of the update value;

r(s) is the immediate reward for the internal state of the agent s.

The immediate reward in this case is the gain obtained during negotiation.

The factor γ specifies how much the values of the preference coefficients are

 72

discounted at each stage.

The internal state of the agent is characterized by several parameters: the

partner agent, the negotiation object, the utility of the current offer, the number of

negotiation parameters, the number of negotiation rounds with the partner agent,

how much the agent gained in a previous negotiation.

To adequately update the preference coefficients using the Q-learning

algorithm, the agent must encounter repeatedly the same pair (s, a), therefore the

negotiation must be performed several times with the same agent and for the same

object.

It is important to consider that the matrix PC(s, a) is huge, because it is

possible to have many internal states of the agent, for each possible combination

of the parameters for its internal states. For instance, if there are ten negotiation

rules possible to be applied in a certain state, then the matrix will have ten columns

and the lines represent different combinations of state parameters. One line can

represents the following internal state: the name of the partner agent, the

negotiation round and the gain obtained in a previous negotiation. It is clear that

there are too many internal states, for each possible combination of state

parameters and the number of lines of the matrix increase exponentially, as the

number of state parameters grows. That’s why the learning algorithm used for

updating the preference coefficients will converge in a very long time.

An idea to reduce the matrix dimensions of PC(s, a) and to improve the

convergence time of the learning algorithm is to group the internal states of the

agent, according to the k-means algorithm [Pena J.M. et al., 1999]. Specifically,

clusters of internal states are created and the number of lines of the matrix will

significantly decrease, because each line will represent a cluster of states. In this

way, the learning algorithm will converge in a reasonable time and the values of

the preference coefficients are updated at the end of the learning algorithm

application. An example of clustering for the internal states of an agent, according

to the parameters of its internal state, is presented in Figure 5.5 [Radu Ș. et al.,

2013 b].

Figure 5.5. Clustering the States of the Agent

Negotiation
Round

Gain

Partner
Agent

Cluster 2

Cluster 3

Cluster 1

x

x x

x x

x

 x

x x
x x

x

x
 x x x x

 73

Each state representing the output of a negotiation is a point in a

multidimensional space. The algorithm classifies the data set through a certain

number of k clusters. The idea is to randomly define k centroids, one for each cluster.

It is better to put the centroids as much as possible far away from each other. A

better way to initialize the centroids is to use the k-means++ algorithm [Arthur D.

and Vassilvitskii S., 2007], in which the first centroid is randomly choosen from the

initial data set. Then, each centroid is picked out from the remained objects, with a

probability:

∑
∈Xx

i

xD

xD
2

2

)(

)(
 (5.5)

for each object Xxi ∈ , where)(xD is the smallest distance between the point x and a

centroid already chosen.

The next step is to take each point which belongs to a certain data set and

associate it to the closest centroid. When no point is pending, the first step is

completed and an early clustering is done. At this point, it is necessary to compute

again k new centroids as centers of the clusters resulting from the previous step.

After these k new centroids are computed, a new binding is done between the same

data set points and the nearest new centroid. A loop has been created. As a result of

this loop, it is observed that the k centroids change their location step by step, until

no more changes could be done. In other words, centroids do not move any more.

Using the k-means algorithm, it is possible to group the internal states of an

agent into clusters. If the preference coefficients should be updated and improved,

the same negotiation must be performed in the same conditions several times. The

clusters decrease significantly the number of negotiations performed. Therefore, in

order to update the coefficients, a smaller number of negotiations are performed.

The time in which the preference coefficients are updated is reduced and the

negotiation time is decreased. The coefficients are adjusted in a shorter time, when

using clusters, than in the case of individual negotiations.

5.6. Conclusion

In this chapter, it is presented a model of negotiating agents that aimes to

combine the agents beliefs about the other agents in the system, with the possibility to

explicitly represent and modify the negotiation strategy, expressed in a set of rules. In

order to achieve this, there are defined three negotiation profiles: the preference

profile, the partner cooperation profile and the group-of-partners’ negotiation profile.

The last two, partner and group-of-partners, are profiles developed during interactions

and they are gradually built, as the agent is taking part in more and more negotiation

rounds. The group profile is obtained by applying the C4.5 algorithm, and allows the

classification of negotiation partners in different classes. Once these classes are

 74

available, the agent can decide much quicker on the behavior to adopt, regarding a

partner agent, than in case of the single preference profile.

The negotiation strategy is explicitly represented as a set of rules, together with

the preference coefficients, associated to the rules. The preference profile is formed

by these rules with coefficients, which can be fixed statically or can evolve

dynamically, using a reinforcement learning algorithm. The behavior of the agents is

motivated by the gain they obtain when realizing their goals or by the necessity to

cooperate with other agents, in order to achieve these goals. During negotiation, the

agent’s beliefs on the other agents are updated, as the agent comes to know more

about the others.

Because the agents’ preferences are based on their interests, the preference

coefficients can be modified in time. The agents can modify their preferences over

negotiation outcomes, when receiving new information.

The system works in open environments, in which there is no previous

knowledge about the other agents. Therefore, an agent tries to learn, little by little,

during interaction, features characterizing the behavior of other agents, in a set of

partners’ profiles. The behavior of the agent takes into account these profiles. Also,

two different approaches for updating the preference coefficients are proposed.

 75

Chapter 6. Automated Negotiation Model using Strategies

and Tactics

This chapter describes a model of heuristic negotiation between self-interested

agents, which allows negotiation over multiple issues and learns the agent’s

negotiation strategy. The agents are using different strategies to negotiate and

several models to adjust their decision during negotiation. They are capable of

increasing their performance with the experience, by adapting to the environment

conditions. The agents’ performance, using multiple tactics, is compared to the

agents having learning capabilities, based on reinforcement learning techniques.

Several tests are performed, in a scenario similar to the TAC-SCM environment.

6.1. Environment Description for Automated Negotiation

The first part of this chapter presents the negotiation framework, which consists

of self-interested cognitive agents, which use a set of negotiation primitives. The

environment is open and the agents are able to enter and leave the environment at

any time. A facilitator belongs to the system and is informed about agents’ identities

and abilities.

The facilitator improves agent interactions and is involved in the negotiation

between agents. The facilitator can be used by the agents only to register or,

additionally, to facilitate negotiation. When an agent wants to negotiate, it sends a

broadcast message to all the agents in the system (first approach – as in Figure 6.1),

or sends a single message to the facilitator, asking it to find other agents appropriate

to negotiate (second approach – as in Figure 6.2).

Figure 6.1. Communication between Agents – First Approach

In what follows, it is described a model of heuristic negotiation, which takes into

account multi-issue negotiation, tries to adapt to the bargaining strategy of the other

agent and use tactics to adapt to different situations.

Agent 1

Facilitator

Agent 2
Agent 3

Agent 4

Agent 5
Agent

cfp

 76

Figure 6.2. Communication between Agents – Second Approach

The approach to achieve a good behavior in a heuristic negotiation is to use

utility functions, which enable an agent to generate offers and counteroffers at each

step, based on different factors, such as the time, the state of a resource in the

environment or the concession behavior of the opponent. The use of utility functions

allows the creation of different decision strategies, which take into account the

deadline of an agent, or allow the adaptation to the behavior of the negotiation

partner. A tactic is applied for one issue and determines the concession behavior of

an agent for this issue. A tactic is modeled as a function mapping a mental state of the

agent to the domain of issues.

The negotiation framework proposed contains a multi-agent system in an open

environment. The system contains buyer agents, seller agents and the facilitator,

which can be used or not by the agents during negotiation. Due to the open

environment, new agents can join or leave the system. An agent registers in the

system when it enters, and the facilitator informs other agents regarding the new

agent capabilities.

6.2. Different Approaches using Strategies and Tactics

A model of heuristic negotiation between self-interested agents, which allow

bargaining over multiple issues of the negotiation object, comprise different types of

negotiation primitives, including argument based ones, and a set of rules to conduct

bargaining, is developed in [Florea A.M. and Kalisz E., 2007]. In order to negotiate

strategically and to adapt negotiation to different partners, the agents use rewards

associated to negotiation objects and the notion of regret to compare the achieved

outcomes with the best possible results that could have been obtained both in a

particular negotiation and in selecting the partner agent. In the current research, it is

developed a set of strategies, based on weighted combination of tactics, which could

be improved in time using reinforcement learning techniques.

Facilitator

Agent 1
Agent 2

Agent 4

Agent

cfp

Agent 3

Agent 5

 77

A model of heuristic negotiation between self-interested agents is presented in

[Florea A.M. and Kalisz E., 2008]. The model used negotiation objects and

negotiation frames to separate the object of negotiation from the bargaining process.

In order to negotiate strategically, the agents use a reinforcement learning algorithm

applied on a specific state space representation of the negotiation process. The

current approach has a different view upon learning, using the Q-learning algorithm

in order to learn which weighted combinations of tactics used in the process of

negotiation gives the highest reward and the best outcome for an agent.

A model of self-interested agents, which captures the most relevant elements of

agents’ behavior related to negotiation with others, is described in [Radu S. et al.,

2013 a]. The agents’ behavior is mainly motivated by the gain they may obtain while

fulfilling their goals and negotiating. The current approach uses strategies and tactics

in order to increase the agents’ utilities during negotiation.

Bilateral multi-issue negotiation between self-interested agents is studied in

[Fatima S.S. et al., 2006]. Three procedures are used for this process: package deal

procedure, simultaneous procedure, and sequential procedure. Because of different

results for each procedure, it is the system designer in charge with choosing which

technique to employ in a given scenario. These procedures are used in the current

approach, but the research is enhanced with different strategies.

A formal model of negotiation between autonomous agents is described in

[Faratin P. et al., 1998]. This develops a set of strategies and tactics that agents

could use for creating requests, evaluate proposals, and offer counterproposals. The

model describes certain tactics, which agents could employ during negotiation and

shows how an agent could change in time these tactics to give different forms of

strategic behavior. In the current approach, combinations of tactics are used,

improved in time using the Q-learning algorithm.

A negotiation strategy that describes a method to learn a model of opponent

preferences in a single negotiation session is presented in [Hindriks K. et al., 2009].

The strategy should be efficient, transparent, maximizing the chance of an

agreement and should avoid exploitation. In the current research, the negotiation

strategy is enhanced with tactics and it is applied a learning algorithm to improve the

final outcome.

A model of iterative reasoning process is developed in [Wunder M. et al., 2011],

by widening the notion of a level in a hierarchy from one single strategy to a

distribution over strategies, leading to a more general framework of multi-agent

decision making. The current approach combines strategies and tactics, in order to

learn the best possible outcome.

 78

6.3. Negotiation Model using Negotiation Primitives

In this part, a set of negotiation primitives is presented, which are used in the

negotiation model and refers to the agent x1, initiating a bargaining with agent x2,

about a negotiation object NO. The proposed set of primitives are based on the ones

developed in [Florea A.M. and Kalisz E., 2007], but are enhanced to deal with multi-

issue negotiation objects.

A negotiation object is the range of features and issues over which agreements

must be reached. The object of negotiation may be either a unique item, for example

a good that the agent x1 wants from x2 or a service that agent x1 offers to x2, in case

of single-issue negotiation. In case of multi-issue negotiation, the object is replaced

by a negotiation package, composed of a set of negotiation objects.

The negotiation primitives are:

� REQUEST
1x
 x2 NO - agent x1 requests to agent x2 a negotiation object (NO)

� ACCEPT
>< 21, xx
 < x2,x1> NO - agent x1 (x2) accepts the request of x2 (x1) for the

NO

� REJECT
>< 21, xx
 < x2,x1> NO - agent x1 (x2) rejects the request of x2 (x1) for the

NO

� MODREQ
>< 21, xx
 < x2,x1> NO1 - agent x1 (x2) modifies the request of x2 (x1) by

changing some values of attributes and/or adding attributes to the NO to obtain NO1

� PACK
1x
 x2 NO - agent x1 offers agent x2 a NO package to be negotiated,

where the NO package is composed by a set of objects (NO1, NO2, …, NOj)

� SIMULTAN
1x
 x2 NO - agent x1 asks agent x2 for a multi-issue simultaneous

negotiation regarding the negotiation objects NO, where the NO is composed by a

set of objects (NO1, NO2, …, NOj)

With respect to each object NOi belonging to the set of the negotiation objects

NO, the answer of the other agent could be either ACCEPT, REJECT or MODREQ,

but these answers are received simultaneously from the other agent.

� SEQUENTIAL
1x
 x2 NO - agent x1 asks agent x2 for a multi-issue sequential

negotiation regarding the negotiation object NO, where the NO is composed by a set

of objects (NO1, NO2, …, NOj)

Regarding each object NOi belonging to the set of the negotiation objects NO,

the answer of the other agent could be either ACCEPT, REJECT or MODREQ, but

these answers are received sequentially from the other agent.

The buyer agent has a strategy expressed in the form of rules. The predicates

used to express this strategy are:

a) Round – represents the negotiation round. When a buyer or seller sends a

message and then receives another, the round is increased by one;

b) Counterproposal – the proposal, which a buyer or seller receives from the

other agent;

 79

c) Gain – the gain of the buyer if he buys the product or the gain of the seller if

he sells the product;

Some examples of strategy rules are presented below, where the lowercase

letters denote constants and the uppercase letters represent variables:

R1: Round(r) ∧ Counterproposal(x2, c, NO) ∧ Gain(x1, g, NO) ∧ c ≥ g →

ACCEPT
1x
 x2 NO

The rule R1 states that in the current negotiation round r, when the agent

received a REQUEST
1x
 x2 NO message and the opponent’s counterproposal is

greater than or equal to the agent desired gain, then the offer is accepted.

R2: Step(s) ∧ Counterproposal(x2, c, NO) ∧ Gain(x1, g, NO) ∧ c < g → REJECT
1x

x2 NO

The rule R2 describes the case in which opponent’s counterproposal is lower

than the agent desired gain and the offer is rejected.

These rules can be changed, to take into account the multi-issue negotiation.

For instance, denoting by allj the situation when the negotiation is performed for all the

negotiation issues included into the negotiation object, the rules R1 and R2 become:

R1m: Round(r) ∧ allj Counterproposal(x2, c, NOj) ∧ Gain(x1, g, NO) ∧ c ≥ g →

ACCEPT
1x
 x2 NO

R2m: Round(r) ∧ allj Counterproposal(x2, c, NO) ∧ Gain(x1, g, NO) ∧ c < g →

REJECT
1x
 x2 NO

In what follows is described an approach to design automated negotiating

agents, based on a modified alternating offers protocol, which is improved in time

using a combination of tactics and reinforcement learning techniques.

The current approach refers to multi-issue negotiation. There are three

possibilities to negotiate multiple issues [Fatima S.S. et al., 2006]:

a) Package deal – this approach puts together all the issues and discusses

them together;

b) Simultaneous negotiation – this involves settling the issues simultaneously,

but independently of each other;

c) Sequential negotiation – this involves negotiating the issues sequentially,

one after another.

The package deal gives the possibility to make tradeoffs between issues. These

can be made when agents have different values for the issues. For instance, if there

are two issues and one agent values the first more than the second, while the other

values the second issue more than the first, then it is possible to make tradeoffs and

to improve the utility of both agents with respect to the situation without tradeoffs. For

the simultaneous and sequential approaches, the issues are settled independently

and it is not necessary to have tradeoffs between agents.

The multi-issue negotiation is done with respect to the three possibilities

mentioned before: package deal, simultaneous and sequential negotiation.

 80

In the negotiation model proposed, instead of an agent that learns in the whole

space of negotiation strategies, the agent is focused on a set of useful strategies

[Radu S., 2013 a]. These could be learned in time, such that to choose the best

strategy for negotiating with a certain agent. There are a lot of factors which can

influence the result of a negotiation strategy. These factors refer to the strategies of

other agents, their constraints and preferences and other characteristics of the

negotiated issues.

The negotiation model contains three parts: the negotiation object, the decision

making module and the negotiation protocol, as described in Figure 6.3. The

negotiation object is characterized by a number of attributes for which the agents can

negotiate.

Figure 6.3. Negotiation Model Components

The decision making module consists of an evaluation part, which estimates an

offer received and determines an appropriate action, and an action part, which

generates and sends a counteroffer or stops the negotiation. The evaluation part is

based on the fact that different values of negotiation issues have different values for

negotiating agents. The value of the negotiating issues is modeled using evaluation

functions. The higher the value of an evaluation function for a certain value of an

issue is, the more suitable is that value for a negotiating agent.

An agent tries to identify the strategy, preferences and constraints of other

agents. But learning a model of another agent is a complex task. Although an agent

could have correct information regarding the current negotiation situation, it is

necessary to find which strategy would best match the situation. It is necessary to find

an approach in which agents learn what strategies to select by observing their own

gains, as opposed to trying to model other agents and the state of the system.

There are two types of strategies used by the agent. The first type is similar to

the alternating offers protocol and it is a built-in strategy for the agent, which doesn’t

use rules in it. The second one uses rules, in order to establish the best way to

behave in the negotiation. These rules are stored in the internal knowledge base of

the agent and are expressed in the form of first order logic predicates.

Negotiation
Protocol

Negotiation
Object

Buyer Agent

Seller Agent

Decision
Making
Module

Decision
Making
Module

Evaluation

Action

Evaluation

Action

 81

The built-in strategy is similar to the alternating offers protocol. It is supposed

that the disagreement is the worst outcome, that is the agents prefer any outcome at

least as much as disagreement. The agents try to maximize their utility and also the

time is valuable, that is, for any outcome x and times t1 and t2, with t1<t2, the outcome

x at time t1 has a higher utility than outcome x at time t2 for both agents.

The agents’ offers are computed using a negotiation decision function, which

determines an agent’s strategy. There are linear and non-linear strategies. The

non-linear strategies can be divided in: conceder strategy, if the agent is willing to

concede a lot in the first steps of negotiation, and boulware strategy, if the agent is

willing to concede considerably only when the time deadline is close. In Figure 6.4 is

presented the boulware and conceder strategies from the point of view of the seller

agent and in Figure 6.5 the same techniques are illustrated from the point of view of

the buyer agent. In these figures, the price and the time are displayed in a normalized

manner.

Figure 6.4. Seller Agent Strategies [Wooldridge M., 2009]

Figure 6.5. Buyer Agent Strategies [Wooldridge M., 2009]

The agent has the possibility to choose between four strategies: linear,

conceder, boulware, and rule-based. For each negotiation round in which it is

involved, the agent will have to compute the utility of the strategy used and will have

Time

Conceder

Boulware

1.0

0.8

0.6

0.4

0.2

1.0 0.8 0.6 0.4 0.2

Time

Conceder

Boulware

1.0

0.8

0.6

0.4

0.2

1.0 0.8 0.6 0.4 0.2

Price

Price

 82

to fill in the values of the utility in a three dimensional matrix M, stored in its internal

memory [Radu S. and Lungu V., 2013]. These values are used as references in future

strategies. The attributes of the matrix are: the agent with whom the negotiation is

performed, the utility of the strategy, the negotiation round, as presented in Figure 6.6.

Figure 6.6. Utility Values Matrix Space

When entering the negotiation process, the short-run goal of the agent is to fill in

the utilities’ values in the matrix M. The long-run goal of the agent is to maximize its

gain. For each agent xi, with which a negotiation is performed by agent a in n rounds,

using a certain strategy Sk, the utility matrix is filled with the utility values gained by the

negotiation, ua, of agent a. The overall utility gained after a negotiation is defined by:

],,[
1

i

n

j

k

x

a xjSMU i ∑
=

= (6.1)

If the negotiation is performed again with the same agent a, but now using

another strategy, then the strategy which will be selected in a future negotiation will be

the one that maximizes:

],,[maxarg
1

ajSM
n

j

k
Sk

∑
=

 (6.2)

There are two research challenges in this approach. In the first one, there is an

agent, which uses four types of strategies: linear, conceder, boulware and rule-based.

The agent should learn in time which strategy will give the maximum utility. For doing

this, the agent builds the matrix M and computes the sums mentioned before, and

chooses the strategy which maximizes its utility. The second challenge refers to the

case in which the opponent agent knows that the other agent uses one of the four

strategies previously mentioned. The goal of the opponent agent is to find which is

exactly the strategy used by the other agent and how to behave in such a situation.

A possibility to identify the opponent agent strategy is to mirror each offer by

making a similar one, which would implement a Tit-for-Tat like tactic. The idea of a

Tit-for-Tat strategy in a multi-issue negotiation situation is to answer to the opponent

offer with a symmetrical one. The rational negotiation strategies try to make

2 3

x4

x3

x2

x1

S4

S3

S2

S1 4 1

Agent

Strategy
Utility

Negotiation
Round

 83

concession moves in a certain moment during negotiation. Using observations about

the opponent agent’ strategy, it is estimated and used the suitable strategy for the

agent.

Suppose that b,s represents two negotiator agents: buyer and seller, and let N

be the set of all possible outcomes. Each agent a ∈ {b,s} has an utility function ua

which maps the outcomes to positive real numbers, that is ua:N→ℜ+. In the case of

conflict, the utility is zero for both agents. In the first step, each agent has the

possibility to offer, but in the next steps each agent has three options: to accept the

opponent’s offer, to make a new offer xa, which is preferred by the other agent or to

refuse and make a new concession and insist on its previous offer. The utility

function is computed at the end of a negotiation, when a deal is obtained. Also, at

each negotiation step, for each issue j, the buyer computes an evaluation function,

which is defined on the set of current offers and takes values in the set of positive

real numbers, that is +ℜ→PE
b

j : . The evaluation function computes the value, which

agent b assigns for issue j, between the ranges of acceptable values. The evaluation

function has higher values when the agent’s utility increases. The weight b

jw

represents the relative importance of the issue j with respect to the negotiation

process. Supposing that the weights are normalized (∑j
b

jw =1), the agent’s evaluation

function for a certain proposal x = (x1, …,xn) combines the evaluation of different

issues with respect to the issues’ value ranges:

)()(j

b

jj

b

j

b
xEwxE ∑= (6.3)

For each issue j, the evaluation function associated to that issue)(j

b

j xE is

defined.

6.4. Negotiation Model using Tactics

A tactic is a function used to create a proposal value, for a certain object, based

upon a given criterion. Tactics are the set of functions which determine how to

compute the value of an attribute variable. Tactics can be mixed using different

weights, showing the relative importance of each criterion in the strategy. The values

that will be part of the proposal are computed by weighting the values proposed by

each one of the tactics employed. Offers and counteroffers are generated by

combinations of tactics. These generate an offer or a counteroffer for a single

component of the negotiation object, using a single criterion. Different weights allow

changing the importance of the criteria. For instance, when finding the values of the

negotiation object, it could be more important initially to take into account the other

agent’s behavior than the remaining time. In this case, the tactics which enhance the

behavior of other agents are preferred with respect to the ones which compute their

value on the amount of the remaining time. However, because the agents are

adaptive, they could change in time the importance associated to different criteria.

 84

For instance, the remaining time could become more important than the other agent

behavior, when the deadline in which an agreement should be made is close. The

strategy refers to the way in which the agent changes the weights of different tactics

in time.

For each object j∈[1,…,n] in negotiation, each agent has a range of acceptable

values]max,[min a

j

a

j , and a scoring function]1,0[]max,[min: →a

j

a

j

a

jV , which gives the

score the agent a has to the value of the object j, in the range of its acceptable

values. The higher the score, the better the agent’s utility. Agents assign a weight
a

jw to each negotiation object, which represents its relative importance. Supposing

that the weights are normalized, that is ∑
=

=
n

j

a

jw
1

1 , the agent’s scoring function for a

given proposal x=(x1,…,xn) combines the scores of different objects defined by the

objects’ value domain:

)()(
1

j

a

j

n

j

a

j

a
xVwxV ∑

=

= (6.5)

The tactics are adopted from [Faratin P. et al., 1998]:

1) time-dependent tactics, in which agents change their proposals when the

deadline is close. If an agent has a time deadline in which an agreement should be

concluded, these tactics model the fact that the agents concludes more rapidly, as

the deadline approaches;

2) resource-dependent tactics, in which agents change their proposal with

respect to the amount of available resources. These tactics model the necessity to

reach an agreement, when there are limited resources. The functions for these

tactics are similar to the time dependent functions, except that the domain of the

function represents the quantity of resources available, instead of the remaining time;

3) behavior-dependent tactics, in which agents try to simulate the behavior of

their opponents. The agent may choose to use imitative tactics that protect it from

being exploited by other agents. In this case, the counterproposal depends on the

behavior of the negotiation opponent.

Because the agents may want to consider more than one criterion to compute

the value for a single issue, the generation of counterproposals is modeled as a

weighted combination of different tactics defined upon the set of criteria. The values

computed for different issues are the elements of the counterproposal. Suppose that

an agent wants to counterpropose, taking into account two criteria: the remaining

time and the previous behavior of the opponent. In this case, it can select two tactics:

one from the time-dependent part and one from the behavior-dependent part. Both of

these tactics give a value to counterpropose for the issue negotiated. This value is

the weighted combination of the two previous values.

In time-dependent tactics, the main factor used to decide which value to offer

next is the time. These tactics consist in changing the acceptance value for an issue,

 85

depending on the remaining negotiation time. There are two different tactics in this

approach. The boulware tactics maintain the offered value until the time is almost

exhausted, and then it concedes up to the private value of the agent. The conceder

tactics are used by agents, which go to their private value very quickly.

The resource-dependent tactics enhance the time-dependent ones. Time-

dependent tactics can be seen as a kind of resource-dependent tactic, in which the

only resource considered is the time. There are two types of resource-dependent

tactics: dynamic-deadline and resource-estimation. Dynamic-deadline tactics

represent a heuristic about how many resources are in the environment. When the

resources are exhausted, the agreement must be reached. A resource to be modeled

is the number of agents negotiating with a given agent and how interested they are to

reach agreements. On the one hand, the greater the number of agents which are

negotiating with an agent for a certain good or service, the lower the pressure on the

agent to reach an agreement with any particular agent. On the other hand, as the

negotiation lasts longer, the pressure on the agent to reach an agreement increases.

The resource-estimation tactics generate counterproposals depending on how a

particular resource is being consumed. The agent should become more conciliatory,

as the quantity of resource decreases. When the quantity of the resource is almost

zero, the agent concedes up to its private value for the issue negotiated. When there

are a lot of resources, a more boulware behavior is expected.

The behavior-dependent tactics compute the next offer based on the previous

attitude of the negotiation opponent. The main difference between the tactics in this

category is in the type of imitation they perform. One category imitates proportionally,

another in absolute terms, and the last one computes the average of the proportions

in a number of previous offers. In relative Tit-for-Tat, the agent replicates, in

percentage terms, the behavior that its opponent performed some steps ago. In

random absolute Tit-for-Tat, the behavior is the same as in relative Tit-for-Tat, but in

absolute terms. In the averaged Tit-for-Tat, the agent computes the average of

percentages of changes of its opponents’ history, when determining its next offer.

A tradeoff tactic finds a proposal with the same utility as the previous one

offered, but expecting to be more acceptable for the opponent agent. For the buyer

agent b, which receives a proposal y from the seller agent s, the tactic allows agent b

to choose a new proposal x’ to offer to agent s, which fulfills two conditions: the new

proposal x’ has the same utility as the offer previously proposed x, and the new

proposal x’ is the most similar to the offer y proposed by b.

The tactics give a possibility to adapt to different situations, considering certain

resources. The initial proposal has an important role in negotiation. Choosing the

initial value could be learned in time. Using different weighted combinations of

tactics, in order to find the suitable one in each negotiation, gives the agent an

adaptive behavior for obtaining increased gains.

The current approach uses a reinforcement learning algorithm to combine

tactics and to learn good outcomes. In particular, it is used a version of the Q-

 86

learning algorithm [Srivihok A. and Sukonmance P., 2005]. The Q-learning

algorithm estimates the value of executing an action in each state. Actions are

vectors of weighted combinations of tactics, used in the process of negotiation. The

Q-learning algorithm converges to the optimal combinations of state-action pairs,

after each action has been tried enough times. The ranking is due to rewards by

matching actions to certain states. The agent performs the next steps for each issue:

1. determines the current state for each issue;

2. chooses a weighted combination of tactics;

3. uses this weighted combination of tactics for the next proposal;

4. computes the rewards obtained.

When the Q-values associated with each state-action pair are updated, this

means rewarding the actions which give good results. The Q-learning formula used

for updating is:

)],()','(max*[),(),(asQasQrasQasQ a −++= γα (6.6)

where α is the learning rate, r is the reward obtained by executing action a in state s,

γ is the discount factor, maxaQ(s’,a’) is the maximum Q value for the actions in the

next state.

The Q-learning algorithm is applied on tactics. In this case, the action a

represents a vector of weights of tactics, which could be applied in a given state s.

The Q-learning chooses, for each issue, the highest scored weighted combination of

tactics. Because the environment is dynamic, the same action may not lead to a

desired output, when applied in the same state.

The actions which result in deals are rewarded with a function depending on the

deal values utility and on the average utility. This allows determining the deals

corresponding to higher utilities. The failure of a goal has a negative reward on the

action performed.

The action selected to be performed is the action with the highest Q-value. In

dynamic environments, actions do not give always the same results. In order to obtain

a high reward, the agent should prefer actions that were considered good in the past,

but in order to find them, it must try actions that were never selected before.

This leads to the tradeoff between exploitation and exploration. In order to fulfill

this tradeoff, two policies are possible: the ε-greedy approach, which selects

uniformly, with a probability ε, a non-greedy action; the softmax policy, which uses a

given degree of exploration T, for choosing between non-greedy actions, while

considering their ranking.

It is better that the agent does not prefer the first action leading to a deal, such

that the agent increases the utility obtained in deals. Before the agent tries enough

actions, it has an incomplete knowledge of the environment. The agent should know

what action to perform, for obtaining a deal, but not what the best actions are. In order

to put the agent to try all the actions available before preferring the best ones, it is

used a reinforcement learning technique called optimistic initial values. It means that

 87

all the Q-values associated with the actions are initialized to a value greater than the

expected reward. This measure increases the initial action exploration, because the

Q-values are updated to lower values.

In this approach, it is used the ε-greedy exploration, which selects a random

action with probability ε and the best action, which is the one with the highest Q-value,

with probability 1-ε. In this way, it can be seen as defining a probability vector over the

action set of the agent for each state. Suppose that z=(z1, z2, …,zj) is one of these

vectors. The probability zi of doing action i is given by:



 +−

=
,/

),/()1(

n

n
zi ε

εε

where n is the number of actions in the set.

6.5. Simulation Scenarios Discussion

The multi-agent system is tested in a B2B framework, which is defined in a

similar manner to the TAC-SCM (Trading Agent Competition – Supply Chain

Management) environment [Groves et al., 2009]. The settings consist of agents that

buy components from other agents, assemble these components and sell the

assembled results to customers. All the three types of agents are artificial in the

environment. The agents encountered uncertainty and incomplete information.

Different initial values are used, to obtain a variety of strategic behaviors. Also, the

agent is adjusted with the initial parameters, which produce good performance,

according to the measurements.

The agents assembling the components may use reinforcement learning and

different strategy rules, or, alternately, the tactics types. The assembling agents are

behaving in such a way as to obtain a maximum gain. The goal of the agents is to

forecast the demand, which will give the highest overall profit. Depending on the

behavior of other agents, the agent focuses on exactly enough demand, in order to

achieve its goals. To this aim, the agents use behavior-dependent tactics, combined

with time-dependent tactics, which are further combined with resource-dependent

tactics.

A prototype of the system is implemented in Jade, in an environment in which

there are n assembling agents, m supplier agents and p customer agents. The values

for n and p are varied between 2 and 5 agents, and m between 2 and 10 agents. The

best behavior and output is obtained if the agents use negotiation rules and a

combination of tactics.

Many computation parameters kept in the state have unknown factors and

many approximations are done. The available capacity of each seller is

approximated, because it helps to determine the profitability of a given part, produced

by a certain seller. The approximation is done by estimating three other parameters,

which are relevant to that seller: the delay of the seller when the previous component

if Q of i is the highest (6.7)

otherwise

 88

is delivered, the prices offered by that seller for previous components, the estimation

of partial offers, given by that seller until now. Then, the amount of available

computers in the inventory is approximated, because it is not profitable to produce

computers out of components in the inventory, if there are no pending orders.

However, the amount of computers that can be delivered to buyers is estimated,

according to the components in the inventory. In order to do that, an algorithm that

converts a collection of components to computers is used. The algorithm is greedy,

trying to construct as many computers as possible, starting with the most valuable

ones. Each computer received a grade, according to the relevant information. For

instance, if there is an increased demand for a certain computer, than that computer

receives a better grade. When determining the grades, the computer type is also

taken into account.

Requesting more components doesn’t guarantee that it is possible to obtain

them. Other agents could have higher priority or some sellers couldn’t handle the

demand. Trying to obtain more customers’ orders is challenging, when competing

against good opponents, which can offer better prices. The length of the simulation

changes the suitable tactics. The agent should have a plan for the long run,

constructing its inventory to last for the whole simulation.

The chosen strategy coordinates decisions. An agent’s profit can be influenced

by the market competition. For instance, if other agents are focusing on a large part

of the market, then an agent should decrease its prices in order to reach its target.

The relative percentage of each product, which is the product mixture, used to

fulfill the goal, is easily changed after each negotiation round, based upon the profit

of each product type. The exact percentage of each product in the mixture is equal to

the percentage of the agent’s total profit it had on the previous negotiation round.

When the profit of a product increases or decreases, with respect to the profit of

other products, then its percentage in the product mixture increases or respectively

decreases.

In the case when a certain product has no profit, the product mixture is

computed in a similar manner. But the strategy is changed, such that the quantity of

the product which has no profit is decreased. This makes the demand to decrease.

Eventually, the agent changes its heuristic in order to finish the simulation with small

stocks in the inventory.

The agent learns the combination of tactic weights for a negotiation round.

During transitions between states in which the agent is bargaining, the reward is set to

zero for each issue’s weighted combination of tactics. This doesn’t affect the conceder

or boulware behavior. For a negative reward, the agent has fewer proposals to obtain

a deal. When reaching a state representing a deal, the reward is equal to the sum of

the agent’s utility for each issue. The deal configuration influences the reward. If a

deal is not reached, it means the weighted combination of tactics is not good enough.

Also, the multi-agent system is tested in a multi-issue negotiation, which

simulates the negotiation between a telecommunication service provider and

 89

customers. The telecommunication company offers services like: Internet connection,

short and long distance phone calls and TV cable channels. In this case, there are

three issues which could be negotiated: Internet services, phone calls services and

TV services. There are different packages, which include different types of services:

a) the Internet service has different characteristics, like: bandwidth available,

wireless capabilities, firewall protection;

b) the phone service offers: short distance calls, long distance calls, and

international calls;

c) the TV cable service offers different channels, which include national

channels, international channels, film channels, music channels, entertainment

channels.

In the negotiation with a telecommunication company, in the case of the

package deal negotiation, if the Internet service has a weight of 0.5, the phone

service has a weight of 0.2 and the TV cable service has a weight of 0.3, then the

evaluation function is computed as:

)(*3.0)(*2.0)(*5.0)()(332211

3

1

xExExExEwxE
bbb

j

b

j

j

b

j

b ++==∑
=

 (6.8)

6.6. Conclusion

This chapter presented how an agent can learn to improve its negotiation

strategy. The idea is that the agent has a set of useful negotiation strategies, from

which to choose the best one. The space of all possible negotiation strategies is very

big. Restricting the agent’s behavior to a relevant set of negotiation strategies reduces

the space the agent needs to learn.

The chapter showed that it is possible to design agents with different negotiation

strategies that have good performances in dynamic environments. The knowledge

obtained in past negotiations can be an important advantage in certain scenarios.

The package deal is the optimal procedure for each agent. However, the

package deal could have a higher complexity than the other two procedures from the

computational point of view and gives Pareto optimal results, as opposed to the

simultaneous and the sequential procedures.

The negotiation primitives that are proposed may be extended to take into

account arguments. Each argument type defines preconditions for its usage. If these

are fulfilled, then the agent can use the argument. The arguments types that are

foreseen are similar to those presented in [Kraus S. et al., 1998]. The selection of

arguments should be also coupled with the utility function of the agent.

A future research direction is to use anticipatory genetic algorithms for learning

tactics behaviour. This approach will extend the work on anticipatory genetic

algorithms done in [Mocanu I. et al., 2010].

 90

Chapter 7. A Negotiation Model with BDI Agents

This chapter develops a conceptual model of self-interested agents in a multi-

agent system, which takes into account several facets of agent knowledge and

behavior: abilities, history of relations with other agents, cooperation and negotiation

options. This framework is based on the BDI (Beliefs-Desires-Intentions) model and

uses rules for encoding the negotiation strategy. The inference rules that guide

negotiation are based on price. This conceptual model considers several profiles,

providing information about the object and the type of the current cooperation request

and on the cooperation history. The gradually refinement of the cooperation profiles

is seen as a form of agent learning. The model allows the definition of several types

of agents, by changing their behavior, according to the desire to develop good

cooperation relations with other agents in the system or the desire to obtain the

maximum gain. This model also introduces the notions of utility for negotiation

objects and for the roles the facilitator has in the negotiation process.

7.1. An Overview of the JADE Platform

JADE (Java Agent Development Framework) is a software environment

implemented in Java language [Tudose C. et al., 2013], aiming at the development of

multi-agent systems that comply with FIPA (Foundation for Intelligent Physical

Agents) specifications [Bellifemine F. et al., 2007]. JADE provides many of the basic

classes required for agent based software development. Some of them are:

- Agent;

- Behaviour;

- ACLMessage;

- Ontology.

JADE simplifies the agents’ development, while ensuring standard compliance

through a comprehensive set of system services and agents. JADE provides the

following components for agent’s management [Bellifemine F. et al., 2007]:

- AMS (Agent Management System), which besides providing white page

services, as specified by FIPA, it also plays the role of authority in the platform;

- DF (Directory Facilitator) provides yellow pages services to other agents;

- ACC (Agent Communication Channel), which provides a Message Transport

System (MTS) and is responsible for sending and receiving messages on an agent

platform.

Eclipse is the IDE (Integrated Development Environment) commonly used to

develop the JADE application. It is easy to integrate Eclipse with JADE, so that when

the agent application is executed, it runs JADE and deploys the agent into the

runtime environment.

 91

In JADE, a behavior represents a task that an agent can carry out. Each such

behavior class must implement two abstract methods. The action() method defines

the operations to be performed, when the behavior is in execution. The done()

method returns a boolean value, to indicate whether or not a behavior has completed

and must be removed from the pool of behaviors an agent is executing. To make an

agent execute the tasks represented by a behavior object, the behavior must be

added to the agent by means of the addBehaviour() method of the Agent class.

The JADE platform provides a yellow pages service which allows any agent to

dynamically discover other agents at a given point in time. A specialized agent called

the DF (Directory Facilitator) provides the yellow pages service in JADE. Using this

service any agent can both register (publish) services and search for (discover)

services [Bellifemine F. et al., 2007].

Agent communication is a fundamental feature of JADE and is implemented

with respect to the FIPA specifications. The JADE communication paradigm is based

on asynchronous message passing. Each agent is equipped with an incoming

message box and message polling can be blocking or non-blocking. A message in

JADE is implemented as an object of the jade.lang.acl.ACLMessage class, which is

then calling the send() method of the Agent class.

One of the most useful tools to use when developing a multi-agent system with

JADE is the Sniffer Agent. This is another agent built into JADE, which allows the

user to see the message interactions taking place in real time. The arrows show the

type of message, the sender, the receiver and when it was sent within the lifetime of

the system. If more information is required about any of the ACL messages, the user

can double click the specific arrows and full details are displayed.

Figure 7.1. Screen Capture Showing the Multi-Agent System in Action

 92

Figure 7.1 represents a screen capture of the JADE Sniffer Agent for the multi-

agent system implemented, showing the messages exchange between agents during

a many-to-many negotiation.

7.2. Agent Model

A model of self-interested agents, acting in a multi-agent system, is described in

this chapter. The system is inspired by the BDI approach. More details about the BDI

model are given in the next paragraphs.

Beliefs represent knowledge on the environment and are a way of representing

the state of the world. Beliefs are important, because the environment is dynamic and

the system has only a local view of the world. As beliefs represent possibly imperfect

information about the environment, the semantics of the belief component should be

in harmony with belief logics, even though the computational representation is not

symbolic or logical.

Desires or goals are another component of the system. A goal represents some

desired final state. In computational terms, a goal may be the value of a variable, a

structure, or a symbolic expression in some logic.

Intentions represent committed plans or procedures. In computational terms,

intentions may be a set of executing threads in a process, which can be interrupted

when receiving feedback from the possibly changing environment.

The main parts of a system designed for a dynamic and uncertain environment

should contain representations of beliefs, desires, intentions, and plans, that is a BDI

agent [Georgeff M. et al., 1999]. A BDI agent has a set of beliefs (B), desires (D), and

intentions (I). A BDI agent has a set of percepts p, by means of which it recognizes

an event, which can be either a state change or an action occurrence. The percept

obtained from the environment may cause a change in beliefs, leading to a belief

revision process, as presented in Figure 7.2.

The reasoning components of a BDI agent are denoted by functions:

a) brf: B××××p →→→→ B is the belief revision function, where p represents the set of

percepts;

b) options: B××××D××××I →→→→ I is the function which weights competing alternatives to

achieve the desires and decides the course of action to be taken;

c) plan: B××××I →→→→ ΠΠΠΠ is the function that structures intentions into plans.

The developed model takes into account different profiles, providing information

about the object and the type of the current negotiation request and of the previous

negotiations. This model presents the notions of utility for negotiation objects and for

the roles that the facilitator could have in negotiation. It is supposed that the agents

have consistent desires, so these may be considered equal to their goals.

When a goal is fulfilled, the agent develops one or more plans for achieving it.

Planning refers at constructing sequences of actions. The agent itself could perform

part of these actions, while others are not part of its abilities. So, the agent has to

 93

negotiate the actions with other counterparts in the system. The agent could also

decide to delegate to others, parts of the actions it is able to perform. So, the agent

includes the actions in a plan in two distinct classes: "intentions-to" (actions it is

able and willing to perform) and "intentions-that" (actions the agent does not know

how or does not want to perform). The later is the negotiation object with the others

in the system.

An agent has a set of inference rules for realizing the set of goals, for

updating the mental state and for plan generation. After the plan creation, the

agent analyses the intentions for realizing the plan and identifies the intentions-to

and intentions-that, by investigating its abilities. In order to fulfill the intentions-

that, the agent has to negotiate their achievement with the other agents in the

system. For having an efficient negotiation, the agent is endowed with a set of

negotiation inference rules and also for the evaluation of the cooperation profile of

other agents, another set of inference rules.

Figure 7.2. The BDI Agent Model [Shoham Y. and Leyton-Brown K., 2009]

Percepts (p)

Environment Events

Belief
Revision

Beliefs (B)
B = brf (B, p)

Deliberation
Process

Intentions (I)
I = options (B, D, I)

Means-end
Reasoner

Plans (Π)
I = plan (B, I)

Executor

 94

Negotiation is based on the gain the agent obtains from fulfilling its goals, but

negotiation criteria contain also the cooperation profile the agent has developed to

describe previous interactions with other agents in the system. The cooperation

profile, which is always updated, may be considered as part of the agent’s beliefs

about the others in the system.

Each agent has different reasoning capabilities, described by inference rules.

These are updating the beliefs about the agents, are constructing efficient plans for

goal fulfillment, and are conducting successful negotiation. An agent should have

details on others’ identity and abilities. It does not need to keep information on all the

agents, but only on those it is interacting with, successfully or not, along its activity. In

the system there is the facilitator, which supports interactions between agents.

All agents start their activity by a registration message that informs the facilitator

on their names and on the actions they can perform or want to receive. An agent can

address the facilitator for different purposes: extension of its beliefs about agents

able to perform a given action, selection of the best candidate to perform the

requested action or negotiation with other agents. The facilitator has a selection role

and also a negotiation role. During negotiation, the facilitator applies a protocol of

type Contract Net, as opposed to agent negotiation, in which the negotiation

protocol and strategy may be defined in different ways.

The control structure of the agent has two steps. The first step refers to the

control of independent agent’s activities, while the second step concerns

negotiation and reaching agreements. The first step contains goal selection, plan

generation, and analysis of intentions in the generated plan. Each goal has an

associated gain. The gain associated to intentions is used by the agent during

negotiation.

The agent analyzes if the actions are in the current range of its abilities. This

analysis may conduct to a revision of plan generation or of goal selection. The

agent identifies the intentions-to and the intentions-that. The intentions-that are

analyzed to identify the agents which, according to the agent beliefs, are able to

perform them. If there are intentions-that which cannot be satisfied by other

agents, the agent will revise its plans or its goals.

The first step of the agent’s control structure is shown in Table 7.1.

The second step refers to negotiation, when the agent has identified

intentions-that necessary to fulfill its goals. Now, the agent tries to reach an

agreement with other agents to perform these actions. Negotiation may be

between two or more agents. In case of multi-agent negotiation, the inference

rules indicate the agent with which other agents negotiate.

The second step of the agent’s control structure is in Table 7.2.

The negotiation inference rules generate and select the suitable request and

the agents to which the requests are sent. The answers to these requests are

evaluated and, in case a counterproposal is received, the new conditions may

 95

either be accepted, rejected with a justification, or subject to a new

counterproposal.

Table 7.1. Step I for Agent A

Select goals {Goals} as a subset of {DesiresA}

Generate plans for selected goals {PlansGoalA
}

Analyse actions in {PlansGoalsA
} with respect to agent’s abilities {AbilitiesA}

If there are intentions-that then identify the agents {i} with {Abilitiesi} able to

do intentions-that

If no such agents exist then revise {PlansGoalsA
} or {GoalsA}

Perform all intentions-to

Table 7.2. Step II for Agent A

Generate and send requests for agents in {i} to do intentions-that

Evaluate answers, accept them or generate counterproposals

Evaluate incoming requests {RequestA} and generate answers

Update the mental model and the cooperation profile

Send answers to {RequestA}

After each negotiation step, the mental model is updated. This refers to

beliefs, intentions, goals, and to the cooperation profile of the agents with which it

has been exchanging messages.

An agent, as presented in the Figure 7.3, has an input communication

component, which analyzes the incoming communication primitives. These contain

usually a proposal, an acceptance or rejection of a previous proposal. A proposal is

stored in the knowledge base of the agent for future reference. Proposals or

rejections go into a primitive evaluation and generation component, which makes a

decision about whether to accept, reject or generate a counterproposal, or even

terminate the negotiation. Then, the output communication primitives component

sends the response to the other agent.

Also, an agent maintains a knowledge base of its mental attitudes, such as

beliefs, desires, intentions [Wooldridge M., 2002], as well as models of the

environment and the negotiation counterparts. This knowledge may be used in the

evaluation and generation of proposals by judging the validity and worth of proposals

made, for instance, by verifying whether proposals are actually feasible and do not

conflict with the current observations of the environment. Moreover, the knowledge

base is updated when new information arrives.

 96

Figure 7.3. The Elements of a Negotiating Agent

Cognitive aspects associated to negotiation activities should be taken into

account. One feature is the reflection capacity, because in the end of each

bargaining, it would be important for an agent to evaluate how efficient was the

interaction with other agents, identifying the positive points and the negative ones, by

computing the gain associated to the transaction. Another feature is the empathy,

which means the attempt to understand the real necessities or preferences of other

agents, in order to decrease the divergences between them. This is fulfilled by

changes in the cooperation profile, during the negotiation with a certain agent.

Also, the agent has the capacity to do many negotiations at the same time,

because it encounters different agents, which have different proposals.

The system has an open and flexible architecture, where agents can be viewed

as sellers and buyers in parallel negotiations. A negotiator is an autonomous entity.

The agent registers in the negotiation environment and also informs about the

services supplied, in case it is a seller.

The JESS engine represents the agent’s inference engine, which stores the

knowledge base of the business domain and also contains the negotiation strategies

for the agent, the facts and the concepts of bargaining.

Input Communication
Primitives

Knowledge
Base

Primitive Evaluation
and Generation

Output
Communication

Primitives

Accept Propose Reject

 97

JADE is used as an infrastructure for building the multi-agent system and JESS

as a mechanism to provide the inference engine for the agents that are negotiating.

The negotiation strategies show how the agent reasons at each moment of the

bargaining. Each agent possesses different negotiation strategies, encoded in rules.

When an agent receives proposals, it filters the best proposal from its point of

view and chooses it. The use of rules and the learning techniques for the negotiation

strategies make the agent more flexible to changes that can occur in its strategies or

objectives. This can happen for several reasons, like changes in the business

domain, the necessity to consider new information related to the business or the

necessity to act on new business domains.

The reasoning model of the agent is presented in Figure 7.4. The agent first

generates its desires, based on its beliefs and individual internal motivations. Then, it

generates possible plans for achieving its desires. It selects the best plan, based on

some appropriate criteria, which becomes an intention. If the agent can execute its

intention on its own, then it would do so. Otherwise, if the agent needs to negotiate

with another agent in order to contract out parts of its intention, it would initiate a

negotiation dialogue with a certain agent. If the negotiation results in a deal, then the

agent can execute its intention. The agent ends the negotiation if it decides that no

deal is reachable. Until then, during the negotiation process, the agent may update

its beliefs and planning knowledge, as a result of receiving new information, which

updates its desires and intentions.

Figure 7.4. The Reasoning Model of the Agent

7.2.1. Automated Negotiation Design

The agents that appear in the negotiation process are the buyers and the

sellers. The negotiation mechanism is based on the following ideas:

a) The buyers and the sellers are represented by software agents;

b) The negotiation strategy of the agents is expressed using rules;

c) The knowledge base consists of a set of facts and a number of rules;

NO

NO

YES
YES

Desires
Possible

Plans
Intentions

Negotiation Intention
Fulfillment

New
Information

Agreement Planning
Update

 98

d) Both buyers and sellers use the same negotiation protocol;

e) When an agent receives an offer from another agent, it stores the new facts

in the knowledge base. Consequently, the control part activates the inference engine,

which in turn updates the knowledge base with the inference result, according to the

strategy rules. Finally, the control part retrieves the result and presents it to the

communication part of the agent.

The architecture of a negotiating agent is presented in the Figure 7.5.

Figure 7.5. The Negotiating Agent Architecture

The three types of agents that are identifiable in the system are: the buyer, the

seller, and the facilitator. This has a secondary role and the agents use it to find each

other and to register what goods or services they want to buy or sell. The

requirements of the buyer are represented using rules and priorities. These include

both mandatory requirements that must be fulfilled, and also preferences, which can

be used to select among the offers possible to be accepted. These requirements are

communicated to the facilitator agent by the buyer agent. When the facilitator

receives a request, it matches this to the offers, by running the request specification

against the available offers. Then, the requester’s preferences are applied to select

the most suitable one, which is then presented to the agent making the request.

The multi-agent system architecture is presented in Figure 7.6.

Knowledge
Base

Inference
Engine

Control Part

JADE Environment

 99

Figure 7.6. Multi-Agent System Architecture

7.2.2. Agent Control Structure

The control structure of the agent is composed of two phases. The first phase is

dedicated to the control of agent’s activities which doesn’t depend on other agents,

while the second phase is dedicated to negotiation and reaching agreement. The

steps for the first phase are:

1. Generate desires, based on beliefs;

2. Generate candidate plans for achieving desires;

3. Generate intention, as the best possible plan;

4. If it has capabilities then execute intention;

5. If it hasn’t capabilities then negotiate.

The steps for the second phase are:

1. Receive offers from other agents;

2. Update beliefs and planning knowledge;

3. Update desires and intentions;

4. Generate counteroffers and send them to the other agents.

In the implemented system, there is a base agent class, extended by buyer

and seller agents, which contains common functions used by all agents. The main

features of this class are described in the following steps.

1. Read negotiation object;

2. Check if the current agent has products with the desired attributes;

3. If there are no products in stock then REJECT-PROPOSAL;

4. Check message type;

Facilitator

Inference
Engine

JADE
Environment

Seller 1 Seller 2 Seller n Buyer 1 Buyer n Buyer 2

 100

5. If message=CALL-FOR-PROPOSAL (only sellers receive CFP) then get all

products of that type;

5.1. If there are less products than the other agent wants to buy then

REJECT PROPOSAL;

5.2. If there are offers then send them;

6. If message=INFORM (only buyers receive INFORM) then

6.1. If multiple products received then find which one is the best;

 else check if the attributes’ values match the request;

7. If message=PROPOSE then process offer;

8. If message=AGREE then

8.1. Add information to statistics file and compute gain;

8.2. Remove product from stock;

8.3. Collect statistics when negotiation ends;

9. If message= REJECT-PROPOSAL then end negotiation with reject.

Each buyer agent does the following steps:

1. When the buyer enters negotiation, send to all sellers REQUEST’s for the

products of interest;

2. Every 5 seconds the buyer agent sends to all sellers REQUEST’s for the

products of interest;

3. Get the agents which sell what the agent needs to buy.

Each seller agent performs the following steps, when processing an ACCEPT

offer:

1. Remove the product from the stock;

2. If OK then send AGREE message to the buyer agent;

3. Add the negotiation results to statistics and compute the gain;

4. Remove the current bid from the list of open bids;

5. Reject the offers of other agents interested in this product;

6. Add to statistics file the result of the failed negotiations.

7.2.3. Negotiation Protocol

 The message exchange protocol employed by the agents is described in the

following algorithm:

1. When seller agents are initialized, they inform the DF which products they

sell. The products are registered by an alias used both by buyers and

sellers;

2. Each 5 seconds the buyer agent (B) uses DF to find which agents are

selling the first product on its list of products to buy (P1);

2.1. If there are no agents selling product P1 then B tries to find the

agents which sell product P2 and so on;

 101

2.2. If B finds an agent (or more) which sells the product P1 then sends

CFP;

2.3. If no agents are found then B repeats the procedure after 5

seconds;

3. Seller agent (S) receives CFP message sent by B;

4. S finds out all products having the requested alias;

5. S composes an INFORM message and add to it all products found;

6. S sends the INFORM message to B;

7. B receives the INFORM message sent by S;

8. B validates the product attributes if the validation rule file is defined for the

product;

9. After the products are validated then B chooses the best product;

10. B sets the quantity of products it wants to buy;

11. B computes the classification for S in a cooperation class;

12. B uses the rules defined for the product business model to get the new

price;

13. B sends PROPOSE message to S;

14. S receives PROPOSE message from B;

15. S uses the rules defined for its product business model to evaluate the new

offer;

16. If S ACCEPTs the offer then

16.1. S updates the product list;

16.2. If stock > negotiated quantity then stock is decreased;

 else product is removed;

16.3. If there are enough products in stock to fulfill the request then S

sends AGREE message to B;

16.4. Add information to statistics file;

16.5. Remove this bid from the list of open bids;

16.6. Reject the offers of other agents interested in this product;

16.7. Add to statistics file the result of the failed negotiations;

16.8. End current negotiation;

16.9. If there are no more products like this then S informs DF to

deregister this product from its services;

17. If S REJECTs the offer then negotiation ends;

17.1. Statistics file is updated;

18. If S has a new price then S sends PROPOSE message to B;

19. B receives PROPOSE message from S;

20. B uses the rules defined for its product business model to evaluate the new

offer.

 The multi-agent system collects the following information in the statistics file:

a) Negotiation Statistics – for each agent, the system collects the total gain,

the number of negotiations, and the total number of negotiation rounds;

 102

b) Cooperation Statistics – for each agent and partner cooperation class, the

system collects the number of negotiation rounds, the number of

negotiations, the total gain, and the list of agents included in that

cooperation class;

c) Supply Demand Statistics – supply is computed as the sum of quantities of

all seller products and demand is computed as the sum of quantities of all

buyer products. Their ratio is computed by dividing the demand to the

supply.

7.3. Negotiation Objects Utility

The negotiation object (NO) is described by a unique name and a number of

attributes. Because negotiation is a dynamic process, implying changes of the initial

conditions for the negotiation object, the NO structure is flexible. It allows not only

changes of attribute values, but also the addition of new ones. A negotiation object

has two classes of attributes: dynamic attributes, which can be negotiated, and fixed

attributes, which cannot be modified during negotiation. Each attribute has a name, a

value, which can be of different types, and a flag showing if the attribute may be

modified or not during the negotiation process. Figure 7.7 displays the attributes

associated to the negotiation object.

Figure 7.7. The Attributes Associated to the Negotiation Object

A negotiation object utility estimates how useful a NO is for the negotiator. It

allows the agent to compare the initial NO, which has the utility +1, with modified

negotiation objects, either by itself during negotiation, or by the other agent in

counterproposals. During one or several negotiation steps, some attribute values of

the initial NO are changed, and some attributes are added, as a result of appropriate

requests. The utility of modified negotiation objects is less than the initial utility,

because it is supposed that the negotiator has increased the value of NO, by adding

an attribute to it. The formula to compute a negotiation object utility, UO(NO), is:

∑∑
==

+−=
m

j

jj

n

i

iiiiO)e(Vw)/VV(Vw(NO)U
11

00

 (7.1)

where:

n - number of modified attributes;

m - number of added attributes;
0

iV - value of the i-th attribute;

NO Name Price Deadline Quality Penalties Flag

 103

wi - weight of attribute i in the utility of NO;

e - function to capture how the utility increases or decreases by adding an extra

attribute; for decreasing the utility wj < 0.

For an attribute that cannot be modified during negotiation, for instance, a time

limit that cannot be extended due to plan constraints, wi will have a big negative

value, so that the utility of the negotiation object becomes very low. Utility values

under a given threshold leads to unacceptable objects and to a new step in

negotiation or to an unsuccessful negotiation.

7.4. Modeling the Facilitator

An agent asking the facilitator should give information about the role it wants the

facilitator to assume and about the requested action. This information must be

expressed for both a selection and a negotiation role of the facilitator, and is

contained in the request profile. The request profile has two components:

a) the negotiation object profile, dealing with the action of interest;

b) the facilitator role profile, referring to the role played by the facilitator in the

multi-agent system.

The negotiation object profile should be designed in relation to the facilitator role

profile, providing the appropriate information, which is represented by the name of

the NO, accompanied or not by a subset or by all of its attributes.

The facilitator role profile refers to the role the facilitator is requested to have,

but also to the content of the expected answer, that is the list of agents able to

perform the requested action.

The roles developed by the facilitator can be divided in:

Role 1 - Inform Role - the facilitator is requested to inform the agent issuing the

request which agents are capable to fulfill the action specified in the negotiation

object profile. In this case, upon receiving the facilitator's answer, the source agent

selects the agent/agents with which it would negotiate and start negotiation to reach

agreement;

Role 2 – Selection Role - the facilitator sends the request received from the

source agent to other agents and returns the list of agents interested in starting

negotiation, which will be conducted by the source agent itself;

Role 3 – Negotiation Role - the facilitator has the selection role, assuming

afterwards the negotiation, under the conditions reflected in the negotiation object

profile. The negotiation could be of two different types: single-party, with the best

candidate found, or multi-party. In the second case, the facilitator sends copies of

the negotiation object profile to all agents able to perform the corresponding action.

There is an answer reception deadline, as measured by a timer set when sending the

copies. From the answers received in time, the facilitator selects the best one, and

sends the result back to the source agent.

The model used for selecting facilitator roles is described in Figure 7.8.

 104

Figure 7.8. The Facilitator Roles

7.5. Negotiation Primitives

The negotiation process implies an exchange of information between agents A

and B. The process is started by the negotiator A, which issues a request for a

product, this being directed towards agent B. Agent B may accept the request, may

reject it, or may modify the request by changing the value of an attribute of the NO, or

by adding a new attribute. In the later two cases, agent A has to decide upon

accepting, rejecting or modifying the counterproposal, based on its intentions, goals

and built plans. Negotiation may continue by performing several consecutive steps,

during which one or the other agent modifies the NO, until a deal has been

concluded or the negotiation failed.

The negotiation primitives used in this scenario are:

a) (Request NO) - request of a negotiation object - the entire negotiation object

structure is transmitted;

b) (Accept name(NO)) - accept the request for the NO;

c) (Reject name(NO)) - reject the request for the NO;

d) (ModReq name(NO) assign(NO,X,V1)) - counterproposal to modify the

current NO by assigning a different value V1 to attribute X;

e) (ModReqAdd name(NO) assign(NO,Y,V) Yes/No) - counterproposal for

modifying the NO by adding an extra attribute Y, with value V, subject to further

modification (Yes) or not (No).

The negotiation primitives to address the facilitator and to ask it for a particular

role are the following:

a) (Inform NO_profile one/all) - the agent asks the facilitator to inform it about

one agent (one) or all the agents (all) capable of performing NO or interested in NO

(facilitator's Role 1); in this case NO_profile = name(NO);

b) (Select NO_profile one/all) - the agent asks the facilitator to find one or all

the agents willing to start a negotiation on object NO (facilitator's Role 2); the

NO_profile may contain only the name of the NO or the entire structure of the NO or

a subset of that structure;

c) (Negotiate NO_profile one/all) - the agent asks the facilitator to bargain the

Facilitator

Inform Role Selection Role Negotiation Role

Agent 2

Agent 3

Agent 4

Agent 5

Agent 6

Agent 7
Agent 1

 105

negotiation object NO for it (facilitator's Role 3); the NO_profile contains the entire

NO structure and, optionally, acceptable ranges for the negotiation object attributes;

the facilitator will return the partner agent with which it concluded a successful

negotiation or all the agents interested in NO.

When performing a negotiation role, the facilitator has no information about the

goals and plans of the agents on behalf of which it negotiates. So, it can’t use a

heuristic mechanism to decide on the suitability of a received modified request or to

issue other modified negotiation objects, as is the case of a negotiating agent.

Instead, it uses the Contract Net Protocol to choose among bidding agents the one

with the best offer, or the best offer within acceptable ranges, in case the NO profile

specifies acceptable ranges for the NO’s attributes. If the negotiation object is a

service offered by the agent, this indicates it is interested in all agents wishing this

service with the “all” parameter in the Negotiate primitive.

To implement the Contract Net Protocol, the facilitator uses the following

negotiation primitives, which are understood by the other agents in the system:

a) (Call NO) – the facilitator calls for proposals on NO and the entire NO is

transmitted;

b) (Bid NO) – the agents in the system are bidding for NO;

c) (Allocate name(NO)) – the facilitator allocates the NO to a bidding agent and

informs it accordingly;

d) (Refuse name(NO)) – the facilitator informs a bidding agent that its bid is

rejected.

The negotiation primitives described above are included in a send or receive

message:

a) (Send Sender Receiver negotiation_primitive)

b) (Receive Receiver Sender negotiation_primitive)

Figure 7.9 displays the messages exchange using the Contract Net Protocol,

between the initiator of the communication and the participant.

 106

Figure 7.9. Messages Exchange using the Contract Net Protocol

7.6. Multi-Agent Cooperation

A negotiation object has a utility, computed at the end of a successful

negotiation. The utility of a negotiation is defined using the following formula:

 (7.2)

where w represents the weight of the negotiation length, 0< w ≤1, and Ns the number

of negotiation steps.

Each agent increases its knowledge on the system by taking into account the

results obtained when trying to cooperate with other agents.

The individual cooperation profile (A,X) is developed by the agent A for each

agent X it was involved in a negotiation, considering also the role played by the

facilitator in each negotiation process. The individual cooperation profile is defined by

the following set of data:

a) agent name X;

b) X's abilities;

c) cooperation synthesis for each facilitator role, stored in four fields:

1) si - the total number of successful negotiations with X under role ri of the

facilitator;

2) GUs(ri) - global negotiation objects utility, intended to measure how much the

Ns w

U(NO)
) U(Neg

NO
∗

=

Initiator Participant

 Request NO

Reject NO

Accept NO

ModReq NO' val

Reject NO'

Accept NO' val

ModReq NO'' val

Failure

Inform done

 107

agent has gained by successful negotiations when the facilitator assumed role ri;

31
1

,,i
s

)(NO'U

)(rGU
i

s

j

j

r

is

i

i

==

∑
=

 (7.3)

where NO'j is the modified object concluded by the deal established in negotiation j;

3) fi - the total number of unsuccessful negotiations with X under role ri of the

facilitator;

4) GUf(ri) - global negotiation objects utility, intended to measure how much the

agent has lost, because of unsuccessful negotiations with X, when the facilitator

assumed role ri.

31
1

,,i
f

)(NOU

)(rGU
i

f

j

j

r

if

i

i

==

∑
=

 (7.4)

where NOj is the object negotiated in the unsuccessful negotiation j.

The Figure 7.10 displays the individual cooperation profile (A,X) for agent A.

Figure 7.10. The Individual Cooperation Profile for Agent A

The choice of the facilitator's role in the negotiation process is based on

additional information, concerning cooperation profile of a group of agents. Such

profiles include the same fields as the individual cooperation profile described above,

with the only difference that the first field is either all or a list of agent names.

After each negotiation, an agent updates both the individual and the group

cooperation profiles, as well as the cooperation profiles of the groups having as

member the negotiation partner. When there are few interactions with another agent,

the agent uses, most of the time, the group profile. As the number of interactions with

an agent grows, it is guided by the individual profile or by a combination of the

existing profiles.

The facilitator's role is chosen according to the maximum gain principle. It

requires to compute the gain obtained for each role ri, i=1,3:

)()()(ifisi rGUrGUrGain −= (7.5)

and choose the facilitator role that gives the maximum gain:

))(Gain(rk
k

max
 (7.6)

In the beginning, the agent does not have too much information in the

Partner

Agent X

Agent X
Abilities

Total Number of
Successful
Negotiations

with X

GUs(ri)

Total Number of
Unsuccessful
Negotiations

with X

GUf(ri)

 108

cooperation profiles and therefore it chooses one or the other roles of the facilitator

arbitrarily. As interactions go on, information is accumulated in these profiles, quicker

in the group cooperation profile and slower in the individual cooperation profile. The

emergence of these profiles is seen as a form of agent learning, in which the agent

learns how to deal with the group of agents and then gradually refines its beliefs

towards dealing with individual agents.

The tradeoff between exploitation and exploration should be considered. If after

successful deals under role ri of the facilitator, the agent starts prefering only this role,

then it may ignore some opportunities. Therefore, it may be added an exploratory

coefficient ε, ε ≥1, and choose role rk such that:

))Gain(r(ε k
k

∗max
 (7.7)

7.7. Conclusion

This chapter presented a conceptual model of cognitive agents in a multi-agent

system, based on the BDI model, which considers goals equal to desires. While

cooperating with other agents, an agent develops cooperation profiles, which are

gradually refined, and uses them to control its behavior during negotiation. A

particular agent, the facilitator, has a special role in the system. It is responsible with

the management of agents and their related abilities.

The contribution of this chapter is to provide a conceptual model for agent

cooperation, based on several profiles. The request profile, with its two components,

the negotiation object profile and the facilitator role profile, provides information about

the object and the type of the current cooperation request addressed to the facilitator,

while the cooperation profiles provide synthetic information on the cooperation

history. The gradually refinement of the cooperation profiles is seen as a form of

agent learning.

This model also introduces the notions of utility for negotiation objects and for

the roles the facilitator could play in the negotiation process. The later allow the use

of a very simple selection mechanism for the facilitator's role.

The developed model can be extended to take into account the emotions of the

agents. In this case, the affective behavior of the agents can be designed using an

emotional modeling architecture [Lungu V. et al., 2013]. This emphasizes emotional

reasoning in the context of other forms of reasoning, specific to the BDI model.

Also, the norms in the multi-agent system influence the agents’ reasoning.

Norms have an important role in the agents’ society [Trascau M. et al., 2013]. They

tend to be generally accepted by all the agents in the system, as the norms are the

result of a complex process of emergence, which starts with the simplest interactions

between agents and continues as the agents negotiate repeatedly in the framework

of a certain scenario.

 109

Chapter 8. Automated Negotiation for the Travel Agency

Business Model

8.1. Travel Agency Automated Negotiation Rules

This chapter presents a business scenario involving a travel agency [Radu S.,

2013 b]. A person, represented by the buyer agent, wants to book the hotel for the

holiday. The user has several criteria, each attribute having a certain priority for the

user, upon which he/she decides the hotel to choose. The buyer agent representing

the human should know the criteria and the user’s preferences. The criteria are

presented in Table 8.1 and the priorities for the user are displayed, on a 1 to 10

scale. These characteristics are encoded in the XML configuration file associated

to this business model. The content of the configuration file is read into the

application using the SAX (Simple API for XML) parser. SAX provides a mechanism

for reading data from an XML file.

Table 8.1. Attributes of the Travel Agency Negotiation Scenario

Requirements for the Hotel Priority

Location in the Town 10

Close to the Railway Station 8

Close to the Airport 5

Close to the Bus Station 7

Close to the Touristic Area 10

Hotel Classification 9

View from the Room 6

Room Type (single, double, twin, appartment) 8

Private/Shared Bathroom 10

Balcony 7

TV 8

Wireless Internet Access 5

Refrigerator 8

Type of Meals 10

Indoor/Outdoor Swimming Pool 8

Gym Room 4

Air Conditioning in the Room 10

The rules are defined in Jess. There are several rules, upon which the

negotiation is performed. There are different rules defined for each type of

communication primitive. The higher priority is associated to the ACCEPT rules, the

medium priority to the REJECT rules, and the lower priority to the PROPOSE rules.

It follows a description of the negotiation rules for the travel agency negotiation

scenario, first for the buyer agent, and then for the seller agent. This scenario

 110

accomodates one-to-one, one-to-many, many-to-one, and many-to-many

negotiations.

For the buyer, regarding the ACCEPT communication primitive, there are the

following rules:

1) The buyer will accept an offer o from a seller, which is either non-cooperative

or unknown, for a certain quantity of q items, each having the price between minPrice

and maxPrice, which is less than q*(minPrice+maxPrice)/2;
(defrule accept1

 (declare (salience 100))

 (NegotiationObject {sellerClassification == "nc" ||

sellerClassification == "u"}

 (currentOffer ?o) (quantity ?q))

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice))

 (test (<= ?o (* ?q (/ (+ ?minPrice ?maxPrice) 2))) => (add (new Offer

"accept1" ?*accept*)))

2) The buyer will accept an offer o from a seller, which is either slightly

cooperative or cooperative, for a certain quantity of q items, each having the price

between minPrice and maxPrice, which is less than q*(maxPrice-

(minPrice+maxPrice)/2);
(defrule accept2

 (declare (salience 100))

 (NegotiationObject {sellerClassification == "sc" ||

sellerClassification == "c"}

 (currentOffer ?o) (quantity ?q))

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice))

 (test (<= ?o (* ?q (- ?maxPrice (/ (+ ?minPrice ?maxPrice) 2)))))

 => (add (new Offer "accept2" ?*accept*)))

3) The buyer will accept an offer o from a seller, which is either very cooperative

or highly cooperative, for a certain quantity of q items, each having the price between

minPrice and maxPrice, which is less than q*maxPrice;
(defrule accept3

 (declare (salience 100))

 (NegotiationObject {sellerClassification == "vc" ||

sellerClassification == "hc"}

 (currentOffer ?o) (quantity ?q))

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice))

 (test (<= ?o (* ?q ?maxPrice)))

 => (add (new Offer "accept3" ?*accept*)))

4) The buyer will accept an offer o from a seller, which is either non-cooperative

or unknown, for a certain quantity of q items, each having the price between minPrice

and maxPrice, which is less than q*(minPrice+10);
(defrule accept4

 (declare (salience 100))

 (NegotiationObject {sellerClassification == "nc" ||

sellerClassification == "u"}

 (currentOffer ?o) (quantity ?q))

 (Product (minPrice ?minPrice))

 111

 (test (<= ?o (* ?q (+ 10 ?minPrice))))

 => (add (new Offer "accept4" ?*accept*)))

5) The buyer will accept an offer o from a seller, which is either slightly

cooperative or cooperative, for a certain quantity of q items, each having the price

between minPrice and maxPrice, which is less than q*(minPrice+15);
(defrule accept5

 (declare (salience 100))

 (NegotiationObject {sellerClassification == "sc" ||

sellerClassification == "c"}

 (currentOffer ?o) (quantity ?q))

 (Product (minPrice ?minPrice))

 (test (<= ?o (* ?q (+ 15 ?minPrice))))

 => (add (new Offer "accept5" ?*accept*)))

6) The buyer will accept an offer o from a seller, which is either very cooperative

or highly cooperative, for a certain quantity of q items, each having the price between

minPrice and maxPrice, which is less than q*(minPrice+20);
(defrule accept6

 (declare (salience 100))

 (NegotiationObject {sellerClassification == "vc" ||

sellerClassification == "hc"}

 (currentOffer ?o) (quantity ?q))

 (Product (minPrice ?minPrice))

 (test (<= ?o (* ?q (+ 20 ?minPrice))))

 => (add (new Offer "accept6" ?*accept*)))

For the REJECT communication primitive of the buyer, there are the following

rules:

1) The buyer will reject an offer for a negotiation object, received after a certain

time threshold, which is defined as 5 seconds for each negotiation. The message

Negotiation time elapsed is sent from the buyer to the seller;
(defrule reject1

 (declare (salience 50))

 (NegotiationObject (timeElapsed ?te))

 (test (>= ?te ?*maxNegTime*))

 => (add (new Offer "reject1" ?*reject* "Negotiation time elapsed.")))

2) The buyer will reject the current offer o for a certain amount of q items,

received from a non-cooperative or unknown seller, having the price greater than

maxPrice+20, when the negotiation step is greater than 5. The message Price too

high is sent from the buyer to the seller;
(defrule reject2

 (declare (salience 50))

 (NegotiationObject {sellerClassification == "nc" ||

sellerClassification == "u"} {step > 5}

 (currentOffer ?o) (quantity ?q))

 (Product (maxPrice ?maxPrice))

 (test (>= ?o (* ?q (+ ?maxPrice 20))))

 => (add (new Offer "reject2" ?*reject* "Price too high")))

3) The buyer will reject the current offer o for a certain amount of q items,

received from a slightly cooperative or cooperative seller, having the price greater

 112

than maxPrice+40, when the negotiation step is greater than 5. The message Price

too high is sent from the buyer to the seller;
(defrule reject3

 (declare (salience 50))

 (NegotiationObject {sellerClassification == "sc" ||

sellerClassification == "c"} {step > 5}

 (currentOffer ?o) (quantity ?q))

 (Product (maxPrice ?maxPrice))

 (test (>= ?o (* ?q (+ ?maxPrice 40))))

 => (add (new Offer "reject3" ?*reject* "Price too high")))

4) The buyer will reject the current offer o for a certain amount of q items,

received from a very cooperative or highly cooperative seller, having the price greater

than maxPrice+60, when the negotiation step is greater than 5. The message Price

too high is sent from the buyer to the seller;
(defrule reject4

 (declare (salience 50))

 (NegotiationObject {sellerClassification == "vc" ||

sellerClassification == "hc"} {step > 5}

 (currentOffer ?o) (quantity ?q))

 (Product (maxPrice ?maxPrice))

 (test (>= ?o (* ?q (+ ?maxPrice 60))))

 => (add (new Offer "reject4" ?*reject* "Price too high")))

For the COUNTERPROPOSE communication primitive of the buyer, there are

the following rules:

1) The price offered by a buyer, in the first negotiation step, for a certain

quantity q of products, having the price between minPrice and maxPrice, to a non-

cooperative or unknown seller, is equal to q*(minPrice-5);
 (defrule firstPrice1

 (declare (salience 10))

 (NegotiationObject {step == 1} {sellerClassification == "nc" ||

sellerClassification == "u"} (quantity ?q))

 (Product (minPrice ?minPrice))

 => (add (new Offer "firstPrice1" (* ?q (- ?minPrice 5)) ?*propose*)))

2) The price offered by a buyer, in the first negotiation step, for a certain

quantity q of products, having the price between minPrice and maxPrice, to a slightly

cooperative or cooperative seller, is equal to q*minPrice;
(defrule firstPrice2

 (declare (salience 10))

 (NegotiationObject {step == 1} {sellerClassification == "sc" ||

sellerClassification == "c"} (quantity ?q))

 (Product (minPrice ?minPrice))

 => (add (new Offer "firstPrice2" (* ?q ?minPrice) ?*propose*)))

3) The price offered by a buyer, in the first negotiation step, for a certain

quantity q of products, having the price between minPrice and maxPrice, to a very

cooperative or highly cooperative seller, is equal to q*(minPrice+10);
(defrule firstPrice3

 (declare (salience 10))

 113

 (NegotiationObject {step == 1} {sellerClassification == "vc" ||

sellerClassification == "hc"} (quantity ?q))

 (Product (minPrice ?minPrice))

 => (add (new Offer "firstPrice3" (* ?q (+ 10 ?minPrice))

?*propose*)))

The buyer agent has three different strategies used during negotiation. It can

employ either the linear strategy, the conceder strategy or the boulware strategy.

There are different rules used for each strategy.

For the linear strategy of the buyer, there are the following rules:

1) The buyer will increase its previous offer o with 2, to the non-cooperative or

unknown sellers, when the negotiation step is greater than 1;
(defrule newPrice4

 (declare (salience 10))

 (NegotiationObject {step > 1} (previousOffer ?o)

{sellerClassification == "nc" || sellerClassification == "u"}) (Strategy

{strategy == ?*linear*})

 =>(add (new Offer "newPrice4" (+ ?o 2) ?*propose*)))

2) The buyer will increase its previous offer o with 4, to the slightly cooperative

or cooperative sellers, when the negotiation step is greater than 1;
(defrule newPrice5

 (declare (salience 10))

 (NegotiationObject {step > 1} (previousOffer ?o)

{sellerClassification == "sc" || sellerClassification == "c"}) (Strategy

{strategy == ?*linear*})

 =>(add (new Offer "newPrice5" (+ ?o 4) ?*propose*)))

3) The buyer will increase its previous offer o with 6, to the very cooperative or

highly cooperative sellers, when the negotiation step is greater than 1;
(defrule newPrice6

 (declare (salience 10))

 (NegotiationObject {step > 1} (previousOffer ?o)

{sellerClassification == "vc" || sellerClassification == "hc"}) (Strategy

{strategy == ?*linear*})

 => (add (new Offer "newPrice6" (+ ?o 6) ?*propose*)))

For the conceder strategy of the buyer, there are the following rules:

1) The buyer will increase its previous offer o with 25, to the non-cooperative or

unknown sellers, when the negotiation step is greater than 1 and lower than 6;
 (defrule newPrice7

 (declare (salience 10))

 (NegotiationObject {step > 1 && step < 6} (previousOffer ?o)

{sellerClassification == "nc" || sellerClassification == "u"})

 (Strategy {strategy == ?*conceder*})

 => (add (new Offer "newPrice7" (+ ?o 25) ?*propose*)))

2) The buyer will increase its previous offer o with 35, to the slightly cooperative

or cooperative sellers, when the negotiation step is greater than 1 and lower than 6;
(defrule newPrice8

 (declare (salience 10))

 (NegotiationObject {step > 1 && step < 6} (previousOffer ?o)

{sellerClassification == "sc" || sellerClassification == "c"})

 114

 (Strategy {strategy == ?*conceder*})

 => (add (new Offer "newPrice7" (+ ?o 35) ?*propose*)))

3) The buyer will increase its previous offer o with 45, to the very cooperative or

highly cooperative sellers, when the negotiation step is greater than 1 and lower than

6;
(defrule newPrice9

 (declare (salience 10))

 (NegotiationObject {step > 1 && step < 6} (previousOffer ?o)

{sellerClassification == "vc" || sellerClassification == "hc"})

 (Strategy {strategy == ?*conceder*})

 => (add (new Offer "newPrice7" (+ ?o 45) ?*propose*)))

4) The buyer will increase its previous offer o with 5, to the non-cooperative or

unknown sellers, when the negotiation step is greater than 6;
(defrule newPrice10

 (declare (salience 10))

 (NegotiationObject {step >= 6} (previousOffer ?o)

{sellerClassification == "nc" || sellerClassification == "u"}) (Strategy

{strategy == ?*conceder*})

 => (add (new Offer "newPrice10" (+ ?o 5) ?*propose*)))

5) The buyer will increase its previous offer o with 10, to the slightly cooperative

or cooperative sellers, when the negotiation step is greater than 6;
(defrule newPrice11

 (declare (salience 10))

 (NegotiationObject {step >= 6} (previousOffer ?o)

{sellerClassification == "sc" || sellerClassification == "c"}) (Strategy

{strategy == ?*conceder*})

 => (add (new Offer "newPrice11" (+ ?o 10) ?*propose*)))

6) The buyer will increase its previous offer o with 15, to the very cooperative or

highly cooperative sellers, when the negotiation step is greater than 6;
(defrule newPrice12

 (declare (salience 10))

 (NegotiationObject {step >= 6} (previousOffer ?o)

{sellerClassification == "vc" || sellerClassification == "hc"}) (Strategy

{strategy == ?*conceder*})

 => (add (new Offer "newPrice12" (+ ?o 15) ?*propose*)))

For the boulware strategy of the buyer, there are the following rules:

1) The buyer will increase its previous offer o with 0.1, when the negotiation

step is greater than 1 and the time elapsed in the negotiation is less than 4 seconds,

represented by the global variable boulwareTime1;
 (defrule newPrice13

 (declare (salience 10))

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed <

?*boulwareTime1*})

 (Strategy {strategy == ?*boulware*})

 => (add (new Offer "newPrice13" (+ ?o 0.1) ?*propose*)))

2) The buyer will increase its previous offer o with 10, when the negotiation step

is greater than 1 and the time elapsed in the negotiation is greater than 4 seconds,

represented by the global variable boulwareTime1;

 115

(defrule newPrice14

 (declare (salience 10))

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed >=

?*boulwareTime1*})

 (Strategy {strategy == ?*boulware*})

 => (add (new Offer "newPrice14" (+ ?o 10) ?*propose*)))

3) The buyer will increase its previous offer o with 15, when the negotiation step

is greater than 1 and the time elapsed in the negotiation is greater than 4.5 seconds,

represented by the global variable boulwareTime2;
(defrule newPrice15

 (declare (salience 10))

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed >=

?*boulwareTime2*})

 (Strategy {strategy == ?*boulware*})

 => (add (new Offer "newPrice14" (+ ?o 20) ?*propose*)))

For the seller, regarding the ACCEPT communication primitive, there are the

following rules:

1) The seller will accept an offer from a non-cooperative or unknown buyer, for

a certain quantity of q products, having the price between minPrice and maxPrice,

with the price greater than q*(minPrice+maxPrice)/2;
 (defrule accept1

 (declare (salience 100))

 (NegotiationObject {buyerClassification == "nc" ||

buyerClassification == "u"} {step > 0}

 (currentOffer ?o) (quantity ?q))

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice))

 (test (>= ?o (* ?q (/ (+ ?minPrice ?maxPrice) 2))))

 => (add (new Offer "accept1" ?*accept*)))

2) The seller will accept an offer from a slightly cooperative or cooperative

buyer, for a certain quantity of q products, having the price between minPrice and

maxPrice, with the price lower than q*(maxPrice-(minPrice+maxPrice)/2);
(defrule accept2

 (declare (salience 100))

 (NegotiationObject {buyerClassification == "sc" ||

buyerClassification == "c"} {step > 0}

 (currentOffer ?o) (quantity ?q))

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice))

 (test (<= ?o (* ?q (- ?maxPrice (/ (+ ?minPrice ?maxPrice) 2))))

 => (add (new Offer "accept2" ?*accept*)))

3) The seller will accept an offer from a very cooperative or highly cooperative

buyer, for a certain quantity of q products, having the price between minPrice and

maxPrice, with the price lower than q*maxPrice;
(defrule accept3

 (declare (salience 100))

 (NegotiationObject {buyerClassification == "vc" ||

buyerClassification == "hc"} {step > 0}

 (currentOffer ?o) (quantity ?q))

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice))

 116

 (test (<= ?o (* ?q ?maxPrice)))

 => (add (new Offer "accept3" ?*accept*)))

4) The seller will accept an offer from a non-cooperative or unknown buyer, for

a certain quantity of q products, having the price between minPrice and maxPrice,

with the price greater than q*(minPrice+30);
(defrule accept4

 (declare (salience 100))

 (NegotiationObject {buyerClassification == "nc" ||

buyerClassification == "u"} {step > 0}

 (currentOffer ?o) (quantity ?q))

 (Product (minPrice ?minPrice))

 (test (>= ?o (* ?q (+ 30 ?minPrice))))

 => (add (new Offer "accept4" ?*accept*)))

5) The seller will accept an offer from a slightly cooperative or cooperative

buyer, for a certain quantity of q products, having the price between minPrice and

maxPrice, with the price greater than q*(minPrice+20);
(defrule accept5

 (declare (salience 100))

 (NegotiationObject {buyerClassification == "sc" ||

buyerClassification == "c"} {step > 0}

 (currentOffer ?o) (quantity ?q))

 (Product (minPrice ?minPrice))

 (test (>= ?o (* ?q (+ 20 ?minPrice))))

 => (add (new Offer "accept5" ?*accept*)))

6) The seller will accept an offer from a very cooperative or highly cooperative

buyer, for a certain quantity of q products, having the price between minPrice and

maxPrice, with the price greater than q*(minPrice+10);
(defrule accept6

 (declare (salience 100))

 (NegotiationObject {buyerClassification == "vc" ||

buyerClassification == "hc"} {step > 0}

 (currentOffer ?o) (quantity ?q))

 (Product (minPrice ?minPrice))

 (test (>= ?o (* ?q (+ 10 ?minPrice))))

 => (add (new Offer "accept6" ?*accept*)))

For the REJECT communication primitive of the seller, there are the following

rules:

1) The seller will reject an offer for a negotiation object, received after a certain

time threshold, which is defined as 5 seconds for each negotiation. The message

Negotiation time elapsed is sent from the seller to the buyer;
(defrule reject1

 (declare (salience 50))

 (NegotiationObject (timeElapsed ?te))

 (test (>= ?te ?*maxNegTime*))

 => (add (new Offer "reject1" ?*reject* "Negotiation time elapsed.")))

2) The seller will reject the current offer o for a certain amount of q items,

received from a non-cooperative or unknown buyer, having the price lower than

 117

q*minPrice, when the negotiation step is greater than 5. The message Price too low

is sent from the seller to the buyer;
(defrule reject2

 (declare (salience 50))

 (NegotiationObject {buyerClassification == "nc" ||

buyerClassification == "u"} {step > 5}

 (currentOffer ?o) (quantity ?q))

 (Product (minPrice ?minPrice))

 (test (<= ?o (* ?q ?minPrice)))

 => (add (new Offer "reject2" ?*reject* "Price too low")))

3) The seller will reject the current offer o for a certain amount of q items,

received from a slightly cooperative or cooperative buyer, having the price lower than

q*(minPrice+20), when the negotiation step is greater than 5. The message Price too

low is sent from the seller to the buyer;
(defrule reject3

 (declare (salience 50))

 (NegotiationObject {buyerClassification == "sc" ||

buyerClassification == "c"} {step > 5}

 (currentOffer ?o) (quantity ?q))

 (Product (minPrice ?minPrice))

 (test (<= ?o (* ?q (+ ?minPrice 20))))

 => (add (new Offer "reject3" ?*reject* "Price too low")))

4) The seller will reject the current offer o for a certain amount of q items,

received from a very cooperative or highly cooperative buyer, having the price lower

than q*(minPrice+40), when the negotiation step is greater than 5. The message

Price too low is sent from the seller to the buyer;
(defrule reject4

 (declare (salience 50))

 (NegotiationObject {buyerClassification == "vc" ||

buyerClassification == "hc"} {step > 5}

 (currentOffer ?o) (quantity ?q))

 (Product (minPrice ?minPrice))

 (test (<= ?o (* ?q (+ ?minPrice 40))))

 => (add (new Offer "reject4" ?*reject* "Price too low")))

For the PROPOSE communication primitive of the seller, there are the following

rules:

1) The price proposed by a seller, in the beginning, for a certain quantity q of

products, having the price between minPrice and maxPrice, to a non-cooperative or

unknown buyer, is equal to q*(maxPrice+20);
 (defrule firstPrice1

 (declare (salience 10))

 (NegotiationObject {step == 0} {buyerClassification == "nc" ||

buyerClassification == "u"} (quantity ?q))

 (Product (maxPrice ?maxPrice))

 => (add (new Offer "firstPrice1" (* (+ ?maxPrice 20) ?q)

?*propose*)))

 118

2) The price proposed by a seller, in the beginning, for a certain quantity q of

products, having the price between minPrice and maxPrice, to a slightly cooperative

or cooperative buyer, is equal to q*maxPrice;
(defrule firstPrice2

 (declare (salience 10))

 (NegotiationObject {step == 0} {buyerClassification == "sc" ||

buyerClassification == "c"} (quantity ?q))

 (Product (maxPrice ?maxPrice))

 => (add (new Offer "firstPrice2" (* ?maxPrice ?q) ?*propose*)))

3) The price proposed by a seller, in the beginning, for a certain quantity q of

products, having the price between minPrice and maxPrice, to a very cooperative or

highly cooperative buyer, is equal to q*(maxPrice-20);
(defrule firstPrice3

 (declare (salience 10))

 (NegotiationObject {step == 0} {buyerClassification == "vc" ||

buyerClassification == "hc"} (quantity ?q))

 (Product (maxPrice ?maxPrice))

 => (add (new Offer "firstPrice3" (* (- ?maxPrice 20) ?q) ?*propose*)))

The seller agent has three different strategies used during negotiation. It can

employ either the linear strategy, the conceder strategy or the boulware strategy.

There are different rules used for each strategy.

For the linear strategy of the seller, there are the following rules:

1) The seller will decrease its previous offer o with 2, to the non-cooperative or

unknown buyers, when the negotiation step is greater than 1;
 (defrule newPrice4

 (declare (salience 10))

 (NegotiationObject {step > 1} (previousOffer ?o) {buyerClassification

== "nc" || buyerClassification == "u"}) (Strategy {strategy == ?*linear*})

 => (add (new Offer "newPrice4" (- ?o 2) ?*propose*)))

2) The seller will decrease its previous offer o with 4, to the slightly cooperative

or cooperative buyers, when the negotiation step is greater than 1;
(defrule newPrice5

 (declare (salience 10))

 (NegotiationObject {step > 1} (previousOffer ?o) {buyerClassification

== "sc" || buyerClassification == "c"}) (Strategy {strategy == ?*linear*}

 => (add (new Offer "newPrice5" (- ?o 4) ?*propose*)))

3) The seller will decrease its previous offer o with 6, to the very cooperative or

highly cooperative buyers, when the negotiation step is greater than 1;
(defrule newPrice6

 (declare (salience 10))

 (NegotiationObject {step > 1} (previousOffer ?o) {buyerClassification

== "vc" || buyerClassification == "hc"}) (Strategy {strategy == ?*linear*})

 => (add (new Offer "newPrice6" (- ?o 6) ?*propose*)))

For the conceder strategy of the seller, there are the following rules:

1) The seller will decrease its previous offer o with 25, to the non-cooperative or

unknown buyers, when the negotiation step is greater than 1 and lower than 6;
 (defrule newPrice7

 119

 (declare (salience 10))

 (NegotiationObject {step > 1 && step < 6} (previousOffer ?o)

{buyerClassification == "nc" || buyerClassification == "u"})

 (Strategy {strategy == ?*conceder*})

 => (add (new Offer "newPrice7" (- ?o 25) ?*propose*)))

2) The seller will decrease its previous offer o with 35, to the slightly cooperative

or cooperative buyers, when the negotiation step is greater than 1 and lower than 6;
(defrule newPrice8

 (declare (salience 10))

 (NegotiationObject {step > 1 && step < 6} (previousOffer ?o)

{buyerClassification == "sc" || buyerClassification == "c"})

 (Strategy {strategy == ?*conceder*})

 =>(add (new Offer "newPrice7" (- ?o 35) ?*propose*)))

3) The seller will decrease its previous offer o with 45, to the very cooperative or

highly cooperative buyers, when the negotiation step is greater than 1 and lower than

6;
(defrule newPrice9

 (declare (salience 10))

 (NegotiationObject {step > 1 && step < 6} (previousOffer ?o)

{buyerClassification == "vc" || buyerClassification == "hc"})

 (Strategy {strategy == ?*conceder*})

=> (add (new Offer "newPrice7" (- ?o 45) ?*propose*)))

4) The seller will decrease its previous offer o with 5, to the non-cooperative or

unknown buyers, when the negotiation step is greater than 6;
(defrule newPrice10

 (declare (salience 10))

 (NegotiationObject {step >= 6} (previousOffer ?o)

{buyerClassification == "nc" || buyerClassification == "u"}) (Strategy

{strategy == ?*conceder*})

 => (add (new Offer "newPrice10" (- ?o 5) ?*propose*)))

5) The seller will decrease its previous offer o with 10, to the slightly cooperative

or cooperative buyers, when the negotiation step is greater than 6;
(defrule newPrice11

 (declare (salience 10))

 (NegotiationObject {step >= 6} (previousOffer ?o)

{buyerClassification == "sc" || buyerClassification == "c"}) (Strategy

{strategy == ?*conceder*})

 => (add (new Offer "newPrice11" (- ?o 10) ?*propose*)))

6) The seller will decrease its previous offer o with 15, to the very cooperative or

highly cooperative buyers, when the negotiation step is greater than 6;
(defrule newPrice12

 (declare (salience 10))

 (NegotiationObject {step >= 6} (previousOffer ?o)

{buyerClassification == "vc" || buyerClassification == "hc"}) (Strategy

{strategy == ?*conceder*})

 => (add (new Offer "newPrice12" (- ?o 15) ?*propose*)))

For the boulware strategy of the seller, there are the following rules:

 120

1) The seller will decrease its previous offer o with 0.1, when the negotiation

step is greater than 1 and the time elapsed in the negotiation is less than 4 seconds,

represented by the global variable boulwareTime1;
 (defrule newPrice13

 (declare (salience 10))

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed <

?*boulwareTime1*})

 (Strategy {strategy == ?*boulware*})

 => (add (new Offer "newPrice13" (- ?o 0.1) ?*propose*)))

2) The seller will decrease its previous offer o with 10, when the negotiation

step is greater than 1 and the time elapsed in the negotiation is greater than 4

seconds, represented by the global variable boulwareTime1;
(defrule newPrice14

 (declare (salience 10))

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed >=

?*boulwareTime1*})

 (Strategy {strategy == ?*boulware*})

 => (add (new Offer "newPrice14" (- ?o 10) ?*propose*)))

3) The seller will decrease its previous offer o with 20, when the negotiation

step is greater than 1 and the time elapsed in the negotiation is greater than 4.5

seconds, represented by the global variable boulwareTime2;
(defrule newPrice15

 (declare (salience 10))

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed >=

?*boulwareTime2*})

 (Strategy {strategy == ?*boulware*})

 => (add (new Offer "newPrice14" (- ?o 20) ?*propose*)))

8.2. One-to-One Automated Negotiation Scenario

The following graphics are obtained using the data collected from the statistics

file, generated after the multi-agent system runs the automated negotiation between

agents. When all the buyers finish their purchases, all the negotiation information is

recorded in the statistics file.

In the scenario, the buyer wants to rent 36 rooms with 12 different

characteristics, 3 rooms of each type. The seller has a total of 120 rooms, 10 rooms

for each type.

A snapshot of the Sniffer Agent from the Jade environment, representing the

exchange of messages in a one-to-one negotiation, is presented in Figure 8.1.

In Figure 8.2 is described a one-to-one negotiation, in which is plotted the gain

versus the number of negotiation rounds. The graphics obtained show that, when

using the same negotiation strategy, the buyer and seller gain are almost the same.

They can obtain different gains if they use distinct negotiation strategies.

 121

Figure 8.1. Messages Exchange Captured with the

Sniffer Agent for a One-to-One Negotiation

 Figure 8.2. Transactional Gain Dependence of Negotiation Rounds Number

for a One-to-One Negotiation

0

200

400

600

800

1000

1200

10 20 30 40 50

Negotiation Rounds

Gain

Seller

Buyer

 122

The gain obtained for each cooperation class, with respect to the number of

negotiations, for the seller and respectively the buyer, are represented in Figures 8.3

and 8.4.

Figure 8.3. Transactional Gain in each Cooperation Class for each Negotiation Index

for the Seller in a One-to-One Negotiation

Figure 8.4. Transactional Gain in each Cooperation Class for each Negotiation Index

for the Buyer in a One-to-One Negotiation

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12

Negotiation Index

Seller

Gain

Unknown

Slightly Cooperative
Cooperative

Very Cooperative

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12

Negotiation Index

Buyer

Gain

Unknown

Slightly Cooperative

Cooperative

Very Cooperative

Highly Cooperative

 123

From the Figures 8.3 and 8.4 it can be deduced that, during negotiation, the

cooperation classes of the agents are changed, as more negotiation rounds are

performed. In the first negotiations, both agents belong to the unknown cooperation

class. As they come to know more about each other, they change the classification of

the cooperation potential of the partner agent. In the last negotiation, the buyer

becomes highly cooperative, while the seller remains very cooperative.

The gain for the buyer and for the seller versus the supply/demand ratio is

represented in Figure 8.5.

Figure 8.5. Transactional Gain Dependence of Supply/Demand Ratio

for a One-to-One Negotiation

8.3. Two-to-One Automated Negotiation Scenario

In the next scenario, two buyers want to rent a total of 100 rooms. The first

buyer wants to rent 40 rooms with 10 different characteristics, 4 rooms of each type

and the second buyer 60 rooms with 10 different characteristics, 6 rooms of each

type. The seller has a total of 100 rooms, 10 rooms for each type.

A snapshot of the Sniffer Agent from the Jade environment, representing the

exchange of messages in a two-to-one negotiation, is presented in Figure 8.6.

0

200

400

600

800

1000

1200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Supply/Demand Ratio

Gain Seller

Buyer

 124

Figure 8.6. Messages Exchange Captured with the

Sniffer Agent for a Two-to-One Negotiation

In Figure 8.7 is described a two-to-one negotiation, in which is plotted the gain

versus the number of negotiation rounds.

Figure 8.7. Transactional Gain Dependence of Negotiation Rounds Number

for a Two-to-One Negotiation

0

200

400

600

800

1000

1200

1400

1600

10 20 30 40 50 60 70 80 90 100 110 120

Negotiation Rounds

Gain

Seller

Buyer 1

Buyer 2

 125

The classification of the cooperation classes with respect to the number of

negotiation for the seller and respectively the buyers are represented in Figures 8.8,

8.9, and 8.10.

Figure 8.8. Transactional Gain in each Cooperation Class for each Negotiation Index

for the Seller in a Two-to-One Negotiation

Figure 8.9. Transactional Gain in each Cooperation Class for each Negotiation Index

for the First Buyer in a Two-to-One Negotiation

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12

Negotiation Index

Gain
Unknown

Slightly Cooperative

Cooperative

Very Cooperative

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12

Negotiation Index

Gain Unknown

Slightly Cooperative

Cooperative

Very Cooperative

 126

Figure 8.10. Transactional Gain in each Cooperation Class for each Negotiation

Index for the Second Buyer in a Two-to-One Negotiation

The number of negotiation rounds for each cooperation class, in the case of a

two-to-one negotiation, for the seller and for the buyers, are represented in Figures

8.11, 8.12, and 8.13.

Figure 8.11. The Number of Negotiation Rounds for each Cooperation Class, in the

Case of a Two-to-One Negotiation, for the Seller

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10 11 12

Negotiation Index

Gain Unknown

Slightly Cooperative

Cooperative

Very Cooperative

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12

Negotiation Index

Rounds

Unknown

Slightly Cooperative

Cooperative

Very Cooperative

 127

Figure 8.12. The Number of Negotiation Rounds for each Cooperation Class, in the

Case of a Two-to-One Negotiation, for the First Buyer

Figure 8.13. The Number of Negotiation Rounds for each Cooperation Class, in the

Case of a Two-to-One Negotiation, for the Second Buyer

While the number of negotiation rounds is increasing, the classification in

cooperation classes of the partner agent is performed. When the negotiation ends,

the partner agents become very cooperative.

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10 11 12

Negotiation Index

Rounds
Unknown

Slightly Cooperative

Cooperative

Very Cooperative

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12

Negotiation Index

Rounds

Unknown

Slightly Cooperative

Cooperative

Very Cooperative

 128

8.4. Many-to-One Automated Negotiation Scenario

The next B2B travel agency scenario involves one seller and a different number

of buyers, from 1 to 10. Ten different negotiations are performed, the number of

buyers being successively increased by one. The seller has 200 hotel rooms to rent,

of 4 types. Each buyer wants to rent 20 rooms, 5 rooms of each different type. The

seller asks for the rooms’ prices between 70 and 100 monetary units. The Figure

8.14 displays the total gain of the seller with respect to the number of buyer agents

acting in the negotiation process. The seller gain is increasing linearly, when there

are up to 6 buyer agents. Then, its gain is increasing exponentially, when there are

more than 6 buyer agents in the virtual market.

Figure 8.14. The Seller Total Gain with Respect to the

Number of Buyer Agents Acting in the Negotiation

The number of negotiation rounds with respect to the number of buyer agents

acting in the negotiation is represented in the Figure 8.15.

Figure 8.15. The Number of Negotiation Rounds with Respect to the

Number of Buyer Agents Acting in the Negotiation

0

3000

6000

9000

12000

15000

18000

1 2 3 4 5 6 7 8 9 10

Buyer Agents Number

Seller

Total

Gain

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

Buyer Agents Number

 Rounds

 129

Chapter 9. Business Models Use Cases for Automated

Negotiation

After presenting the automated negotiation business model with a travel agency

in Chapter 8, the current chapter develops three other business models use cases,

each of them having some particularities, described in the beginning of each section.

9.1. Real Estate Agency Automated Negotiation Business Model

The following scenario develops an automated negotiation between real estate

agencies and the real estate developers. The houses to be sold have different

attributes, expressed in the XML configuration file, associated to this business

model. The negotiation is done based on price, but there are also other attributes in

the configuration file, such as the number of rooms, rooms’ dimensions, finishing

quality, location of the house and others, displayed in Table 9.1.

Table 9.1. Negotiation Requirements and Their Priorities

Buyer Agent Requirements Priority

Buy a House / an Apartment 10

City / Area of the City 10

No of floors / No of rooms 10

Land Surface / House Surface / Apartment Surface 10

No of bathrooms / kitchens / balcony 9

With / without furniture 7

Finishing quality 9

Close to supermarkets / shopping area 8

Close to parks 9

Close to public transportation 10

Close to kindergarten / school / high school / university 8

New building / old building / refurbished building 10

With / without parking area 7

As a difference to the rules associated to the travel agency negotiation

scenario, in the real estate agency business model, the REJECT rules based on

price are eliminated. The negotiation is ended either when the time expires, or

when one of the agents sends an ACCEPT message.

The rules for the real estate agency are divided into rules for the buyer and for

the seller agents. Further on, there are different rules associated to each

communication primitive of the agents, and also for each strategy of the agent. These

rules are described in details in Annex 1.

 130

9.1.1. Three-to-One Automated Negotiation Scenario

The following B2B scenario involves a real estate agency. There are three

buyers, wanting to buy houses from the real estate agent, each buyer having a

different negotiation strategy: 1-linear, 2-boulware, and 3-conceder. The

requirements of the agents are represented in Table 9.2.

Table 9.2. The Buyer Agents’ Requirements and the Seller Offer

Agent House Type Quantity Price

B1, B2, B3 2 Rooms 5 40000-60000

B1, B2, B3 3 Rooms 5 80000-100000

S1 2 Rooms 20 45000-70000

S1 3 Rooms 20 85000-110000

The results are presented in Figure 9.1. The buyers’ gain obtained after the

simulation certifies the theoretical behavior. The higher gain is obtained for the buyer

using the conceder strategy, the medium gain corresponds to the linear strategy and

the smaller gain for the boulware strategy.

Figure 9.1. The Three Buyers Gain in a Negotiation Process with Six Steps, each

using a Different Negotiation Strategy, in a B2B Scenario involving a Real Estate

Agency

The Figure 9.2 shows the buyers gain, divided for each cooperation class

(unknown, non cooperative, slightly cooperative), obtained after the negotiation is

performed. The data regarding the gain is read from the statistics file generated by

the program.

0

5000

10000

15000

20000

25000

1 2 3 4 5 6

Negotiation Index

Gain
Buyer 1 Linear

Buyer 2 Boulware

Buyer 3 Conceder

 131

Figure 9.2. The Three Buyers Gain for each Cooperation Class, where

U – Unknown, NC – Non-cooperative, and SC – Slightly cooperative

Figure 9.3 shows the seller gain, divided for each cooperation class (unknown,

non cooperative, slightly cooperative), obtained after the negotiation is performed.

Figure 9.4 represents the gain of the three types of buyers (1-linear, 2-

boulware, and 3-conceder) versus the gain of the seller.

Figure 9.5 displays each buyer weighted gain, for each step of the negotiation

(the negotiation steps are displayed in a clockwise direction).

0

30000

60000

90000

120000

150000

180000

210000

1 2 3 4 5 6

S U

S NC

S SC

Figure 9.3. The Seller Gain for Each Cooperation Class

in the Negotiation Process with Six Steps

0

5000

10000

15000

20000

25000

1 2 3 4 5 6

Negotiation Index

Gain B 1 U B 1 NC
B 1 SC B 2 U
B 2 NC B 2 SC
B 3 U B 3 NC
B 3 SC

 132

Figure 9.4. The Buyers’ Gains, using Different Types of Strategies, versus the Seller

Gain

 B1 linear B2 boulware B3 conceder

Figure 9.5. The Buyers Weighted Gain during the Negotiation Rounds

For the buyer using the linear strategy, the gain increases linearly with the

negotiation index. In the first negotiation, there is no gain for all the buyers. The

weighted gain in the third negotiation round is almost the same for all the three

buyers. In the fourth negotiation, the buyer using a boulware strategy gets a higher

weighted gain than the other two buyers. In the last negotiation, the buyer employing

the boulware strategy obtains a lower weighted gain than the other two buyers.

9.1.2. Two-to-Three Automated Negotiation Scenario

The following scenario involves two buyers and three sellers. The buyers use a

linear strategy, but the sellers are using different strategies: S1 has a linear strategy,

S2 a conceder strategy, and S3 a boulware strategy.

 Figure 9.6 shows a snapshot of the negotiation system, in which the agents use

different negotiation strategies.

Figure 9.7 displays the buyers gain versus the negotiation index.

Figure 9.8 represents the sellers gain versus the negotiation index. Each seller

uses a different strategy during negotiation.

0

5000

10000

15000

20000

25000

0 50000 100000 150000 200000 250000 300000 350000 400000

Seller Gain

Buyer

Gain
Buyer 1 Linear

Buyer 2 Boulware

Buyer 3 Conceder

 133

Figure 9.6. Screen Capture Showing the System in Action

Figure 9.7. The Buyers’ Gain with respect to the Negotiation Index

Figure 9.8. The Sellers’ Gain with respect to the Negotiation Index

0

30000

60000

90000

120000

150000

1 2 3 4 5 6

Negotiation Index

Gain

B 1 B 2

0

70000

140000

210000

280000

1 2 3 4 5 6

Negotiation Index

Gain S 1 Linear
S 2 Conceder
S 3 Boulware

 134

The sellers’ gain obtained after the simulation certifies the theoretical behavior.

The higher gain is obtained for the seller using the boulware strategy, the medium

gain corresponds to the linear strategy and the smaller gain is obtained for the

conceder strategy.

9.2. Car Dealer Automated Negotiation Business Model

This scenario involves car dealers negotiating with car factories, in order to buy

sets of cars. Each type of car has different characteristics, expressed in the XML

configuration file associated to each agent participating in the negotiation.

 As a difference to the previous business models, there is added a seller

discount for the first price, depending on the required quantity of cars (as the

number of cars to be bought is higher, the discount increases). Table 9.4 displays the

main characteristics of the car and their priorities for the dealers.

The rules for the car dealer business model are divided into rules for the buyer

and for the seller agents. Further on, there are different rules associated to each

communication primitive of the agents, and also for each strategy of the agent. These

rules are described in details in Annex 2.

Table 9.3. Negotiation Characteristics and Their Priorities

Buyer Agent Characteristics Priority

Producer 10

Price 8

Maximum Speed 5

Time to Maximum Speed 3

Number of Seats 9

Number of Airbags 7

Trunk Size 6

Car Type 9

Car Fuel 8

Start Stop System 3

Audio System 8

Video System 2

9.2.1. One-to-Five Automated Negotiation Scenario

The next scenario involves one buyer and five sellers. The buyer wants 10 cars

with 5 different characteristics. Each seller has a certain type of car. The car prices

increase from S1 to S5, because the car quality increases from S1 to S5. Figure 9.9

displays a screen capture of the system in action.

 135

Figure 9.9. Snapshot of the Running System

 Figure 9.10 displays the sellers’ weighted gain obtained after negotiation (the

sellers are displayed in a clockwise direction). The sellers gain increases depending

on the car quality. As the price of the car increases and the car is a top one, the

seller gain has higher values.

Figure 9.10. Sellers Weighted Gain

9.2.2. Three-to-Three Automated Negotiation Scenario

The following B2B scenario involves 3 car factory producers and 3 car dealers.

Each dealer wants to buy 2 car types, 15 cars of each type. The sellers are using

different strategies during negotiation: the first one (S1) uses a linear strategy (L), the

second (S2) employs a conceder strategy (C), and the third one (S3) a boulware

strategy (B).

 136

To compare the behavior of the sellers during negotiation, the minimal and

maximal prices are the same for all the sellers, for each type of car.

Figure 9.11 represents a screen capture showing the system in action.

Figure 9.11. Screen Capture Showing the Multi-Agent System in Action

Figure 9.12 displays the sellers’ gain with respect to the negotiation index, using

different negotiation strategies: S1 uses linear strategy, S2 has conceder strategy,

and S3 employs boulware strategy.

Figure 9.12. The Three Sellers Gain in a Negotiation Process with Six Steps, each

using a Different Negotiation Strategy, in a B2B Scenario involving a Car Dealer

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6

Negotiation Index

Gain
S 1 Linear

S 2 Conceder

S 3 Boulware

 137

After the negotiation, it can be concluded that the higher gain is obtained by the

seller using the boulware strategy, then by the one using the linear strategy, and the

smaller gain is obtained by the seller using the conceder strategy.

Figure 9.13 represents each seller weighted gain, for each negotiation index

(the negotiation steps are displayed in a clockwise direction).

 S1 linear S2 conceder S3 boulware

Figure 9.13. Weighted Gain for the Three Types of Sellers, during the

Negotiation Rounds

For the seller using the linear strategy, the gain increases linearly with the

negotiation index. The seller using the conceder strategy has no gain in the first two

negotiations. The seller using the boulware strategy has a gain from the first

negotiation round, while the other two sellers have no gain in the first round. In the

third negotiation, the seller using a boulware strategy gets a higher weighted gain

than the other two sellers. The weighted gain in the fourth negotiation is almost the

same for all the three sellers. In the last negotiation, the seller employing the

conceder strategy obtains the highest weighted gain from all the sellers.

9.3. Emergency Hospital Automated Negotiation Business Model

This scenario refers to a B2B negotiation, in a many-to-many setting, in which

agents representing hospitals negotiate with different pharmaceutical companies, in

order to buy different medicines and other medical equipment necessary in the

hospital. The framework is inspired from the research reported in [Serbanati L.D. and

Radu S., 2013].

The scenario involves buyer agents representing emergency hospitals, which

want to buy rapidly medicines and the most important for them is the time in which

the negotiation is concluded, while the price is not so important during negotiation.

The negotiation time is decreased with respect to the previous business

models and now is set to 3 seconds. The ACCEPT rules of the buyer are

modified with respect to the previous business models, such that the buyer

accepts different prices, depending on the negotiation time elapsed. As the

negotiation deadline approaches, the buyer agent accepts a higher price.

The rules for the emergency hospital business model are divided into rules for

the buyer and for the seller agents. Further on, there are different rules associated to

 138

each communication primitive of the agents, and also for each strategy of the agent.

These rules are described in details in Annex 3.

9.3.1. Two-to-Two Automated Negotiation Scenario

In two laboratories of a hospital it is necessary to buy medical devices. The

negotiation scenario is performed with two medical equipment sellers. Figure 9.14

shows the buyers and sellers gain versus the negotiation index.

0

2000

4000

6000

8000
Gain

1 2 3 4 5 6 7 8 9 10

Buyer 1

Buyer 2

Seller 1

Seller 2

Negotiation Index

Buyer 1
Buyer 2
Seller 1
Seller 2

Figure 9.14. The Buyers and Sellers Gain versus the Negotiation Index

Figures 9.15 and 9.16 display the buyers gain versus the negotiation index, for

each cooperation class: U - unknown, NC - non cooperative, SC - slightly

cooperative, C - cooperative, VC - very cooperative, and HC - highly cooperative.

Figures 9.17 and 9.18 display the sellers gain versus the negotiation index, for

each cooperation class: U - unknown, NC - non cooperative, SC - slightly

cooperative, C - cooperative, VC - very cooperative, and HC - highly cooperative.

 139

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5 6 7 8 9 10

Negotiation Index

Gain B1 U
B1 NC
B1 SC
B1 C
B1 VC
B1 HC

Figure 9.15. The First Buyer Gain for each Cooperation Class versus the

Negotiation Index

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5 6 7 8 9 10

Negotiation Index

Gain B2 U
B2 NC
B2 SC
B2 C
B2 VC
B2 HC

Figure 9.16. The Second Buyer Gain for each Cooperation Class versus the

Negotiation Index

 140

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5 6 7 8 9 10

Negotiation Index

Gain S1 U

S1 NC

S1 SC

S1 C

S1 VC

S1 HC

Figure 9.17. The First Seller Gain for each Cooperation Class versus the

Negotiation Index

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5 6 7 8 9 10

Negotiation Index

Gain S2 U
S2 NC
S2 SC
S2 C
S2 VC
S2 HC

Figure 9.18. The Second Seller Gain for each Cooperation Class versus the

Negotiation Index

 141

When negotiation begins, the agents don't know each other and they are

classifying the partner agent in the unknown class.While more negotiation rounds are

performed, the classification of the partner agent is changed. The first buyer

becomes cooperative in the fifth negotiation round, while the second buyer in the

sixth round, having a smaller gain corresponding to the cooperative class. The

second seller becomes cooperative in the fourth negotiation round, while the first

seller becomes cooperative in the fifth round. The first seller, classified as very

cooperative, has the highest gain, with respect to the gain obtained in any other

class. The second seller, classified as cooperative, has the highest gain, with respect

to the gain obtained in any other class.

9.3.2. Four-to-Three Automated Negotiation Scenario

The following scenario implies a B2B automated negotiation with a

pharmaceutical supplier, for two different medicines. During negotiation, the four

buyers and the three sellers are changing dynamically their strategies.

In Figures 9.19 and 9.20 are represented the buyers and respectively the

sellers gain versus the negotiation index.

From the Figures 9.19 and 9.20, it can be deduced that the gain increases a lot,

when the agent is changing its negotiation strategy. When the agent is using the

same strategy for many negotiation rounds, its gain remains almost the same or

increases with small values.

0

2000

4000

6000

8000

10000

1 2 3 4 5 6 7 8 9 10

Negotiation Index

Gain
Buyer 1

Buyer 2

Buyer 3

Buyer 4

Figure 9.19. The Dependence of the Buyers Gain on the Negotiation Index

 142

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10

Negotiation Index

Gain
Seller 1

Seller 2

Seller 3

Figure 9.20. The Dependence of the Sellers Gain on the Negotiation Index

 143

Chapter 10. Conclusions and Future Work

10.1. Conclusions

The current research on automated negotiation approaches some challenging

problems concerning multi-attribute negotiation, bargaining using negotiation profiles,

and negotiation involving cooperation classes for the agents. If there is incomplete

information regarding the partner negotiating agent, it is often complex to compute

agents’ strategies. It is useful to design learning mechanisms for choosing certain

strategies for agents to use.

Regarding multi-agents, it is necessary to understand the negotiation power,

which is related to the relative abilities of agents in a situation to have influence over

each other. In a bilateral negotiation, each agent’s negotiation power is affected by its

minimal and maximal prices, number of attributes bargained, negotiation deadline,

etc. When many buyers and sellers are involved in negotiation, it is important to

investigate how the market competition affects agents’ negotiation strategies. With a

great number of buyers and sellers, a single agent is unlikely to have much influence

on the market equilibrium.

The automated negotiation has economical outcomes, because it has lower

transaction costs, enabling higher volumes and new types of transactions in the

electronic business domain. Through its automation, the negotiation mechanism

becomes available to autonomous systems, improving the performance of these

systems, when negotiation is used for agent coordination and cooperation, instead of

existing interaction mechanisms.

In this thesis, a set of models for automated negotiation agents are developed,

which are endowed with adaptive negotiation strategies. These models are

implemented and the agent behavior is tested on different settings of B2B and B2C.

The first part of the thesis, Chapter 2 to Chapter 4, is dedicated to a review of

the most important concepts, methods and techniques, which are relevant to the

research approach and topics. In the same time, the challenges that lay ahead of the

current research on agent negotiation are identified.

The second part of the thesis contains the personal contribution in research. In

the model presented in Chapter 5, the agents’ behavior is motivated by the gain they

could get while satisfying their objectives and by the necessity to cooperate with

other agents for obtaining these objectives. During cooperation and negotiation, the

agent’s beliefs on the other agents are updated, as the agent comes to know more

about the others.

Because the agents' preferences are based on their needs, changes of their

necessities influence the preferences during negotiation. The agents can modify their

preferences over negotiation outcomes, when new information is available. The

 144

communication primitives and the framework can express complex negotiation

dialogues, in which agents change their preferences in time.

The agents use the Iterated Contract Net protocol, which has the advantage

that it can simulate a real-world scenario, with many buyers and sellers having

parallel negotiations. Because the negotiation complexity is an important issue at

run-time, which can slow down the negotiation time, the agents’ preferences are

processed in the XML configuration file, before running the negotiations. The

automated negotiation mechanism facilitates the self-interested agents to make

decisions, which give them the optimal outcome.

An automated negotiation environment, which combines the agents’ beliefs

about the other agents in the system, with the possibility to represent and modify

the negotiation strategy, is developed. The strategy is represented in the form of

rules, with their attached preference coefficients. The negotiation strategy is

improved in time using the Q-learning algorithm, applied upon the preference

coefficients of the rules.

The tests performed show that the change of the values for the preference

coefficients gives better results when using the reinforcement learning algorithm,

than in the case when a predefined formula is used.

The rules expressed in Jess form a conflict set. There is a constraint solver,

based on the preference coefficients of the rules, which solves the possible conflicts,

and also has an important role in multi-attribute negotiations.

The agents’ behavior can change during negotiation, according to previous

interactions with other agents in the system. Changing behavior may refer to either

the use of different negotiation strategies or to concessions made for other agents,

with which they have successfully negotiated in the past. To this aim, an agent

develops a set of profiles during negotiation: the preference profile, the partner

cooperation profile, and the group-of-partners’ negotiation profile. The first two

profiles characterize individuals, while in a group negotiation profile, several agent

profiles are clustered, according to commonly discovered features. Different

approaches to the development of these profiles are presented in Chapter 5.

A set of negotiation strategies used by the agents is implemented in Chapter 6.

They employ linear and non-linear negotiation strategies. The non-linear strategies

can be divided into boulware strategy and conceder strategy. The experiments

demonstrate different behavior and gain for the agents employing distinct strategies.

The strategy used by agents is dependent on the number of buyers and sellers in the

virtual market, and also on the business model, in which agents are acting.

The three possible negotiation strategies: linear, conceder, and boulware, can

be dynamically changed, during run-time, for each negotiating agent, being either

buyer or seller, using the graphical interface of each agent. The combination of

strategies for buyer and seller agents gives different gains for the agents. For

instance, when the buyer is using the conceder strategy and the seller employs the

boulware strategy, then the buyer gain is increased.

 145

The experimental results proved the expected results regarding the buyer

agents. The higher gain is obtained for the buyer using the conceder strategy, the

medium gain corresponds to the linear strategy and the smaller gain is obtained for

the boulware strategy. Also, for the seller agents, the simulations enhanced the

theoretical results. The higher gain is obtained for the seller using the boulware

strategy, the medium gain corresponds to the linear strategy and the smaller gain is

obtained for the conceder strategy.

Also, in Chapter 6 are described negotiation behaviors using weighted

combinations of tactics for each one of the negotiation issues. The tests performed

proved that it is better to use a mixture of resource-dependent tactics and behavior-

dependent tactics.

A multi-agent system, based on the BDI model, which has rules for describing

the agents’ negotiation strategies, is described in Chapter 7. The rules that guide

negotiation are based on price, and on the cooperation profile the agent develops

during previous interactions with other agents in the system. The model allows the

definition of several types of agents, by varying their behavior, according to the

desire to obtain the maximum gain.

While negotiating with other agents, an agent develops cooperation profiles,

which are gradually refined, and uses them to control its behavior. Better results are

obtained after negotiation, if the agent’s beliefs on other agents are updated

periodically, as the agent knows more about the others. The introduction and

gradually refinement of the cooperation profile of other agents represents a form of

agent learning.

The use of the cooperation profiles is a challenging idea, and the cooperation

classes, in which the agents are classified (unknown, non-cooperative, slightly

cooperative, cooperative, very cooperative, highly cooperative), can be dynamically

changed during the negotiation, with respect to the results obtained after each

negotiation step.

Chapters 8 and 9 present the implementation of the multi-agent system for four

business cases and reports different experimental results for each of this case. The

system is tested for different business models, each model having its own

particularities.

A travel agency business model and the associated negotiation rules used by

the agents are described in Chapter 8. The gain obtained by agents during

negotiation is computed after each negotiation step and is represented graphically for

each negotiation. Also, the gain corresponding to each cooperation class of the

agents is displayed. Different negotiations are performed, in which the number of

buyers and sellers is gradually increased.

Chapter 9 describes some use cases involving different business models: a real

estate agency scenario, a car dealer scenario, and an emergency hospital scenario.

Different negotiation strategies are employed by agents: linear, conceder, and

 146

boulware strategies. Different tests are performed and the results are graphically

displayed.

Annexes 1, 2, and 3 describe in details the rules associated to the three

business models presented in Chapter 9. Annex 1 presents the rules associated to

the automated negotiation business model with a real estate agency. Annex 2

describes the rules from the business model involving a car dealer, while Annex 3

emphasizes the rules from an emergency hospital business model.

10.2. Contributions

The main original contributions of this thesis are the following:

• A model of self-interested agents acting in an open environment, which

capture the most relevant elements of agents’ behavior related to

negotiation with other agents

• A framework for automated negotiation based on negotiation profiles and

rules that encode the agents’ negotiation strategy

• A set of negotiation profiles: the preference profile, the partner

cooperation profile and the group-of-partners’ negotiation profile, which

characterize individuals and group of agents, clustered according to

commonly discovered features

• Representation of the negotiation strategy in the form of production rules

with associated preference coefficients to help select the most relevant

negotiation rule

• Definition of the notion of cooperation classes for an agent and the

classification of its cooperation potential, based on the C4.5 algorithm

• Two ways of updating the rule preference coefficients: (i) a heuristic

formula obtained through experimental trials, and (ii) by means of a Q-

learning algorithm, in which the learning performance is improved by

state clusterization using k-means clustering algorithm

• A model of negotiating agents endowed with a set of negotiation

strategies, from which the agent can learn to select the best one

• An associated multi-agent system in which, following the above model,

an agent has the possibility to choose between three negotiation

strategies: linear, conceder, and boulware, and also to evaluate the

proposals using tactics

• Implementation of three possible negotiation strategies used by agents,

in the form of a knowledge base with rules, written in Jess

 147

• Evaluation of the proposed model in a settings consisting of agents that

buy components from other agents, assemble these components and

sell the assembled results to customers

• A multi-agent system, in which BDI agents are interacting towards

reaching agreements for different negotiation objects, based on the utility

of the negotiation objects

• Evaluation of the different possible roles the facilitator in the system may

have, correlated with the cooperation profile of the agents

• Development of an open, scalable and adaptive multi-agent system for

automated negotiation, implemented using Java, Jade, Jess, and XML,

which supports different negotiation strategies and one-to-one, one-to-

many, many-to-one, and many-to-many negotiations between self-

interested agents

• Evaluation in the system, by different set of experiments, of the

possibility to improve in time the negotiation strategy of the agents, as

more negotiations are taking place, using machine learning techniques

• Evaluation of the proposed models in the system for four business cases:

o automated negotiation in a travel agency scenario

o automated negotiation between real estate agencies and the real

estate developers

o automated negotiation between car dealers negotiating with car

factories

o buyer agents representing emergency hospitals negotiating with

medicines seller agents in a setting in which time is the most

critical factor

• A state of the art account on negotiation in multi-agent systems,

knowledge representation and learning, and also adaptive negotiation

strategies

10.3. Publications

The following list contains the research papers developed during the PhD

studies:

Book and Journal Papers

Serban Radu, Eugenia Kalisz, Adina Florea, "A Model of Automated

Negotiation based on Agents Profiles", Scalable Computing: Practice and Experience

Journal, 14, 1, 47-55, 2013 (BDI Journal)

 148

Serban Radu, Eugenia Kalisz, Adina Florea, "Automatic Negotiation with

Profiles and Clustering of Agents", International Journal of Intelligence Science, 3, 2,

69-76, 2013 (BDI Journal)

Serban Radu, “An Automated Negotiation System with Autonomous Agents for

a Travel Agency Business Model”, Scientific Bulletin of the University Politehnica of

Bucharest, Series C: Electrical Engineering and Computer Science, submitted, 2013

(BDI Journal)

Catalin Tudose, Carmen Odubasteanu, Serban Radu, "Java Reflection

Performance Analysis Using Different Java Development", Advances in Intelligent

Control Systems and Computer Science, 187, 439-452, 2013 (ISBN 978-3-642-

32547-2)

Conference Proceedings Papers

Serban Radu, Valentin Lungu, “An Adaptive Multi-Agent Model for Automated

Negotiation”, Proceedings of the 19-th International Conference on Control Systems

and Computer Science, Bucharest, Romania, 29-31 May 2013, vol. 1, 167-174, 2013

(IEEE CPS)

Mihai Trascau, Teodor Tartareanu, Marius Benea, Serban Radu, “Emergence

of Norms in Multi-Agent Societies; An Ultimatum Game Case Study”, Proceedings of

the 5-th International Conference on Computational Collective Intelligence,

Technologies and Applications, Craiova, Romania, 11-13 September 2013, To be

published by Springer, (ISI Proceedings)

Luca Dan Serbanati, Serban Radu, "Paradigm Shifts in Health Informatics",

Proceedings of 6-th International Conference on Health Informatics, Barcelona,

Spain, 11-14 February 2013, 256-262, 2013 (ISI Proceedings)

Valentin Lungu, Andra Baltoiu, Serban Radu, “Using Emotion as Motivation in

the Newtonian Emotion System”, Proceedings of the 7-th International Symposium

on Intelligent Distributed Computing, Prague, Czech Republic, 4-6 September 2013,

To be published by Springer, (ISI Proceedings)

Serban Radu, Eugenia Kalisz, Adina Florea, "Agents Negotiation Profiles for

Automatic Transactions in Open Environments", The 14-th International Symposium

on Symbolic and Numerical Algorithms for Scientific Computing, Timisoara, Romania,

26-29 September 2012

Adina Florea, Serban Radu, “Enhancing Pen-based Experiences with the Use

of Concept Maps”, Proceedings of the 1-st International Workshop on Pen-Based

Learning Technologies, Catania, Italy, 24-25 May 2007, IEEE Computer Society

Conference Publishing Service CPS, 17-22, 2007 (ISI Proceedings)

 149

Papers published in Proceedings of Summer Schools

Serban Radu, ”An Automated Negotiation Model based on Different Strategies

in an Adaptive Multi-Agent System”, Proceedings of the 9-th International Summer

School on Advanced Computer Architecture and Compilation for High-Performance

and Embedded Systems, Fiuggi, Italy, 14-20 July 2013

Serban Radu, Adina Florea, "An Adaptive Multi-Agent System for e-

Commerce", Proceedings of the 8-th International Summer School on Advanced

Computer Architecture and Compilation for High-Performance and Embedded

Systems, Fiuggi, Italy, 8-14 July 2012, 297-300, 2012

10.4. Future Work

A future research direction is to investigate an alternate approach to update the

preference coefficients. This may be done using genetic algorithms. Moreover,

genetic algorithms that use rule-specific genetic operators can be used to evolve new

strategy rules, based on the existing ones.

Future research will include the design of new business models for creating

virtual enterprises. A virtual enterprise refers to a temporary group of autonomous

agents, which is formed to fulfill a certain objective or to give a special service. This

will involve a series of negotiations among virtual enterprise agents.

Heuristic negotiation strategies used in this thesis are based on the exchange of

proposals. The feedback that can be received from the opponent is a

counterproposal. The argumentation-based negotiation extends the negotiation

protocols with the possibility to exchange arguments. This information gives explicitly

the opinion of the agent making the argument. Future work will investigate the

arguments an agent should use, in order to improve the negotiation outcomes.

A future research direction is to discover new applications of automated

negotiation. Information incompleteness and the existence of market competition

make it difficult to compute agents’ equilibrium strategies. An agent needs to learn

from its negotiation history. Market dynamics may require an agent to reason about

future trading opportunities. In addition, each agent needs to reason about other

agents’ strategies.

In addition to design negotiation strategies that maximize an agent’s utility,

creating negotiation mechanisms that maximize some global performance measures,

like social welfare, is also a future research direction. One line of research refers at

investigating some simplified bargaining games. The other line of research aims at

considering more complex environments and evaluating different mechanisms

through experimentation.

Another interesting future research direction is bargaining in trading networks.

Different from trading in markets, a buyer and a seller can negotiate for an

 150

agreement if and only if they have a relationship, to engage in exchange. This setting

is practical, because individual buyers and sellers could trade through intermediaries

and not all buyers and sellers could interact with the same intermediaries.

Another related future research direction is building systems to support human

negotiation, which is difficult due to a number of reasons. First, it is necessary to

consider much larger negotiation space and strategy space. For instance, human

beings often use body language while doing negotiation. Second, it is necessary to

consider many other factors, such as emotion, trust, power, and culture.

Also, in the future it is expected to identify possible partnerships with

researchers from the academic and business environments, in order to exploit the

results obtained by the multi-agent system platform for automated negotiation.

 151

Bibliography

1. An B., Nicola G., Lesser V., Extending Alternating-Offers Bargaining in One-to-Many and

Many-to-Many Settings, Proceedings of the 9-th IEEE/WIC/ACM International Conference on

Intelligent Agent Technology (IAT), 423-453, 2009

2. An B., Lesser V., Sim K.M., Strategic Agents for Multi-Resource Negotiation, Auton Agent

Multi-Agent Systems, Springer, DOI 10.1007/s10458-010-9137-2, 2010

3. Arthur D., Vassilvitskii S., K-Means++: The Advantages of Careful Seeding, Proceedings of

the 8-th Annual ACM-SIAM Symposium on Discrete Algorithms SODA, 1027-1035, 2007

4. Badica C., Badita A., Ganzha M., Iordache A., Paprzycki M., Rule-Based Framework for

Automated Negotiation: Initial Implementation, Proceedings of the RuleML, 193-198, 2005

5. Badica C., Badita A., Ganzha M., Implementing Rule-based Mechanisms for Agent-based

Price Negotiations, Proceedings of the 2006 ACM Symposium on Applied Computing, 96-100,

2006 a

6. Badica C., Ganzha M., Paprzycki M., Rule-based Automated Price Negotiation: an Overview

and an Experiment, Proceedings of International Conference on Artificial Intelligence and Soft

Computing, 1050-1059, 2006 b

7. Badica C., Ganzda M., Paprzycki M., Implementing Rule-based Automated Price Negotiation

in an Agent System, Journal of Universal Computer Science, 13, 2, 244-266, 2007

8. Bartolini C., Preist C., Jennings N.R., A Generic Software Framework for Automated

Negotiation, Proceedings of the First International Joint Conference on Autonomous Agents

and Multi-Agent Systems AAMAS, 213-235, 2005

9. Beam C., Segev A., Automated Negotiations: A Survey of the State of the Art,

Wirtschaftsinformatik 39, 3, 263-267, 1997

10. Bellifemine F., Caire G., Greenwood D., Developing Multi-Agent Systems with JADE, John

Wiley and Sons Ltd., 2007

11. Benameur H., Chaib-draa B., Kropf P., Multi-item Auctions for Automatic Negotiation, Journal

of Information and Software Technologies, Elsevier, 44/5, 291-301, 2002

12. Bratman M.E., Intention, Plans, and Practical Reason, CSLI Publications, 1999

13. Brzostowski J., Kowalczyk R., Adaptive Negotiation with On-line Prediction of Opponent

Behaviour in Agent-based Negotiations, Proceedings of the IEEE/WIC/ACM International

Conference on Intelligent Agent Technology IAT’06, 2006

14. Bull L., Learning Classifier Systems: A Brief Introduction, Studies in Fuzziness and Soft

Computing, 150, 1-12, 2004

15. Butz M.V., Learning Classifier Systems, GECCO 2010, Proceedings of the 12-th Annual

Conference Companion on Genetic and Evolutionary Computation, 2331-2352, 2010

16. Carabelea C., Adaptive Agents in Argumentation-Based Negotiation, Springer Verlag, LNAI

series, 2002

17. Chavez A., Maes P., An Agent Marketplace for Buying and Selling Goods, Proceedings of the

First International Conference on the Practical Application of Intelligent Agents and Multi-

Agent Technology, 1996

18. Chen Y., Peng Y., Finin T., Labrou Y., Cost S., A Negotiation-based Multi-agent System for

Supply Chain Management, Proceedings of Agents 99 Workshop on Agent Based Decision-

Support for Managing the Internet-Enabled Supply-Chain, 1999

19. Choi H.R., Kim H.S., Hong S.G., Park Y.J., Park Y.S., Kang M.H., Implementation of

Framework for Developing Multi-Agent based Automated Negotiation Systems, Proceedings

of the 7-th International Conference on Electronic Commerce, ICEC’05, 306-315, 2005

20. Coehoorn R., Jennings N., Learning an Opponent’s Preferences to Make Effective Multi-Issue

Negotiation Trade-Offs, Proceedings of the 6-th International Conference on Electronic

Commerce, 59-68, 2004

 152

21. Crawford E., Veloso M., Learning to Select Negotiation Strategies in Multi-Agent Meeting

Scheduling, Working notes of the Multiagent Learning Workshop, Proceedings of the AAAI,

584-595, 2005

22. Dong H., Hussain F.K., Chang E., State of the Art in Negotiation Ontologies for Multi-agent

Systems, International Journal of Web Services Practices, 3, 3-4, 157-163, 2008

23. Faratin P., Sierra C., Jennings N.R., Negotiation Decision Functions for Autonomous Agents,

International Journal of Robotics and Autonomous Systems, 24, 3-4, 159-182, 1998

24. Fatima S.S., Wooldridge M., Jennings N.R., Multi-issue Negotiation with Deadlines, Journal of

Artificial Intelligence Research 27, 381-417, 2006

25. Fatima S.S., Wooldridge M., Jennings N.R., Approximate and Online Multi-Issue Negotiation,

Proceedings of the 6-th International Joint Conference on Autonomous Agents and Multi-

Agent Systems, AAMAS’07, 951-958, 2007

26. Fatima S.S., Wooldridge M., Jennings N.R., On Optimal Agendas for Multi-Issue Negotiation,

Proceedings of the 12-th International Workshop on Agent-Mediated Electronic Commerce,

AMEC 2010, 155-168, 2010

27. Filzmoser M., Simulation of Automated Negotiation, Springer-Verlag Vienna, 2010

28. Florea A.M., Using Utility Values in Argument-based Negotiation, Proceedings of IC-AI'02,

International Conference on Artificial Intelligence, CSREA Press, 1021-1026, 2002

29. Florea A.M., Kalisz E., Adaptive Negotiation Based on Rewards and Regret in a Multi-agent

Environment, Proceedings of the 9-th International Symposium on Symbolic and Numeric

Algorithms for Scientific Computing, IEEE Computer Society Press, 254-259, 2007

30. Florea A.M., Radu S., Enhancing Pen-based Experiences with the Use of Concept Maps,

Proceedings of 1-st International Workshop on Pen-Based Learning Technologies, IEEE

Computer Society Conference Publishing Service CPS, 17-22, 2007

31. Florea A.M., Radu S., Mogos A., Prolog Programming Techniques for Artificial Intelligence,

Printech Publishing House, 2007

32. Florea A.M., Kalisz E., A Negotiation Learning Model for Open Multi-Agent Environments,

International Journal of Computing Anticipatory Systems IJCAS 20, CHAOS, 20, 121-130,

2008

33. Florea A.M., Mocanu I., Mogos A., Urzica A., Radu S., SCIPA Research Report, 23-38, 2008

34. Florea A.M., Multi-Agent Systems, Lecture Notes, 2012

35. Friedman-Hill E., Jess in Action: Rule-Based Systems in Java, Manning Publications Co.,

2003

36. Georgeff M., Pell B., Pollack M., Tambe M., Wooldridge M., The Belief-Desire-Intention Model

of Agency, Intelligent Agents V: Agents Theories, Architectures and Languages, Lecture

Notes in Computer Science, 1555, 1-10, 1999

37. Goradia H.J, Vidal J.M., An Equal Excess Negotiation Algorithm for Coalition Formation,

Proceedings of the 6-th International Joint Conference on Autonomous Agents and

Multiagents Systems, 1059-1061, 2007

38. Groves W., Collins J., Gini M., Visualization and Analysis Methods for Comparing Agent

Behavior in TAC-SCM, Proceedings of the 8-th International Conference on Autonomous

Agents and Multiagent Systems, 2, 1367-1368, 2009

39. Guttman R.H., Moukes A.G., Maes P., Agent-Mediated Electronic Commerce: A Survey, The

Knowledge Engineering Review 13, 2, 147-159, 1998

40. Guttman R.H., Maes P., Cooperative vs. Competitive Multi-Agent Negotiations in Retail

Electronic Commerce, Proceedings of the 2-nd International Workshop on Cooperative

Information Agents, CIA’98, 1998

41. He M., Jennings N.R., Leung H.-F., On Agent-Mediated Electronic Commerce, IEEE

Transactions on Knowledge and Data Engineering 15, 4, 985-1003, 2003

 153

42. Hindriks K., Jonker C.M., Tykhonov D., The Benefits of Opponent Models in Negotiation,

Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence

and Intelligent Agent Technology, 2, 439-444, 2009

43. Horrocks I., Patel-Schneider P.F., van Harmelen F., From SHIQ and RDF to OWL: the Making

of a Web Ontology Language, Journal of Web Semantics, 1, 1, 7-26, 2003

44. Huq G., Automated Negotiation in Multi-Agent based Electronic Business, VDM Verlag, 2010

45. Ito T., Hattori H., Klein M., Multi-issue Negotiation Protocol for Agents: Exploring Nonlinear

Utility Spaces, Proceedings of the 20-th International Joint Conference on Artificial

Intelligence, IJCAI 2007, 1347-1352, 2007

46. Jennings N.R., Norman T.J., Faratin P., O’Brien P., Odgers B., Autonomous Agents for

Business Process Management, Applied Artificial Intelligence, 14, 2, 145-189, 2000

47. Jennings N.R., Faratin P., Lomuscio A.R., Parsons S., Sierra C., Wooldridge M., Automated

Negotiation: Prospects, Methods and Challenges, International Journal of Group Decision and

Negotiation, 10, 199-215, 2001

48. Jonker C., Robu V., Treur J., An Agent Architecture for Multi-attribute Negotiation using

Incomplete Preference Information, Autonomous Agents and Multi-Agent Systems, 15, 221-

252, 2007

49. Kaelbling L.P., Littman M.L., Moore A.W., Reinforcement Learning: A Survey, Journal of

Artificial Intelligence Research, 4, 237-285, 1996

50. Kakas A., Moraitis P., Adaptive Agent Negotiation via Argumentation, Proceeding of the

AAMAS’06 Fifth International Joint Conference on Autonomous Agents and Multiagent

Systems, 384-391, 2006

51. Kholief M., Nada N., Khedr W., Ontology-Oriented Inference-Based Learning Content

Management System, International Journal of Web and Semantic Technology, 3, 3, 131-142,

2012

52. Kowalczyk R., Bui V., On Constraint-based Reasoning in e-Negotiation Agents, Agent

Mediated Electronic Commerce III, LNAI, Dijmem F., Cortés U. eds., Springer-Verlag, 31-46,

2000

53. Kraus S., Sycara K., Evenchik A., Reaching Agreements through Argumentation: a Logical

Model and Implementation, Artificial Intelligence, Elsevier Science, 104, 1-69, 1998

54. Kraus S., Automated Negotiation and Decision Making in Multiagent Environments,

Proceedings of the ACAI 2001, LNAI 2086, 150-172, 2001

55. Kumar S., Agent-Based Semantic Web Service Composition, SpringerBriefs in Electrical and

Computer Engineering, 2012

56. Lau R.Y.K., Adaptive Negotiation Agents for E-business, Proceedings of the 7-th International

Conference on Electronic Commerce ICEC’05, 271-278, 2005

57. Lau R.Y.K., Tang M., Wong O., Stephen W. Milliner S.W., Chen Y-P.P., An Evolutionary

Learning Approach for Adaptive Negotiation Agents, International Journal of Intelligent

Systems, 21, 41-72, 2006

58. Lin R., Kraus S., Wilkenfeld J., Barry J., Negotiation with Bounded Rational Agents in

Environments with Incomplete Information using an Automated Agent, Journal of Artificial

Intelligence, 172, 6-7, 823-851, 2008

59. Lin R., Kraus S., Tykhonov D., Hindriks K., Jonker C.M., Supporting the Design of General

Automated Negotiators, Proceedings of the 2-nd International Workshop on Agent-based

Complex Automated Negotiations, ACAN’09, 1-20, 2009 a

60. Lin R., Oshrat Y., Kraus S., Investigating the Benefits of Automated Negotiations in Enhancing

People’s Negotiation Skills, Proceedings of the 8-th International Conference on Automated

Agents and Multi-agent Systems, 1, 345-352, 2009 b

61. Lin R., Kraus S., Can Automated Agents Proficiently Negotiate with Humans?,

Communications of the ACM, 53, 1, 78-88, 2010

 154

62. Lungu V., Baltoiu A., Radu S., Using Emotion as Motivation in the Newtonian Emotion

System, Proceedings of the 7-th International Symposium on Intelligent Distributed

Computing, 2013

63. Manju S., Punithavalli M., An Analysis of Q-Learning Algorithms with Strategies of Reward

Functions, International Journal on Computer Science and Engineering, 3, 2, 814-820, 2011

64. Mazid M.M., Ali A.S. and Ticke K.S., Improved C4.5 Algorithm for Rule Based Classification,

Proceedings of the 9-th WSEAS International Conference on Artificial Intelligence, Knowledge

Engineering and Data Bases, AIKED’10, 296-301, 2010

65. Mercier H., Sperber D., Why do Humans Reason? Arguments for an Argumentative Theory,

Behavioral and Brain Sciences, 34, 57-111, 2011

66. Mocanu I., Kalisz E., Negreanu L., Genetic Algorithms Viewed as Anticipatory Systems,

Proceedings of the 9-th International Conference on Computing Anticipatory Systems, 1303,

207-215, 2010

67. Murthy S.K., Automatic Construction of Decision Trees from Data: A Multi-Disciplinary Survey,

Data Mining and Knowledge Discovery, 2, 345-389, 1998

68. Narayanan V., Jennings N.R., An Adaptive Bilateral Negotiation Model for E-Commerce

Settings, Proceedings of the 7-th International IEEE Conference on E-Commerce Technology,

34-39, 2005

69. Naroditskiy V., Polukarov M., Jennings N.R., Optimal Payments in Dominant-strategy

Mechanisms for Single-parameter Domains, ACM Transactions on Economics and

Computation, 1, 4, 1-21, 2013

70. Noy N.F., McGuinness D.L., Ontology Development 101: A Guide to Creating Your First

Ontology, Stanford Knowledge Systems Laboratory Technical Report, KSL-01-05, 2001

71. Osborne M.J., Rubinstein A., A Course in Game Theory, MIT Press, 1994

72. Osborne M.J., An Introduction to Game Theory, New York, Oxford: Oxford University Press,

2004

73. Pena J.M., Lozano J.A., Larranaga P., An Empirical Comparison of Four Initialization Methods

for the K-Means Algorithm, Journal Pattern Recognition Letters, 20, 10, 1027-1040, 1999

74. Quinlan J.R., C 4. 5: Programs for Machine Learning, Morgan Kaufmann Publishers, USA,

1993

75. Radu S., Florea A.M., An Adaptive Multi-Agent System for e-Commerce, Proceedings of

Advanced Computer Architecture and Compilation for High-Performance and Embedded

Systems, ACACES 2012, Academia Press, 297-300, 2012

76. Radu S., Kalisz E., Florea A.M., A Model of Automated Negotiation Based on Agents Profiles,

Scalable Computing: Practice and Experience Journal, 14, 1, 47-55, 2013 a

77. Radu S., Kalisz E., Florea A.M., Automatic Negotiation with Profiles and Clustering of Agents,

International Journal of Intelligence Science, 3, 2, 2013 b

78. Radu S., Lungu V., An Adaptive Multi-Agent Model for Automated Negotiation, Proceedings of

the 19-th International Conference on Control Systems and Computer Science, 1, 167-174,

2013

79. Radu S., An Automated Negotiation Model based on Different Strategies in an Adaptive Multi-

Agent System, Proceedings of the 9-th International Summer School on Advanced Computer

Architecture and Compilation for High-Performance and Embedded Systems, 2013 a

80. Radu S., An Automated Negotiation System with Autonomous Agents for a Travel Agency

Business Model, Scientific Bulletin of the University Politehnica of Bucharest, Series C:

Electrical Engineering and Computer Science, submitted, 2013 b

81. Rahwan I., Kowalczyk R., Pham H.H., Intelligent Agents for Automated One-to-Many e-

Commerce Negotiation, Proceedings of the 25-th Australasian Conference on Computer

Science, 197-203, 2002 a

 155

82. Rahwan I., Ramchurn S.D., Jennings N.R., McBurney P., Parsons S., Sonenberg L.,

Argumentation-Based Negotiation, Proceedings of the ACSC – 25-th Australasian Conference

on Computer Science, 197-203, 2002 b

83. Rahwan I., Ramchurn S.D., Jennings N.R., McBurney P., Parsons S., Sonenberg L.,

Argumentation-Based Negotiation, The Knowledge Engineering Review, 18, 343-375, 2003

84. Rosenschein J.S., Zlotkin G., Rules of Encounter, MIT Press, Cambridge, USA, 1994

85. Sandholm T., Lesser V., Leveled Commitment Contracts and Strategic Breach, Games and

Economic Behavior, 35, 1–2, 212–270, 2001

86. Serbanati L.D., Radu S., Paradigm Shifts in Health Informatics, Proceedings of the 6-th

International Conference on Health Informatics, 256-262, 2013

87. Shoham Y., Leyton-Brown K., Multiagent Systems: Algorithmic, Game-Theoretic, and Logical

Foundations, Cambridge University Press, 2009

88. Sierra C., Faratin P., Jennings N.R., A Service-Oriented Negotiation Model between

Autonomous Agents, Lecture Notes in Computer Science, 1237, 17-35, 1997

89. Silva A., Neto J.A., Ibert I., A Computation Environment for Automated Negotiation: A Case

Study in Electronic Tourism, Proceedings of the 22-nd ACM Symposium on Applied

Computing, SAC’07, 654-658, 2007

90. Silva S., Collective Bargaining Negotiation, International Labour Organisation, ACT/EMP

Publications, 1-16, 1996

91. Skylogiannis T., Antoniou G., Bassiliades N., Governatori G., Bikakis A., Dr-Negotiate: A

System for Automated Agent Negotiation with Defeasible Logic-Based Strategies, Journal

Data & Knowledge Engineering, 63, 2, 362-380, 2007

92. Smith R.G., The Contract Net Protocol: High-Level Communication and Control in a

Distributed Problem Solver, Journal IEEE Transactions on Computer, 29, 11, 1104-1113,

1980

93. Soh L.-K., Li X., Adaptive, Confidence-Based Multiagent Negotiation Strategy, Proceedings of

the 3-rd International Joint Conference on Autonomous Agents and Multiagent Systems,

AAMAS’04, 1048-1055, 2004

94. Srivihok A., Sukonmanee P., E-commerce Intelligent Agent: Personalization Travel Support

Agent Using Q Learning”, Proceedings of the 7-th International Conference on Electronic

Commerce, ICEC 2005, 287-292, 2005

95. Tamma V., Phelpsa S., Dickinson I., Wooldridge M., Ontologies for Supporting Negotiation in

e-Commerce, Engineering Applications of Artificial Intelligence, 18, 223–236, 2005

96. Tesauro G., Kephart J., Pricing in Agent Economies Using Multi-Agent Q-Learning, Journal

Autonomous Agents and Multi-Agent Systems, 5, 3, 289-304, 2002

97. Trascau M., Tartareanu T.A., Benea M.T., Radu S., Establishing Social Order Through Norm

Emergence, Proceedings of the 5-th International Conference on Computational Collective

Intelligence, Technologies and Applications, Craiova, Romania, 2013

98. Tu M.T., Wolff E., Lamersdorf W., Genetic Algorithms for Automated Negotiations: A

FSMbased Application Approach, Proceedings of the 11-th International Workshop on

Database and Expert Systems Applications DEXA00, 1029-1033, 2000

99. Tudose C., Odubasteanu C., Radu S., Java Reflection Performance Analysis Using Different

Java Development, Advances in Intelligent Control Systems and Computer Science, 187, 439-

452, 2013

100. Wellman M. P., Wurman, P. R., Market-aware agents for a multiagent world, Robotics and

Autonomous Systems, 24, 115–125, 1998

101. Wooldridge M., An Introduction to MultiAgent Systems, John Wiley & Sons, Ltd, Publication

2002

102. Wooldridge M., An Introduction to MultiAgent Systems, Second Edition, John Wiley & Sons,

Ltd, Publication 2009

 156

103. Wunder M., Kaisers M., Yaros J. R., Littman M., Using Iterated Reasoning to Predict

Opponent Strategies, Proceedings of the 10-th International Conference on Autonomous

Agents and Multiagent Systems, 2, 593-600, 2011

104. Ye Y., Liu J., Moukas A., Agents in Electronic Commerce, Electronic Commerce Research

1,1-2, 9-14, 2001

105. Zeng D., Sycara K., Bayesian Learning in Negotiation, International Journal of Human-

Computer Studies, 48, 1, 125-141, 1998

106. Zhang S., Makedon F., Privacy Preserving Learning in Negotiation, Proceedings of the 2005

ACM Symposium on Applied Computing, 821-825, 2005

107. Zlatev Z., Diakov N., Pokraev S., Construction of Negotiation Protocols for e-Commerce

Applications, ACM SIGecom Exchanges, 5, 2, 12-22, 2004

 157

Annex 1. Real Estate Agency Automated Negotiation Rules

The Jess rules upon which the negotiation is performed in the real estate agency business

model are described in what follows. First the rules of the buyer agent are presented, and then the

rules associated to the seller agent.

The rules assciated to the ACCEPT communication primitive of the buyer are first defined.

1) The first ACCEPT rule says that an offer for a quantity q for a certain product having the price

between minPrice and maxPrice, from an unknown or non-cooperative partner is accepted, if the price

is less than q*(minPrice+maxPrice)/2;

(defrule accept1

 (NegotiationObject {sellerClassification == "nc" ||

sellerClassification == "u"}(currentOffer ?o) (quantity ?q))

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice &: (<= ?o (* ?q (/

(+ ?minPrice ?maxPrice) 2)))))

 => (add (new Offer "accept1" ?*accept*)))

2) The second ACCEPT rule deals with the case when an offer for a quantity q for a certain

product having the price between minPrice and maxPrice, from a slightly cooperative or cooperative

partner is accepted, if the price is between q*(minPrice+maxPrice)/2 and q*maxPrice;

(defrule accept2

 (NegotiationObject {sellerClassification == "sc" ||

sellerClassification == "c"}(currentOffer ?o) (quantity ?q))

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice &: (<= ?o (* ?q

?maxPrice)) &: (> ?o (* ?q (/ (+ ?minPrice ?maxPrice) 2)))))

 => (add (new Offer "accept2" ?*accept*)))

3) The third ACCEPT rule deals with the case when an offer for a quantity q for a certain

product having the price between minPrice and maxPrice, from a very cooperative or highly

cooperative partner is accepted, if the price is less or equal than q*maxPrice;

(defrule accept3

 (NegotiationObject {sellerClassification == "vc" ||

sellerClassification == "hc"}(currentOffer ?o) (quantity ?q))

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice &: (<= ?o (* ?q

?maxPrice))))

 => (add (new Offer "accept3" ?*accept*)))

For the REJECT communication primitive of the buyer, there is the following rule:

1) The buyer will reject an offer for a negotiation object, received after a certain time threshold,

which is defined as 5 seconds for each negotiation. The message Negotiation time elapsed is sent

from the buyer to the seller;

(defrule reject1

 (NegotiationObject (timeElapsed ?te &: (>= ?te ?*maxNegTime*)))

 => (add (new Offer "reject1" ?*reject* "Negotiation time

elapsed.")))

For the PROPOSE communication primitive of the buyer, there are the following rules:

1) The price offered by a buyer, in the beginning, for a certain quantity q of products, having the

price between minPrice and maxPrice, to a non-cooperative or unknown seller, is equal to q*minPrice;

(defrule firstPrice1

 (NegotiationObject {step == 1} {sellerClassification == "nc" ||

sellerClassification == "u"} (quantity ?q))

 (Product (minPrice ?minPrice))

 => (add (new Offer "firstPrice1" (* ?q ?minPrice) ?*propose*)))

 158

2) The price offered by a buyer, in the beginning, for a certain quantity q of products, having the

price between minPrice and maxPrice, to a slightly cooperative or cooperative seller, is equal to

q*(minPrice+500);

(defrule firstPrice2

 (NegotiationObject {step == 1} {sellerClassification == "sc" ||

sellerClassification == "c"} (quantity ?q))(Product (minPrice ?minPrice))

 => (add (new Offer "firstPrice2" (* ?q (+ 500 ?minPrice))

?*propose*)))

3) The price offered by a buyer, in the beginning, for a certain quantity q of products, having the

price between minPrice and maxPrice, to a very cooperative or highly cooperative seller, is equal to

q*(minPrice+1000);

(defrule firstPrice3

 (NegotiationObject {step == 1} {sellerClassification == "vc" ||

sellerClassification == "hc"} (quantity ?q))(Product (minPrice ?minPrice))

 => (add (new Offer "firstPrice3" (* ?q (+ 1000 ?minPrice))

?*propose*)))

For the linear strategy of the buyer, there are the following rules:

1) The buyer will increase its previous offer o with 200, to the non-cooperative or unknown

sellers, when the negotiation step is greater than 1;

(defrule newPrice4

 (declare (salience 10))

 (NegotiationObject {step > 1} (previousOffer ?o)

{sellerClassification == "nc" || sellerClassification == "u"}

 (quantity ?q)) (Strategy {strategy == ?*linear*})

 (Product (maxPrice ?maxPrice &: (> (* ?q ?maxPrice) (+ ?o (* 200

?q))))) => (add (new Offer "newPrice4" (+ ?o (* 200 ?q)) ?*propose*)))

2) The buyer will increase its previous offer o with 400, to the slightly cooperative or cooperative

sellers, when the negotiation step is greater than 1;

(defrule newPrice5

 (NegotiationObject {step > 1} (previousOffer ?o)

{sellerClassification == "sc" || sellerClassification == "c"}

 (quantity ?q)) (Strategy {strategy == ?*linear*})

 (Product (maxPrice ?maxPrice &: (> (* ?q ?maxPrice) (+ ?o (* 400

?q))))) => (add (new Offer "newPrice5" (+ ?o (* 400 ?q)) ?*propose*)))

3) The buyer will increase its previous offer o with 600, to the very cooperative or highly

cooperative sellers, when the negotiation step is greater than 1;

(defrule newPrice6

 (NegotiationObject {step > 1} (previousOffer ?o)

{sellerClassification == "vc" || sellerClassification == "hc"}

 (quantity ?q)) (Strategy {strategy == ?*linear*})

 (Product (maxPrice ?maxPrice &: (> (* ?q ?maxPrice) (+ ?o (* 600

?q))))) => (add (new Offer "newPrice6" (+ ?o (* 600 ?q)) ?*propose*)))

For the conceder strategy of the buyer, there are the following rules:

1) The buyer will increase its previous offer o with 1500, to the non-cooperative or unknown

sellers, when the negotiation step is greater than 1 and lower than 12;

(defrule newPrice7

 (NegotiationObject {step > 1 && step < ?*concederRounds*}

(previousOffer ?o) {sellerClassification == "nc" || sellerClassification ==

"u"}(quantity ?q)) (Strategy {strategy == ?*conceder*})

 (Product (maxPrice ?maxPrice &: (> (* ?q ?maxPrice) (+ ?o (* 1500

?q))))) => (add (new Offer "newPrice7" (+ ?o (* 1500 ?q)) ?*propose*)))

 159

2) The buyer will increase its previous offer o with 2000, to the slightly cooperative or

cooperative buyers, when the negotiation step is greater than 1 and lower than 12;

(defrule newPrice8

 (NegotiationObject {step > 1 && step < ?*concederRounds*}

(previousOffer ?o) {sellerClassification == "sc" || sellerClassification ==

"c"}(quantity ?q)) (Strategy {strategy == ?*conceder*})

 (Product (maxPrice ?maxPrice &: (> (* ?q ?maxPrice) (+ ?o (* 2000

?q))))) => (add (new Offer "newPrice8" (+ ?o (* 2000 ?q)) ?*propose*)))

3) The buyer will increase its previous offer o with 2500, to the very cooperative or highly

cooperative sellers, when the negotiation step is greater than 1 and lower than 12;

(defrule newPrice9

 (NegotiationObject {step > 1 && step < ?*concederRounds*}

(previousOffer ?o) {sellerClassification == "vc" || sellerClassification ==

"hc"}(quantity ?q)) (Strategy {strategy == ?*conceder*})

 (Product (maxPrice ?maxPrice &: (> (* ?q ?maxPrice) (+ ?o (* 2500

?q))))) => (add (new Offer "newPrice9" (+ ?o (* 2500 ?q)) ?*propose*)))

4) The buyer will increase its previous offer o with 400, to the non-cooperative or unknown

sellers, when the negotiation step is greater than 12;

(defrule newPrice10

 (NegotiationObject {step >= ?*concederRounds*} (previousOffer ?o)

{sellerClassification == "nc" || sellerClassification == "u"}

 (quantity ?q)) (Strategy {strategy == ?*conceder*})

 (Product (maxPrice ?maxPrice &: (> (* ?q ?maxPrice) (+ ?o (* 400

?q))))) => (add (new Offer "newPrice10" (+ ?o (* 400 ?q)) ?*propose*)))

5) The buyer will increase its previous offer o with 600, to the slightly cooperative or cooperative

sellers, when the negotiation step is greater than 12;

(defrule newPrice11

 (NegotiationObject {step >= ?*concederRounds*} (previousOffer ?o)

{sellerClassification == "sc" || sellerClassification == "c"}

 (quantity ?q)) (Strategy {strategy == ?*conceder*})

 (Product (maxPrice ?maxPrice &: (> (* ?q ?maxPrice) (+ ?o (* 600

?q))))) => (add (new Offer "newPrice11" (+ ?o (* 600 ?q)) ?*propose*)))

6) The buyer will increase its previous offer o with 800, to the very cooperative or highly

cooperative sellers, when the negotiation step is greater than 12;

(defrule newPrice12

 (NegotiationObject {step >= ?*concederRounds*} (previousOffer ?o)

{sellerClassification == "vc" || sellerClassification == "hc"}

 (quantity ?q)) (Strategy {strategy == ?*conceder*})

 (Product (maxPrice ?maxPrice &: (> (* ?q ?maxPrice) (+ ?o (* 800

?q))))) => (add (new Offer "newPrice12" (+ ?o (* 8 ?q)) ?*propose*)))

For the boulware strategy of the buyer, there are the following rules:

1) The buyer will increase its previous offer o with 1, when the negotiation step is greater than 1

and the time elapsed in the negotiation is less than 4 seconds, represented by the global variable

boulwareTime1;

(defrule newPrice13

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed <

?*boulwareTime1*}(quantity ?q)) (Strategy {strategy == ?*boulware*})

 => (add (new Offer "newPrice13" (+ ?o (* 1 ?q)) ?*propose*)))

2) The buyer will increase its previous offer o with 1000, when the negotiation step is greater

than 1 and the time elapsed in the negotiation is greater than 4 seconds, represented by the global

variable boulwareTime1;

 160

(defrule newPrice14

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed >=

?*boulwareTime1*}(quantity ?q)) (Strategy {strategy == ?*boulware*})

 (Product (maxPrice ?maxPrice &: (> (* ?q ?maxPrice) (+ ?o (* 1000

?q))))) => (add (new Offer "newPrice14" (+ ?o (* 1000 ?q)) ?*propose*)))

3) The buyer will increase its previous offer o with 3000, when the negotiation step is greater

than 1 and the time elapsed in the negotiation is greater than 4.5 seconds, represented by the global

variable boulwareTime2;

(defrule newPrice15

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed >=

?*boulwareTime2*}(quantity ?q)) (Strategy {strategy == ?*boulware*})

 (Product (maxPrice ?maxPrice &: (> (* ?q ?maxPrice) (+ ?o (* 3000

?q))))) => (add (new Offer "newPrice15" (+ ?o (* 3000 ?q)) ?*propose*)))

For the seller, regarding the ACCEPT communication primitive, there are the following rules:

1) The seller will accept an offer from a non-cooperative or unknown buyer, for a certain

quantity of q products, having the price between minPrice and maxPrice, with the price greater than

q*(minPrice+maxPrice)/2;

(defrule accept1

 (NegotiationObject {buyerClassification == "nc" ||

buyerClassification == "u"} {step > 0}(currentOffer ?o) (quantity ?q))

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice &: (>= ?o (* ?q (/

(+ ?minPrice ?maxPrice) 2))))) => (add (new Offer "accept1" ?*accept*)))

2) The seller will accept an offer from a slightly cooperative or cooperative buyer, for a certain

quantity of q products, having the price between minPrice and maxPrice, with the price less than

q*(maxPrice-(minPrice+maxPrice)/2);

(defrule accept2

 (NegotiationObject {buyerClassification == "sc" ||

buyerClassification == "c"} {step > 0}(currentOffer ?o) (quantity ?q))

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice &: (<= ?o (* ?q

?maxPrice)) &: (> ?o (* ?q (/ (+ ?minPrice ?maxPrice) 2)))))

 => (add (new Offer "accept2" ?*accept*)))

3) The seller will accept an offer from a very cooperative or highly cooperative buyer, for a

certain quantity of q products, having the price between minPrice and maxPrice, with the price lower

than q*maxPrice;

(defrule accept3

 (NegotiationObject {buyerClassification == "vc" ||

buyerClassification == "hc"} {step > 0}(currentOffer ?o) (quantity ?q))

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice &: (<= ?o (* ?q

?maxPrice)))) => (add (new Offer "accept3" ?*accept*)))

For the REJECT communication primitive of the seller, there are the following rules:

1) The seller will reject an offer for a negotiation object, received after a certain time threshold,

which is defined as 5 seconds for each negotiation. The message Negotiation time elapsed is sent

from the seller to the buyer;

(defrule reject1

 (NegotiationObject (timeElapsed ?te &: (>= ?te ?*maxNegTime*)))

 => (add (new Offer "reject1" ?*reject* "Negotiation time

elapsed.")))

For the PROPOSE communication primitive of the seller, there are the following rules:

1) The price proposed by a seller, in the beginning, for a certain quantity q of products, having

the price between minPrice and maxPrice, to a non-cooperative or unknown buyer, is equal to

q*maxPrice;

 161

(defrule firstPrice1

 (NegotiationObject {step == 0} {buyerClassification == "nc" ||

buyerClassification == "u"} (quantity ?q))(Product (maxPrice ?maxPrice))

 => (add (new Offer "firstPrice1" (* ?maxPrice ?q) ?*propose*)))

2) The price proposed by a seller, in the beginning, for a certain quantity q of products, having

the price between minPrice and maxPrice, to a slightly cooperative or cooperative buyer, is equal to

q*(maxPrice-500);

(defrule firstPrice2

 (NegotiationObject {step == 0} {buyerClassification == "sc" ||

buyerClassification == "c"} (quantity ?q))(Product (maxPrice ?maxPrice))

 => (add (new Offer "firstPrice2" (* (- ?maxPrice 500) ?q)

?*propose*)))

3) The price proposed by a seller, in the beginning, for a certain quantity q of products, having

the price between minPrice and maxPrice, to a very cooperative or highly cooperative buyer, is equal

to q*(maxPrice-1000);

(defrule firstPrice3

 (NegotiationObject {step == 0} {buyerClassification == "vc" ||

buyerClassification == "hc"} (quantity ?q))(Product (maxPrice ?maxPrice))

 => (add (new Offer "firstPrice3" (* (- ?maxPrice 1000) ?q)

?*propose*)))

For the linear strategy of the seller, there are the following rules:

1) The seller will decrease its previous offer o with 200, to the non-cooperative or unknown

buyers, when the negotiation step is greater than 1;

(defrule newPrice4

 (NegotiationObject {step > 1} (previousOffer ?o) {buyerClassification

== "nc" || buyerClassification == "u"}(quantity ?q))

 (Product (minPrice ?minPrice &: (<= (* ?q ?minPrice) (- ?o (* 200

?q))))) (Strategy {strategy == ?*linear*})

 => (add (new Offer "newPrice4" (- ?o (* 200 ?q)) ?*propose*)))

2) The seller will decrease its previous offer o with 400, to the slightly cooperative or

cooperative buyers, when the negotiation step is greater than 1;

(defrule newPrice5

 (NegotiationObject {step > 1} (previousOffer ?o) {buyerClassification

== "sc" || buyerClassification == "c"}

 (quantity ?q)) (Strategy {strategy == ?*linear*})

 (Product (minPrice ?minPrice &: (<= (* ?q ?minPrice) (- ?o (* 400

?q))))) => (add (new Offer "newPrice5" (- ?o (* 400 ?q)) ?*propose*)))

3) The seller will decrease its previous offer o with 600, to the very cooperative or highly

cooperative buyers, when the negotiation step is greater than 1;

(defrule newPrice6

 (NegotiationObject {step > 1} (previousOffer ?o) {buyerClassification

== "vc" || buyerClassification == "hc"}

 (quantity ?q)) (Strategy {strategy == ?*linear*})

 (Product (minPrice ?minPrice &: (<= (* ?q ?minPrice) (- ?o (* 600

?q))))) => (add (new Offer "newPrice6" (- ?o (* 600 ?q)) ?*propose*)))

For the conceder strategy of the seller, there are the following rules:

1) The seller will decrease its previous offer o with 1500, to the non-cooperative or unknown

buyers, when the negotiation step is greater than 1 and lower than 12;

(defrule newPrice7

 162

 (NegotiationObject {step > 1 && step < ?*concederRounds*}

(previousOffer ?o) {buyerClassification == "nc" || buyerClassification ==

"u"}(quantity ?q))

 (Product (minPrice ?minPrice &: (<= (* ?q ?minPrice) (- ?o (* 1500

?q))))) (Strategy {strategy == ?*conceder*})

 => (add (new Offer "newPrice7" (- ?o (* 1500 ?q)) ?*propose*)))

2) The seller will decrease its previous offer o with 2000, to the slightly cooperative or

cooperative buyers, when the negotiation step is greater than 1 and lower than 12;

(defrule newPrice8

 (NegotiationObject {step > 1 && step < ?*concederRounds*}

(previousOffer ?o) {buyerClassification == "sc" || buyerClassification ==

"c"}(quantity ?q))

 (Product (minPrice ?minPrice &: (<= (* ?q ?minPrice) (- ?o (* 2000

?q))))) (Strategy {strategy == ?*conceder*})

 => (add (new Offer "newPrice8" (- ?o (* 2000 ?q)) ?*propose*)))

3) The seller will decrease its previous offer o with 2500, to the very cooperative or highly

cooperative buyers, when the negotiation step is greater than 1 and lower than 12;

(defrule newPrice9

 (NegotiationObject {step > 1 && step < ?*concederRounds*}

(previousOffer ?o) {buyerClassification == "vc" || buyerClassification ==

"hc"}(quantity ?q)) (Product (minPrice ?minPrice))

 (Strategy {strategy == ?*conceder*})

 (test (<= (* ?q ?minPrice) (- ?o (* 2500 ?q))))

 => (add (new Offer "newPrice9" (- ?o (* 2500 ?q)) ?*propose*)))

4) The seller will decrease its previous offer o with q*400, to the non-cooperative or unknown

buyers, when the negotiation step is greater than 12;

(defrule newPrice10

 (NegotiationObject {step >= ?*concederRounds*} (previousOffer ?o)

{buyerClassification == "nc" || buyerClassification == "u"}(quantity ?q))

 (Product (minPrice ?minPrice &: (<= (* ?q ?minPrice) (- ?o (* 400

?q))))) (Strategy {strategy == ?*conceder*})

 => (add (new Offer "newPrice10" (- ?o (* 400 ?q)) ?*propose*)))

5) The seller will decrease its previous offer o with q*600, to the slightly cooperative or

cooperative buyers, when the negotiation step is greater than 12;

(defrule newPrice11

 (NegotiationObject {step >= ?*concederRounds*} (previousOffer ?o)

{buyerClassification == "sc" || buyerClassification == "c"}(quantity ?q))

 (Product (minPrice ?minPrice &: (<= (* ?q ?minPrice) (- ?o (* 600

?q))))) (Strategy {strategy == ?*conceder*})

 => (add (new Offer "newPrice11" (- ?o (* 600 ?q)) ?*propose*)))

6) The seller will decrease its previous offer o with q*800, to the very cooperative or highly

cooperative buyers, when the negotiation step is greater than 12;

(defrule newPrice12

 (NegotiationObject {step >= ?*concederRounds*} (previousOffer ?o)

{buyerClassification == "vc" || buyerClassification == "hc"}

 (quantity ?q)) (Strategy {strategy == ?*conceder*})

 (Product (minPrice ?minPrice &: (<= (* ?q ?minPrice) (- ?o (* 800

?q))))) => (add (new Offer "newPrice12" (- ?o (* 800 ?q)) ?*propose*)))

For the boulware strategy of the seller, there are the following rules:

 163

1) The seller will decrease its previous offer o by 1, when the negotiation step is greater than 1

and the time elapsed in the negotiation is less than 4 seconds, represented by the global variable

boulwareTime1;

(defrule newPrice13

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed <

?*boulwareTime1*}(quantity ?q)) (Strategy {strategy == ?*boulware*})

 => (add (new Offer "newPrice13" (- ?o ?q) ?*propose*)))

2) The seller will decrease its previous offer o by 1000, when the negotiation step is greater

than 1 and the time elapsed in the negotiation is greater than 4 seconds, represented by the global

variable boulwareTime1;

(defrule newPrice14

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed >=

?*boulwareTime1*} (quantity ?q))

 (Product (minPrice ?minPrice &: (<= (* ?q ?minPrice) (- ?o (* 1000

?q))))) (Strategy {strategy == ?*boulware*})

 => (add (new Offer "newPrice14" (- ?o (* 1000 ?q)) ?*propose*)))

3) The seller will decrease its previous offer o by 2000, when the negotiation step is greater

than 1 and the time elapsed in the negotiation is greater than 4.5 seconds, represented by the global

variable boulwareTime2;

(defrule newPrice15

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed >=

?*boulwareTime2*}

 (quantity ?q)) (Strategy {strategy == ?*boulware*})

 (Product (minPrice ?minPrice &: (<= (* ?q ?minPrice) (- ?o (* 2000

?q))))) => (add (new Offer "newPrice15" (- ?o (* 2000 ?q)) ?*propose*)))

 164

Annex 2. Car Dealer Automated Negotiation Rules

The Jess rules upon which the negotiation is performed in the car dealer business model are

described in this annex. First the rules of the buyer agent are presented, and then the rules associated

to the seller agent.

The rules associated to the ACCEPT communication primitive of the buyer are first defined.

1) The first ACCEPT rule says that an offer for a quantity q for a certain product having the price

between minPrice and maxPrice, from an unknown or non-cooperative partner is accepted, if the price

is less than q*(minPrice+maxPrice)/2;

(defrule accept1

 (NegotiationObject {sellerClassification == "nc" ||

sellerClassification == "u"}(currentOffer ?o) (quantity ?q))

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice &: (<= ?o (* ?q (/

(+ ?minPrice ?maxPrice) 2))))) => (add (new Offer "accept1" ?*accept*)))

2) The second ACCEPT rule deals with the case when an offer for a quantity q for a certain

product having the price between minPrice and maxPrice, from a slightly cooperative or cooperative

partner is accepted, if the price is between q*(minPrice+maxPrice)/2 and q*maxPrice;

 (defrule accept2
 (NegotiationObject {sellerClassification == "sc" ||

sellerClassification == "c"}(currentOffer ?o) (quantity ?q))

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice &: (<= ?o (* ?q

?maxPrice)) &: (> ?o (* ?q (/ (+ ?minPrice ?maxPrice) 2)))))

 => (add (new Offer "accept2" ?*accept*)))

3) The third ACCEPT rule deals with the case when an offer for a quantity q for a certain

product having the price between minPrice and maxPrice, from a very cooperative or highly

cooperative partner is accepted, if the price is less or equal than q*maxPrice;

(defrule accept3

 (NegotiationObject {sellerClassification == "vc" ||

sellerClassification == "hc"}(currentOffer ?o) (quantity ?q))

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice &: (<= ?o (* ?q

?maxPrice)))) => (add (new Offer "accept3" ?*accept*)))

For the REJECT communication primitive of the buyer, there is the following rule:

1) The buyer will reject an offer for a negotiation object, received after a certain time threshold,

which is defined as 5 seconds for each negotiation. The message Negotiation time elapsed is sent

from the buyer to the seller;

(defrule reject1

 (NegotiationObject (timeElapsed ?te &: (>= ?te ?*maxNegTime*)))

 => (add (new Offer "reject1" ?*reject* "Negotiation time

elapsed.")))

For the PROPOSE communication primitive of the buyer, there are the following rules:

1) The price offered by a buyer, in the beginning, for a certain quantity q of products, having the

price between minPrice and maxPrice, to a non-cooperative or unknown seller, is equal to q*minPrice;

(defrule firstPrice1

 (NegotiationObject {step == 1} {sellerClassification == "nc" ||

sellerClassification == "u"} (quantity ?q))(Product (minPrice ?minPrice))

 => (add (new Offer "firstPrice1" (* ?q ?minPrice) ?*propose*)))

2) The price offered by a buyer, in the beginning, for a certain quantity q of products, having the

price between minPrice and maxPrice, to a slightly cooperative or cooperative seller, is equal to

q*(minPrice+50);

(defrule firstPrice2

 165

 (NegotiationObject {step == 1} {sellerClassification == "sc" ||

sellerClassification == "c"} (quantity ?q))(Product (minPrice ?minPrice))

 => (add (new Offer "firstPrice2" (* ?q (+ 50 ?minPrice))

?*propose*)))

3) The price offered by a buyer, in the beginning, for a certain quantity q of products, having the

price between minPrice and maxPrice, to a very cooperative or highly cooperative seller, is equal to

q*(minPrice+100);

(defrule firstPrice3

 (NegotiationObject {step == 1} {sellerClassification == "vc" ||

sellerClassification == "hc"} (quantity ?q))(Product (minPrice ?minPrice))

 => (add (new Offer "firstPrice3" (* ?q (+ 100 ?minPrice))

?*propose*)))

For the linear strategy of the buyer, there are the following rules:

1) The buyer will increase its previous offer o with 100, to the non-cooperative or unknown

sellers, when the negotiation step is greater than 1;

(defrule newPrice4

 (NegotiationObject {step > 1} (previousOffer ?o)

{sellerClassification == "nc" || sellerClassification == "u"}

 (quantity ?q)) (Strategy {strategy == ?*linear*})

 (Product (maxPrice ?maxPrice))

 => (if (> (* ?q ?maxPrice) (+ ?o (* 100 ?q))) then

 (add (new Offer "newPrice4" (+ ?o (* 100 ?q)) ?*propose*))

 else (add (new Offer "newPrice4" (* ?q ?maxPrice) ?*propose*))))

2) The buyer will increase its previous offer o with 150, to the slightly cooperative or cooperative

sellers, when the negotiation step is greater than 1;

(defrule newPrice5

 (NegotiationObject {step > 1} (previousOffer ?o)

{sellerClassification == "sc" || sellerClassification == "c"}

 (quantity ?q)) (Strategy {strategy == ?*linear*})

 (Product (maxPrice ?maxPrice))

 => (if (> (* ?q ?maxPrice) (+ ?o (* 150 ?q))) then

 (add (new Offer "newPrice5" (+ ?o (* 150 ?q)) ?*propose*))

 else (add (new Offer "newPrice5" (* ?q ?maxPrice) ?*propose*))))

3) The buyer will increase its previous offer o with 200, to the very cooperative or highly

cooperative sellers, when the negotiation step is greater than 1;

(defrule newPrice6

 (NegotiationObject {step > 1} (previousOffer ?o)

{sellerClassification == "vc" || sellerClassification == "hc"}

 (quantity ?q)) (Strategy {strategy == ?*linear*})

 (Product (maxPrice ?maxPrice))

 => (if (> (* ?q ?maxPrice) (+ ?o (* 200 ?q))) then

 (add (new Offer "newPrice6" (+ ?o (* 200 ?q)) ?*propose*))

 else (add (new Offer "newPrice6" (* ?q ?maxPrice) ?*propose*))))

For the conceder strategy of the buyer, there are the following rules:

1) The buyer will increase its previous offer o with 700, to the non-cooperative or unknown

sellers, when the negotiation step is greater than 1 and lower than 12;

(defrule newPrice7

 (NegotiationObject {step > 1 && step < ?*concederRounds*}

(previousOffer ?o) {buyerClassification == "nc" || buyerClassification ==

"u"}(quantity ?q)) (Product (maxPrice ?maxPrice))

 (Strategy {strategy == ?*conceder*})

 166

 => (if (> (* ?q ?maxPrice) (+ ?o (* 700 ?q))) then

 (add (new Offer "newPrice7" (+ ?o (* 700 ?q)) ?*propose*))

 else (add (new Offer "newPrice7" (* ?q ?maxPrice) ?*propose*))))

2) The buyer will increase its previous offer o with 800, to the slightly cooperative or cooperative

buyers, when the negotiation step is greater than 1 and lower than 12;

(defrule newPrice8

 (NegotiationObject {step > 1 && step < ?*concederRounds*}

(previousOffer ?o) {buyerClassification == "sc" || buyerClassification ==

"c"}(quantity ?q)) (Product (maxPrice ?maxPrice))

 (Strategy {strategy == ?*conceder*})

 => (if (> (* ?q ?maxPrice) (+ ?o (* 800 ?q))) then

 (add (new Offer "newPrice8" (+ ?o (* 800 ?q)) ?*propose*))

 else (add (new Offer "newPrice8" (* ?q ?maxPrice) ?*propose*))))

3) The buyer will increase its previous offer o with 900, to the very cooperative or highly

cooperative sellers, when the negotiation step is greater than 1 and lower than 12;

(defrule newPrice9

 (NegotiationObject {step > 1 && step < ?*concederRounds*}

(previousOffer ?o) {buyerClassification == "vc" || buyerClassification ==

"hc"}(quantity ?q)) (Product (maxPrice ?maxPrice))

 (Strategy {strategy == ?*conceder*})

 => (if (> (* ?q ?maxPrice) (+ ?o (* 900 ?q))) then

 (add (new Offer "newPrice9" (+ ?o (* 900 ?q)) ?*propose*))

 else (add (new Offer "newPrice9" (* ?q ?maxPrice) ?*propose*))))

4) The buyer will increase its previous offer o with 100, to the non-cooperative or unknown

sellers, when the negotiation step is greater than 12;

(defrule newPrice10

 (NegotiationObject {step >= ?*concederRounds*} (previousOffer ?o)

{sellerClassification == "nc" || sellerClassification == "u"}

 (quantity ?q)) (Strategy {strategy == ?*conceder*})

 (Product (maxPrice ?maxPrice))

 => (if (> (* ?q ?maxPrice) (+ ?o (* 100 ?q))) then

 (add (new Offer "newPrice10" (+ ?o (* 100 ?q)) ?*propose*))

 else (add (new Offer "newPrice10" (* ?q ?maxPrice) ?*propose*))))

5) The buyer will increase its previous offer o with 150, to the slightly cooperative or cooperative

sellers, when the negotiation step is greater than 12;

(defrule newPrice11

 (NegotiationObject {step >= ?*concederRounds*} (previousOffer ?o)

{sellerClassification == "sc" || sellerClassification == "c"}

 (quantity ?q)) (Strategy {strategy == ?*conceder*})

 (Product (maxPrice ?maxPrice))

 => (if (> (* ?q ?maxPrice) (+ ?o (* 150 ?q))) then

 (add (new Offer "newPrice11" (+ ?o (* 150 ?q)) ?*propose*))

 else (add (new Offer "newPrice11" (* ?q ?maxPrice) ?*propose*))))
6) The buyer will increase its previous offer o with 200, to the very cooperative or highly

cooperative sellers, when the negotiation step is greater than 12;

(defrule newPrice12

 (NegotiationObject {step >= ?*concederRounds*} (previousOffer ?o)

{sellerClassification == "vc" || sellerClassification == "hc"}

 (quantity ?q)) (Strategy {strategy == ?*conceder*})

 (Product (maxPrice ?maxPrice))

 => (if (> (* ?q ?maxPrice) (+ ?o (* 200 ?q))) then

 167

 (add (new Offer "newPrice12" (+ ?o (* 200 ?q)) ?*propose*))

 else (add (new Offer "newPrice12" (* ?q ?maxPrice) ?*propose*))))

For the boulware strategy of the buyer, there are the following rules:

1) The buyer will increase its previous offer o with 1, when the negotiation step is greater than 1

and the time elapsed in the negotiation is less than 4 seconds, represented by the global variable

boulwareTime1;

(defrule newPrice13

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed <

?*boulwareTime1*}(quantity ?q)) (Strategy {strategy == ?*boulware*})

 => (add (new Offer "newPrice13" (+ ?o (* 1 ?q)) ?*propose*)))

2) The buyer will increase its previous offer o with 800, when the negotiation step is greater than

1 and the time elapsed in the negotiation is greater than 4 seconds, represented by the global variable

boulwareTime1;

(defrule newPrice14

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed >=

?*boulwareTime1*}(quantity ?q)) (Strategy {strategy == ?*boulware*})

 (Product (maxPrice ?maxPrice))

 => (if (> (* ?q ?maxPrice) (+ ?o (* 800 ?q))) then

 (add (new Offer "newPrice14" (+ ?o (* 800 ?q)) ?*propose*))

 else (add (new Offer "newPrice14" (* ?q ?maxPrice) ?*propose*))))

3) The buyer will increase its previous offer o with 1000, when the negotiation step is greater

than 1 and the time elapsed in the negotiation is greater than 4.5 seconds, represented by the global

variable boulwareTime2;

(defrule newPrice15

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed >=

?*boulwareTime2*}(quantity ?q)) (Strategy {strategy == ?*boulware*})

 (Product (maxPrice ?maxPrice))

 => (if (> (* ?q ?maxPrice) (+ ?o (* 1000 ?q))) then

 (add (new Offer "newPrice14" (+ ?o (* 1000 ?q)) ?*propose*))

 else (add (new Offer "newPrice14" (* ?q ?maxPrice) ?*propose*))))

For the seller, regarding the ACCEPT communication primitive, there are the following rules:

1) The seller will accept an offer from a non-cooperative or unknown buyer, for a certain

quantity of q products, having the price between minPrice and maxPrice, with the price greater than

q*(minPrice+maxPrice)/2;

(defrule accept1

 (NegotiationObject {buyerClassification == "nc" ||

buyerClassification == "u"} {step > 0}(currentOffer ?o) (quantity ?q))

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice &: (>= ?o (* ?q (/

(+ ?minPrice ?maxPrice) 2))))) => (add (new Offer "accept1" ?*accept*)))

2) The seller will accept an offer from a slightly cooperative or cooperative buyer, for a certain

quantity of q products, having the price between minPrice and maxPrice, with the price between

q*(minPrice+maxPrice)/2 and q*maxPrice;

(defrule accept2

 (NegotiationObject {buyerClassification == "sc" ||

buyerClassification == "c"} {step > 0}(currentOffer ?o) (quantity ?q))

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice &: (<= ?o (* ?q

?maxPrice)) &: (> ?o (* ?q (/ (+ ?minPrice ?maxPrice) 2)))))

 => (add (new Offer "accept2" ?*accept*)))

3) The seller will accept an offer from a very cooperative or highly cooperative buyer, for a

certain quantity of q products, having the price between minPrice and maxPrice, with the price lower

than or equal to q*maxPrice;

 168

(defrule accept3

 (NegotiationObject {buyerClassification == "vc" ||

buyerClassification == "hc"} {step > 0}(currentOffer ?o) (quantity ?q))

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice &: (<= ?o (* ?q

?maxPrice)))) => (add (new Offer "accept3" ?*accept*)))

For the REJECT communication primitive of the seller, there are the following rules:

1) The seller will reject an offer for a negotiation object, received after a certain time threshold,

which is defined as 5 seconds for each negotiation. The message Negotiation time elapsed is sent

from the seller to the buyer;

(defrule reject1

 (NegotiationObject (timeElapsed ?te &: (>= ?te ?*maxNegTime*)))

 => (add (new Offer "reject1" ?*reject* "Negotiation time

elapsed.")))

For the PROPOSE communication primitive of the seller, there are the following rules:

1) The price proposed by a seller, in the beginning, for a certain quantity q of products, having

the price between minPrice and maxPrice, to a non-cooperative or unknown buyer, is equal to:

a) q*maxPrice, if q≤10;

b) q*maxPrice*0.95, if 10<q<20;

c) q*maxPrice*0.85, if q≥20.

(defrule firstPrice1

 (NegotiationObject {step == 0} {buyerClassification == "nc" ||

buyerClassification == "u"} (quantity ?q))(Product (maxPrice ?maxPrice))

 => (if (and (> ?q 10) (< ?q 20)) then

 (add (new Offer "firstPrice1" (* (* ?maxPrice 0.95) ?q)

?*propose*)) elif (>= ?q 20) then

 (add (new Offer "firstPrice1" (* (* ?maxPrice 0.85) ?q)

?*propose*)) else

 (add (new Offer "firstPrice1" (* ?maxPrice ?q) ?*propose*))))

2) The price proposed by a seller, in the beginning, for a certain quantity q of products, having

the price between minPrice and maxPrice, to a slightly cooperative or cooperative buyer, is equal to:

a) q*(maxPrice-150), if q≤10;

b) q*maxPrice*0.9, if 10<q<20;

c) q*maxPrice*0.8, if q≥20.

(defrule firstPrice2

 (NegotiationObject {step == 0} {buyerClassification == "sc" ||

buyerClassification == "c"} (quantity ?q))(Product (maxPrice ?maxPrice))

 => (if (and (> ?q 10) (< ?q 20)) then

 (add (new Offer "firstPrice2" (* (* ?maxPrice 0.90) ?q)

?*propose*)) elif (> ?q 20) then

 (add (new Offer "firstPrice2" (* (* ?maxPrice 0.80) ?q)

?*propose*)) else

 (add (new Offer "firstPrice2" (* (- ?maxPrice 150) ?q)

?*propose*))))

3) The price proposed by a seller, in the beginning, for a certain quantity q of products, having

the price between minPrice and maxPrice, to a very cooperative or highly cooperative buyer, is equal

to:

a) q*(maxPrice-250), if q≤10;

b) q*maxPrice*0.85, if 10<q<20;

c) q*maxPrice*0.75, if q≥20.

(defrule firstPrice3

 169

 (NegotiationObject {step == 0} {buyerClassification == "vc" ||

buyerClassification == "hc"} (quantity ?q))(Product (maxPrice ?maxPrice))

 => (if (and (> ?q 10) (< ?q 20)) then

 (add (new Offer "firstPrice3" (* (* ?maxPrice 0.85) ?q)

?*propose*)) elif (> ?q 20) then

 (add (new Offer "firstPrice3" (* (* ?maxPrice 0.75) ?q)

?*propose*)) else

 (add (new Offer "firstPrice3" (* (- ?maxPrice 250) ?q)

?*propose*))))

For the linear strategy of the seller, there are the following rules:

1) The seller will decrease its previous offer o with 100, to the non-cooperative or unknown

buyers, when the negotiation step is greater than 1;

(defrule newPrice4

 (NegotiationObject {step > 1} (previousOffer ?o) {buyerClassification

== "nc" || buyerClassification == "u"} (quantity ?q)) (Product (minPrice

?minPrice)) (Strategy {strategy == ?*linear*})

 => (if (<= (* ?q ?minPrice) (- ?o (* 100 ?q))) then

 (add (new Offer "newPrice4" (- ?o (* 100 ?q)) ?*propose*))

 else (add (new Offer "newPrice4" (* ?q ?minPrice) ?*propose*))))

2) The seller will decrease its previous offer o with 150, to the slightly cooperative or

cooperative buyers, when the negotiation step is greater than 1;

(defrule newPrice5

 (NegotiationObject {step > 1} (previousOffer ?o) {buyerClassification

== "sc" || buyerClassification == "c"} (quantity ?q)) (Product (minPrice

?minPrice)) (Strategy {strategy == ?*linear*})

 => (if (<= (* ?q ?minPrice) (- ?o (* 150 ?q))) then

 (add (new Offer "newPrice5" (- ?o (* 150 ?q)) ?*propose*))

 else (add (new Offer "newPrice5" (* ?q ?minPrice) ?*propose*))))

3) The seller will decrease its previous offer o with 200, to the very cooperative or highly

cooperative buyers, when the negotiation step is greater than 1;

(defrule newPrice6

 (NegotiationObject {step > 1} (previousOffer ?o) {buyerClassification

== "vc" || buyerClassification == "hc"} (quantity ?q)) (Product (minPrice

?minPrice)) (Strategy {strategy == ?*linear*})

 => (if (<= (* ?q ?minPrice) (- ?o (* 200 ?q))) then

 (add (new Offer "newPrice6" (- ?o (* 200 ?q)) ?*propose*))

 else (add (new Offer "newPrice6" (* ?q ?minPrice) ?*propose*))))

For the conceder strategy of the seller, there are the following rules:

1) The seller will decrease its previous offer o with 700, to the non-cooperative or unknown

buyers, when the negotiation step is greater than 1 and lower than 12;

(defrule newPrice7

 (NegotiationObject {step > 1 && step < ?*concederRounds*}

(previousOffer ?o) {buyerClassification == "nc" || buyerClassification ==

"u"}(quantity ?q)) (Product (minPrice ?minPrice))

(Strategy {strategy == ?*conceder*})

 => (if (<= (* ?q ?minPrice) (- ?o (* 700 ?q))) then

 (add (new Offer "newPrice7" (- ?o (* 700 ?q)) ?*propose*))

 else (add (new Offer "newPrice7" (* ?q ?minPrice) ?*propose*))))

2) The seller will decrease its previous offer o with 800, to the slightly cooperative or

cooperative buyers, when the negotiation step is greater than 1 and lower than 12;

(defrule newPrice8

 170

 (NegotiationObject {step > 1 && step < ?*concederRounds*}

(previousOffer ?o) {buyerClassification == "sc" || buyerClassification ==

"c"}(quantity ?q)) (Product (minPrice ?minPrice))

 (Strategy {strategy == ?*conceder*})

 => (if (<= (* ?q ?minPrice) (- ?o (* 800 ?q))) then

 (add (new Offer "newPrice8" (- ?o (* 800 ?q)) ?*propose*))

 else (add (new Offer "newPrice8" (* ?q ?minPrice) ?*propose*))))

3) The seller will decrease its previous offer o with 900, to the very cooperative or highly

cooperative buyers, when the negotiation step is greater than 1 and lower than 12;

(defrule newPrice9

 (NegotiationObject {step > 1 && step < ?*concederRounds*}

(previousOffer ?o) {buyerClassification == "vc" || buyerClassification ==

"hc"}(quantity ?q)) (Product (minPrice ?minPrice))

 (Strategy {strategy == ?*conceder*})

 => (if (<= (* ?q ?minPrice) (- ?o (* 900 ?q))) then

 (add (new Offer "newPrice9" (- ?o (* 900 ?q)) ?*propose*))

 else (add (new Offer "newPrice9" (* ?q ?minPrice) ?*propose*))))

4) The seller will decrease its previous offer o with 100, to the non-cooperative or unknown

buyers, when the negotiation step is greater than 12;

(defrule newPrice10

 (NegotiationObject {step >= ?*concederRounds*} (previousOffer ?o)

{buyerClassification == "nc" || buyerClassification == "u"}

 (quantity ?q)) (Product (minPrice ?minPrice))

 (Strategy {strategy == ?*conceder*})

 => (if (<= (* ?q ?minPrice) (- ?o (* 100 ?q))) then

 (add (new Offer "newPrice10" (- ?o (* 100 ?q)) ?*propose*))

 else (add (new Offer "newPrice10" (* ?q ?minPrice) ?*propose*))))

5) The seller will decrease its previous offer o with 150, to the slightly cooperative or

cooperative buyers, when the negotiation step is greater than 12;

(defrule newPrice11

 (NegotiationObject {step >= ?*concederRounds*} (previousOffer ?o)

{buyerClassification == "sc" || buyerClassification == "c"}

 (quantity ?q)) (Product (minPrice ?minPrice))

 (Strategy {strategy == ?*conceder*})

 => (if (<= (* ?q ?minPrice) (- ?o (* 150 ?q))) then

 (add (new Offer "newPrice11" (- ?o (* 150 ?q)) ?*propose*))

 else (add (new Offer "newPrice11" (* ?q ?minPrice) ?*propose*))))

6) The seller will decrease its previous offer o with 200, to the very cooperative or highly

cooperative buyers, when the negotiation step is greater than 12;

(defrule newPrice12

 (NegotiationObject {step >= ?*concederRounds*} (previousOffer ?o)

{buyerClassification == "vc" || buyerClassification == "hc"}

 (quantity ?q)) (Product (minPrice ?minPrice))

 (Strategy {strategy == ?*conceder*})

 => (if (<= (* ?q ?minPrice) (- ?o (* 200 ?q))) then

 (add (new Offer "newPrice12" (- ?o (* 200 ?q)) ?*propose*))

 else (add (new Offer "newPrice12" (* ?q ?minPrice) ?*propose*))))

For the boulware strategy of the seller, there are the following rules:

1) The seller will decrease its previous offer o by 1*q, when the negotiation step is greater than

1 and the time elapsed in the negotiation is less than 4 seconds, represented by the global variable

boulwareTime1;

 171

(defrule newPrice13

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed <

?*boulwareTime1*}(quantity ?q)) (Strategy {strategy == ?*boulware*})

 => (add (new Offer "newPrice13" (- ?o ?q) ?*propose*)))

2) The seller will decrease its previous offer o by 800*q, when the negotiation step is greater

than 1 and the time elapsed in the negotiation is greater than 4 seconds, represented by the global

variable boulwareTime1;

(defrule newPrice14

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed >=

?*boulwareTime1*}(quantity ?q)) (Product (minPrice ?minPrice))

 (Strategy {strategy == ?*boulware*})

 => (if (<= (* ?q ?minPrice) (- ?o (* 800 ?q))) then

 (add (new Offer "newPrice14" (- ?o (* 800 ?q)) ?*propose*))

 else (add (new Offer "newPrice14" (* ?q ?minPrice) ?*propose*))))

3) The seller will decrease its previous offer o by 1000*q, when the negotiation step is greater

than 1 and the time elapsed in the negotiation is greater than 4.5 seconds, represented by the global

variable boulwareTime2;

(defrule newPrice15

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed >=

?*boulwareTime2*}(quantity ?q)) (Strategy {strategy == ?*boulware*})

 (Product (minPrice ?minPrice))

 => (if (<= (* ?q ?minPrice) (- ?o (* 1000 ?q))) then

 (add (new Offer "newPrice15" (- ?o (* 1000 ?q)) ?*propose*))

 else (add (new Offer "newPrice15" (* ?q ?minPrice) ?*propose*))))

 172

Annex 3. Emergency Hospital Automated Negotiation Rules

The Jess rules upon which the negotiation is performed in the emergency hospital business

model are described in this annex. First the rules of the buyer agent are presented, and then the rules

associated to the seller agent.

The rules assciated to the ACCEPT communication primitive of the buyer are first defined.

1) The first ACCEPT rule says that an offer for a quantity q for a certain product having the price

between minPrice and maxPrice, from an unknown, non-cooperative or slightly cooperative partner is

accepted, if the price fulfills different conditions, with respect to the negotiation time elapsed,

expressed below;

(defrule accept1

 (NegotiationObject {sellerClassification == "nc" ||

sellerClassification == "u" || sellerClassification == "sc"}

 (currentOffer ?o) (quantity ?q) (timeElapsed ?te))

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice))

 => (bind ?half (* ?q (/ (+ ?minPrice ?maxPrice) 2)))

 (bind ?quarter (* ?q (/ (+ ?minPrice ?half) 2)))

 (bind ?test1 (and (<= ?o (* ?q (+ ?minPrice 10))) (<= ?te (* 0.6

?*maxNegTime*))))

 (bind ?test2 (and (<= ?o (* ?quarter ?q)) (and (> ?te (* 0.6

?*maxNegTime*)) (<= ?te (* 0.8 ?*maxNegTime*)))))

 (bind ?test3 (and (<= ?o (* ?q ?half)) (> ?te (* 0.8

?*maxNegTime*))))

 (if (or ?test1 ?test2 ?test3) then (add (new Offer "accept1"

?*accept*))))

2) The second ACCEPT rule deals with the case when an offer for a quantity q for a certain

product having the price between minPrice and maxPrice, from a cooperative, very cooperative or

highly cooperative partner is accepted, if the price fulfills different conditions, with respect to the

negotiation time elapsed, expressed below;

(defrule accept2

 (NegotiationObject {sellerClassification == "c" ||

sellerClassification == "vc" || sellerClassification == "hc"}

 (currentOffer ?o) (quantity ?q) (timeElapsed ?te))

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice))

 => (bind ?half (* ?q (/ (+ ?minPrice ?maxPrice) 2)))

 (bind ?threeQuarters (* ?q (/ (+ ?maxPrice ?half) 2)))

 (bind ?test1 (and (<= ?o (* ?q (+ ?half 10))) (<= ?te (* 0.6

?*maxNegTime*))))

 (bind ?test2 (and (<= ?o (* ?threeQuarters ?q)) (and (> ?te (* 0.6

?*maxNegTime*)) (<= ?te (* 0.8 ?*maxNegTime*)))))

 (bind ?test3 (and (<= ?o (* ?q ?maxPrice)) (> ?te (* 0.8

?*maxNegTime*))))

 (if (or ?test1 ?test2 ?test3) then (add (new Offer "accept2"

?*accept*))))

For the REJECT communication primitive of the buyer, there is the following rule:

1) The buyer will reject an offer for a negotiation object, received after a certain time threshold,

which is defined as 3 seconds for each negotiation. The message Negotiation time elapsed is sent

from the buyer to the seller;

(defrule reject1

 173

 (NegotiationObject (timeElapsed ?te &: (>= ?te ?*maxNegTime*)))

 => (add (new Offer "reject1" ?*reject* "Negotiation time

elapsed.")))

For the PROPOSE communication primitive of the buyer, there are the following rules:

1) The price offered by a buyer, in the beginning, for a certain quantity q of products, having the

price between minPrice and maxPrice, to a non-cooperative or unknown seller, is equal to q*minPrice;

(defrule firstPrice1

 (NegotiationObject {step == 1} {sellerClassification == "nc" ||

sellerClassification == "u"} (quantity ?q))(Product (minPrice ?minPrice))

 => (add (new Offer "firstPrice1" (* ?q ?minPrice) ?*propose*)))

2) The price offered by a buyer, in the beginning, for a certain quantity q of products, having the

price between minPrice and maxPrice, to a slightly cooperative or cooperative seller, is equal to

q*(minPrice+5);

(defrule firstPrice2

 (NegotiationObject {step == 1} {sellerClassification == "sc" ||

sellerClassification == "c"} (quantity ?q))(Product (minPrice ?minPrice))

 => (add (new Offer "firstPrice2" (* ?q (+ 5 ?minPrice))

?*propose*)))

3) The price offered by a buyer, in the beginning, for a certain quantity q of products, having the

price between minPrice and maxPrice, to a very cooperative or highly cooperative seller, is equal to

q*(minPrice+10);

(defrule firstPrice3

 (NegotiationObject {step == 1} {sellerClassification == "vc" ||

sellerClassification == "hc"} (quantity ?q))(Product (minPrice ?minPrice))

 => (add (new Offer "firstPrice3" (* ?q (+ 10 ?minPrice))

?*propose*)))

For the linear strategy of the buyer, there are the following rules:

1) The buyer will increase its previous offer o with 2, to the non-cooperative or unknown sellers,

when the negotiation step is greater than 1;

(defrule newPrice4

 (NegotiationObject {step > 1} (previousOffer ?o)

{sellerClassification == "nc" || sellerClassification == "u"}

 (quantity ?q)) (Strategy {strategy == ?*linear*})

 (Product (maxPrice ?maxPrice))

 => (if (> (* ?q ?maxPrice) (+ ?o (* 2 ?q))) then

 (add (new Offer "newPrice4" (+ ?o (* 2 ?q)) ?*propose*))

 else (add (new Offer "newPrice4" (* ?q ?maxPrice) ?*propose*))))

2) The buyer will increase its previous offer o with 4, to the slightly cooperative or cooperative

sellers, when the negotiation step is greater than 1;

(defrule newPrice5

 (NegotiationObject {step > 1} (previousOffer ?o)

{sellerClassification == "sc" || sellerClassification == "c"}

 (quantity ?q)) (Strategy {strategy == ?*linear*})

 (Product (maxPrice ?maxPrice))

 => (if (> (* ?q ?maxPrice) (+ ?o (* 4 ?q))) then

 (add (new Offer "newPrice5" (+ ?o (* 4 ?q)) ?*propose*))

 else (add (new Offer "newPrice5" (* ?q ?maxPrice) ?*propose*))))

3) The buyer will increase its previous offer o with 6, to the very cooperative or highly

cooperative sellers, when the negotiation step is greater than 1;

(defrule newPrice6

 174

 (NegotiationObject {step > 1} (previousOffer ?o)

{sellerClassification == "vc" || sellerClassification == "hc"}

 (quantity ?q)) (Strategy {strategy == ?*linear*})

 (Product (maxPrice ?maxPrice))

 => (if (> (* ?q ?maxPrice) (+ ?o (* 6 ?q))) then

 (add (new Offer "newPrice6" (+ ?o (* 6 ?q)) ?*propose*))

 else (add (new Offer "newPrice6" (* ?q ?maxPrice) ?*propose*))))

For the conceder strategy of the buyer, there are the following rules:

1) The buyer will increase its previous offer o with 15, to the non-cooperative or unknown

sellers, when the negotiation step is greater than 1 and lower than 12;

(defrule newPrice7

 (NegotiationObject {step > 1 && step < ?*concederRounds*}

(previousOffer ?o) {buyerClassification == "nc" || buyerClassification ==

"u"}(quantity ?q)) (Product (maxPrice ?maxPrice))

 (Strategy {strategy == ?*conceder*})

 => (if (> (* ?q ?maxPrice) (+ ?o (* 15 ?q))) then

 (add (new Offer "newPrice7" (+ ?o (* 15 ?q)) ?*propose*))

 else (add (new Offer "newPrice7" (* ?q ?maxPrice) ?*propose*))))

2) The buyer will increase its previous offer o with 20, to the slightly cooperative or cooperative

buyers, when the negotiation step is greater than 1 and lower than 12;

(defrule newPrice8

 (NegotiationObject {step > 1 && step < ?*concederRounds*}

(previousOffer ?o) {buyerClassification == "sc" || buyerClassification ==

"c"}(quantity ?q)) (Product (maxPrice ?maxPrice))

 (Strategy {strategy == ?*conceder*})

 => (if (> (* ?q ?maxPrice) (+ ?o (* 20 ?q))) then

 (add (new Offer "newPrice8" (+ ?o (* 20 ?q)) ?*propose*))

 else (add (new Offer "newPrice8" (* ?q ?maxPrice) ?*propose*))))

3) The buyer will increase its previous offer o with 25, to the very cooperative or highly

cooperative sellers, when the negotiation step is greater than 1 and lower than 12;

(defrule newPrice9

 (NegotiationObject {step > 1 && step < ?*concederRounds*}

(previousOffer ?o) {buyerClassification == "vc" || buyerClassification ==

"hc"}(quantity ?q)) (Product (maxPrice ?maxPrice))

 (Strategy {strategy == ?*conceder*})

 => (if (> (* ?q ?maxPrice) (+ ?o (* 25 ?q))) then

 (add (new Offer "newPrice9" (+ ?o (* 25 ?q)) ?*propose*))

 else (add (new Offer "newPrice9" (* ?q ?maxPrice) ?*propose*))))

4) The buyer will increase its previous offer o with 2, to the non-cooperative or unknown sellers,

when the negotiation step is greater than 12;

(defrule newPrice10

 (NegotiationObject {step >= ?*concederRounds*} (previousOffer ?o)

{sellerClassification == "nc" || sellerClassification == "u"}

 (quantity ?q)) (Strategy {strategy == ?*conceder*})

 (Product (maxPrice ?maxPrice))

 => (if (> (* ?q ?maxPrice) (+ ?o (* 2 ?q))) then

 (add (new Offer "newPrice10" (+ ?o (* 2 ?q)) ?*propose*))

 else (add (new Offer "newPrice10" (* ?q ?maxPrice) ?*propose*))))

5) The buyer will increase its previous offer o with 4, to the slightly cooperative or cooperative

sellers, when the negotiation step is greater than 12;

(defrule newPrice11

 175

 (NegotiationObject {step >= ?*concederRounds*} (previousOffer ?o)

{sellerClassification == "sc" || sellerClassification == "c"}

 (quantity ?q)) (Strategy {strategy == ?*conceder*})

 (Product (maxPrice ?maxPrice))

 => (if (> (* ?q ?maxPrice) (+ ?o (* 4 ?q))) then

 (add (new Offer "newPrice11" (+ ?o (* 4 ?q)) ?*propose*))

 else (add (new Offer "newPrice11" (* ?q ?maxPrice) ?*propose*))))

6) The buyer will increase its previous offer o with 6, to the very cooperative or highly

cooperative sellers, when the negotiation step is greater than 12;

(defrule newPrice12

 (NegotiationObject {step >= ?*concederRounds*} (previousOffer ?o)

{sellerClassification == "vc" || sellerClassification == "hc"}

 (quantity ?q)) (Strategy {strategy == ?*conceder*})

 (Product (maxPrice ?maxPrice))

 => (if (> (* ?q ?maxPrice) (+ ?o (* 6 ?q))) then

 (add (new Offer "newPrice12" (+ ?o (* 6 ?q)) ?*propose*))

 else (add (new Offer "newPrice12" (* ?q ?maxPrice) ?*propose*))))

For the boulware strategy of the buyer, there are the following rules:

1) The buyer will increase its previous offer o with 0.1, when the negotiation step is greater than

1 and the time elapsed in the negotiation is less than 2 seconds, represented by the global variable

boulwareTime1;

(defrule newPrice13

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed <

?*boulwareTime1*}(quantity ?q)) (Strategy {strategy == ?*boulware*})

 => (add (new Offer "newPrice13" (+ ?o (* 0.1 ?q)) ?*propose*)))

2) The buyer will increase its previous offer o with 10, when the negotiation step is greater than

1 and the time elapsed in the negotiation is greater than 2 seconds, represented by the global variable

boulwareTime1;

(defrule newPrice14

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed >=

?*boulwareTime1*}(quantity ?q)) (Strategy {strategy == ?*boulware*})

 (Product (maxPrice ?maxPrice))

 => (if (> (* ?q ?maxPrice) (+ ?o (* 10 ?q))) then

 (add (new Offer "newPrice14" (+ ?o (* 10 ?q)) ?*propose*))

 else (add (new Offer "newPrice14" (* ?q ?maxPrice) ?*propose*))))

3) The buyer will increase its previous offer o with 1000, when the negotiation step is greater

than 1 and the time elapsed in the negotiation is greater than 2.5 seconds, represented by the global

variable boulwareTime2;

(defrule newPrice15

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed >=

?*boulwareTime2*}(quantity ?q)) (Strategy {strategy == ?*boulware*})

 (Product (maxPrice ?maxPrice))

 => (if (> (* ?q ?maxPrice) (+ ?o (* 20 ?q))) then

 (add (new Offer "newPrice15" (+ ?o (* 20 ?q)) ?*propose*))

 else (add (new Offer "newPrice15" (* ?q ?maxPrice) ?*propose*))))

For the seller, regarding the ACCEPT communication primitive, there are the following rules:

1) The seller will accept an offer from a non-cooperative or unknown buyer, for a certain

quantity of q products, having the price between minPrice and maxPrice, with the price greater than

q*(minPrice+maxPrice)/2;

(defrule accept1

 176

 (NegotiationObject {buyerClassification == "nc" ||

buyerClassification == "u"} {step > 0}(currentOffer ?o) (quantity ?q))

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice &: (>= ?o (* ?q (/

(+ ?minPrice ?maxPrice) 2))))) => (add (new Offer "accept1" ?*accept*)))

2) The seller will accept an offer from a slightly cooperative or cooperative buyer, for a certain

quantity of q products, having the price between minPrice and maxPrice, with the price between

q*(minPrice+maxPrice)/2 and q*maxPrice;

(defrule accept2

 (NegotiationObject {buyerClassification == "sc" ||

buyerClassification == "c"} {step > 0}(currentOffer ?o) (quantity ?q))

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice &: (<= ?o (* ?q

?maxPrice)) &: (> ?o (* ?q (/ (+ ?minPrice ?maxPrice) 2)))))

 => (add (new Offer "accept2" ?*accept*)))

3) The seller will accept an offer from a very cooperative or highly cooperative buyer, for a

certain quantity of q products, having the price between minPrice and maxPrice, with the price lower

than or equal to q*maxPrice;

(defrule accept3

 (NegotiationObject {buyerClassification == "vc" ||

buyerClassification == "hc"} {step > 0}(currentOffer ?o) (quantity ?q))

 (Product (minPrice ?minPrice) (maxPrice ?maxPrice &: (<= ?o (* ?q

?maxPrice)))) => (add (new Offer "accept3" ?*accept*)))

For the REJECT communication primitive of the seller, there are the following rules:

1) The seller will reject an offer for a negotiation object, received after a certain time threshold,

which is defined as 3 seconds for each negotiation. The message Negotiation time elapsed is sent

from the seller to the buyer;

(defrule reject1

 (NegotiationObject (timeElapsed ?te &: (>= ?te ?*maxNegTime*)))

 => (add (new Offer "reject1" ?*reject* "Negotiation time

elapsed.")))

For the PROPOSE communication primitive of the seller, there are the following rules:

1) The price proposed by a seller, in the beginning, for a certain quantity q of products, having

the price between minPrice and maxPrice, to a non-cooperative or unknown buyer, is equal to:

a) q*maxPrice, if q≤10;

b) q*maxPrice*0.95, if 10<q<20;

c) q*maxPrice*0.85, if q≥20.

(defrule firstPrice1

 (NegotiationObject {step == 0} {buyerClassification == "nc" ||

buyerClassification == "u"} (quantity ?q))(Product (maxPrice ?maxPrice))

 => (if (and (> ?q 10) (< ?q 20)) then

 (add (new Offer "firstPrice1" (* (* ?maxPrice 0.95) ?q)

?*propose*)) elif (>= ?q 20) then

 (add (new Offer "firstPrice1" (* (* ?maxPrice 0.85) ?q)

?*propose*)) else

 (add (new Offer "firstPrice1" (* ?maxPrice ?q) ?*propose*))))

2) The price proposed by a seller, in the beginning, for a certain quantity q of products, having

the price between minPrice and maxPrice, to a slightly cooperative or cooperative buyer, is equal to:

a) q*maxPrice*0.97, if q≤10;

b) q*maxPrice*0.9, if 10<q<20;

c) q*maxPrice*0.8, if q≥20.

(defrule firstPrice2

 177

 (NegotiationObject {step == 0} {buyerClassification == "sc" ||

buyerClassification == "c"} (quantity ?q))(Product (maxPrice ?maxPrice))

 => (if (and (> ?q 10) (< ?q 20)) then

 (add (new Offer "firstPrice2" (* (* ?maxPrice 0.90) ?q)

?*propose*)) elif (> ?q 20) then

 (add (new Offer "firstPrice2" (* (* ?maxPrice 0.80) ?q)

?*propose*)) else

 (add (new Offer "firstPrice2" (* (* ?maxPrice 0.97) ?q)

?*propose*))))

3) The price proposed by a seller, in the beginning, for a certain quantity q of products, having

the price between minPrice and maxPrice, to a very cooperative or highly cooperative buyer, is equal

to:

a) q*maxPrice*0.95, if q≤10;

b) q*maxPrice*0.85, if 10<q<20;

c) q*maxPrice*0.75, if q≥20.

(defrule firstPrice3

 (NegotiationObject {step == 0} {buyerClassification == "vc" ||

buyerClassification == "hc"} (quantity ?q))(Product (maxPrice ?maxPrice))

 => (if (and (> ?q 10) (< ?q 20)) then

 (add (new Offer "firstPrice3" (* (* ?maxPrice 0.85) ?q)

?*propose*)) elif (> ?q 20) then

 (add (new Offer "firstPrice3" (* (* ?maxPrice 0.75) ?q)

?*propose*)) else

 (add (new Offer "firstPrice3" (* (* ?maxPrice 0.95) ?q)

?*propose*))))

For the linear strategy of the seller, there are the following rules:

1) The seller will decrease its previous offer o with 2, to the non-cooperative or unknown buyers,

when the negotiation step is greater than 1;

(defrule newPrice4

 (NegotiationObject {step > 1} (previousOffer ?o) {buyerClassification

== "nc" || buyerClassification == "u"} (quantity ?q)) (Product (minPrice

?minPrice)) (Strategy {strategy == ?*linear*})

 => (if (<= (* ?q ?minPrice) (- ?o (* 2 ?q))) then

 (add (new Offer "newPrice4" (- ?o (* 2 ?q)) ?*propose*))

 else (add (new Offer "newPrice4" (* ?q ?minPrice) ?*propose*))))

2) The seller will decrease its previous offer o with 4, to the slightly cooperative or cooperative

buyers, when the negotiation step is greater than 1;

(defrule newPrice5

 (NegotiationObject {step > 1} (previousOffer ?o) {buyerClassification

== "sc" || buyerClassification == "c"}(quantity ?q)) (Product (minPrice

?minPrice))(Strategy {strategy == ?*linear*})

 => (if (<= (* ?q ?minPrice) (- ?o (* 4 ?q))) then

 (add (new Offer "newPrice5" (- ?o (* 4 ?q)) ?*propose*))

 else (add (new Offer "newPrice5" (* ?q ?minPrice) ?*propose*))))

3) The seller will decrease its previous offer o with 6, to the very cooperative or highly

cooperative buyers, when the negotiation step is greater than 1;

(defrule newPrice6

 (NegotiationObject {step > 1} (previousOffer ?o) {buyerClassification

== "vc" || buyerClassification == "hc"}(quantity ?q)) (Product (minPrice

?minPrice))(Strategy {strategy == ?*linear*})

 => (if (<= (* ?q ?minPrice) (- ?o (* 6 ?q))) then

 178

 (add (new Offer "newPrice6" (- ?o (* 6 ?q)) ?*propose*))

 else (add (new Offer "newPrice6" (* ?q ?minPrice) ?*propose*))))

For the conceder strategy of the seller, there are the following rules:

1) The seller will decrease its previous offer o with 15, to the non-cooperative or unknown

buyers, when the negotiation step is greater than 1 and lower than 12;

(defrule newPrice7

 (NegotiationObject {step > 1 && step < ?*concederRounds*}

(previousOffer ?o) {buyerClassification == "nc" || buyerClassification ==

"u"}(quantity ?q)) (Product (minPrice ?minPrice))

(Strategy {strategy == ?*conceder*})

 => (if (<= (* ?q ?minPrice) (- ?o (* 15 ?q))) then

 (add (new Offer "newPrice7" (- ?o (* 15 ?q)) ?*propose*))

 else (add (new Offer "newPrice7" (* ?q ?minPrice) ?*propose*))))

2) The seller will decrease its previous offer o with 20, to the slightly cooperative or cooperative

buyers, when the negotiation step is greater than 1 and lower than 12;

(defrule newPrice8

 (NegotiationObject {step > 1 && step < ?*concederRounds*}

(previousOffer ?o) {buyerClassification == "sc" || buyerClassification ==

"c"}(quantity ?q)) (Product (minPrice ?minPrice))

 (Strategy {strategy == ?*conceder*})

 => (if (<= (* ?q ?minPrice) (- ?o (* 20 ?q))) then

 (add (new Offer "newPrice8" (- ?o (* 20 ?q)) ?*propose*))

 else (add (new Offer "newPrice8" (* ?q ?minPrice) ?*propose*))))

3) The seller will decrease its previous offer o with 25, to the very cooperative or highly

cooperative buyers, when the negotiation step is greater than 1 and lower than 12;

(defrule newPrice9

 (NegotiationObject {step > 1 && step < ?*concederRounds*}

(previousOffer ?o) {buyerClassification == "vc" || buyerClassification ==

"hc"}(quantity ?q)) (Product (minPrice ?minPrice))

 (Strategy {strategy == ?*conceder*})

 => (if (<= (* ?q ?minPrice) (- ?o (* 25 ?q))) then

 (add (new Offer "newPrice9" (- ?o (* 25 ?q)) ?*propose*))

 else (add (new Offer "newPrice9" (* ?q ?minPrice) ?*propose*))))

4) The seller will decrease its previous offer o with q*2, to the non-cooperative or unknown

buyers, when the negotiation step is greater than 12;

(defrule newPrice10

 (NegotiationObject {step >= ?*concederRounds*} (previousOffer ?o)

{buyerClassification == "nc" || buyerClassification == "u"}

 (quantity ?q)) (Product (minPrice ?minPrice))

 (Strategy {strategy == ?*conceder*})

 => (if (<= (* ?q ?minPrice) (- ?o (* 2 ?q))) then

 (add (new Offer "newPrice10" (- ?o (* 2 ?q)) ?*propose*))

 else (add (new Offer "newPrice10" (* ?q ?minPrice) ?*propose*))))

5) The seller will decrease its previous offer o with q*4, to the slightly cooperative or cooperative

buyers, when the negotiation step is greater than 12;

(defrule newPrice11

 (NegotiationObject {step >= ?*concederRounds*} (previousOffer ?o)

{buyerClassification == "sc" || buyerClassification == "c"}(quantity ?q))

(Product (minPrice ?minPrice))(Strategy {strategy == ?*conceder*})

 => (if (<= (* ?q ?minPrice) (- ?o (* 4 ?q))) then

 (add (new Offer "newPrice11" (- ?o (* 4 ?q)) ?*propose*))

 179

 else (add (new Offer "newPrice11" (* ?q ?minPrice) ?*propose*))))

6) The seller will decrease its previous offer o with q*6, to the very cooperative or highly

cooperative buyers, when the negotiation step is greater than 12;

(defrule newPrice12

 (NegotiationObject {step >= ?*concederRounds*} (previousOffer ?o)

{buyerClassification == "vc" || buyerClassification == "hc"}(quantity ?q))

(Product (minPrice ?minPrice))(Strategy {strategy == ?*conceder*})

 => (if (<= (* ?q ?minPrice) (- ?o (* 6 ?q))) then

 (add (new Offer "newPrice12" (- ?o (* 6 ?q)) ?*propose*))

 else (add (new Offer "newPrice12" (* ?q ?minPrice) ?*propose*))))

For the boulware strategy of the seller, there are the following rules:

1) The seller will decrease its previous offer o by 0.1*q, when the negotiation step is greater

than 1 and the time elapsed in the negotiation is less than 2 seconds, represented by the global

variable boulwareTime1;

(defrule newPrice13

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed <

?*boulwareTime1*}(quantity ?q))(Strategy {strategy == ?*boulware*})

 => (add (new Offer "newPrice13" (- ?o (* ?q 0.1)) ?*propose*)))

2) The seller will decrease its previous offer o by 10*q, when the negotiation step is greater than

1 and the time elapsed in the negotiation is greater than or equal to 2 seconds, represented by the

global variable boulwareTime1;

(defrule newPrice14

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed >=

?*boulwareTime1*}(quantity ?q)) (Product (minPrice ?minPrice))

 (Strategy {strategy == ?*boulware*})

 => (if (<= (* ?q ?minPrice) (- ?o (* 10 ?q))) then

 (add (new Offer "newPrice14" (- ?o (* 10 ?q)) ?*propose*))

 else (add (new Offer "newPrice14" (* ?q ?minPrice) ?*propose*))))

3) The seller will decrease its previous offer o by 20*q, when the negotiation step is greater than

1 and the time elapsed in the negotiation is greater than or equal to 2.5 seconds, represented by the

global variable boulwareTime2;

(defrule newPrice15

 (NegotiationObject {step > 1} (previousOffer ?o) {timeElapsed >=

?*boulwareTime2*}(quantity ?q))(Strategy {strategy == ?*boulware*})

 (Product (minPrice ?minPrice))

 => (if (<= (* ?q ?minPrice) (- ?o (* 20 ?q))) then

 (add (new Offer "newPrice15" (- ?o (* 20 ?q)) ?*propose*))

 else (add (new Offer "newPrice15" (* ?q ?minPrice) ?*propose*))))

