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Introduction - The Problem and The Goal

The Problem

The imbalance in the skin tone attribute in dermatological datasets leads to possibly
biased classification

Augment a non-dermoscopic imbalanced dataset using synthetic images generated by
fine-tuning a Stable Diffusion model with DreamBooth and compare the classification
bias between the augmented and original dataset using:

¢ A Convolutional Neural Network (CNN)
® A Swin Transformer (ST)
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Introduction - The Pipeline
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Introduction - The Dataset

Non-dermoscopic dataset of ~ 8000 images of pediatric patients at the Sant'Orsola
Hospital with nine possible skin diseases.

® High variability in illumination

® High variability in size and quality

® Inconsistent focus on affected skin areas
® Blurriness

® Imbalance in skin tone

® |mbalance in disease classes
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Data Preprocessing: Cropping Algorithm and Skin Tone Estimation
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Data Preprocessing: Cropping Algorithm and Skin Tone Estimation

Sliding window-based algorithm! which employs the binary mask of the images to detect
the regions in which the disease is present

e RESULTS: ~ 330000 crops of uniform 256x256 size. Not all crops are good crops:

1The preprocessing algorithm was adapted from the one developed by D’'Amico, Murgia and Moeini

Feizabadi
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Data Preprocessing: Cropping Algorithm and Skin Tone Estimation

Individual Typology Angle computation and thresholding using a Gaussian Mixture
Model to obtain the skin tone labels
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Generation of Clinical Skin Images: Fine-Tuning Stable Diffusion
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Generation of Clinical Skin Images: Fine-Tuning Stable Diffusion

Fine-tuning of Stable Diffusion via the DreamBooth technique:

1.
2.

Exploration of the dataset to manually select images of 'dark’ and "brown’ skin tones
Construction of mini-datasets (~ 14-29 images) for each disease and each of the two
skin tones

Grid Search during DreamBooth fine-tuning to find the set of optimal
hyperparameters

Manual selection of the models fine-tuned with the hyperparameter combinations
showing the best results
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Generation of Clinical Skin Images: Fine-Tuning Stable Diffusion
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Skin Diseases Classification with a CNN: Original vs Au nted Dataset
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Skin Diseases Classification with a CNN: Original vs Augmented Dataset

Three fairness metrics to evaluate bias:
1. Disparate Impact
2. Equalized Odds Ratio
3. Predictive Rate Ratio

Subdivision of the skin tones in a Minority group (dark and brown skin tones) and a
Majority group (tan, intermediate, light and very light skin tones)?

2A. Corbin, O. Marques, Assessing bias in skin lesion classifiers with contemporary deep learning and
post-hoc explainability techniques, IEEE Access 11 (2023) 78339-78352. doi:10.1109/ACCESS.

2023.3289320.
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Skin Diseases Classification with a CNN: Original vs Augmented Dataset
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(a) CNN results on the original dataset.
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(b) CNN results on the augmented dataset.

metrics values improved
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Skin Diseases Classification with a ST: Original vs Augmented Dataset
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Skin Diseases Classification with a ST: Original vs Augmented Dataset

DI, EOR, and PRR Across Conditions
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(a) ST results on the original dataset.
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(b) ST results on the augmented dataset.
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Conclusions and Further Work

The results demonstrate that synthetic images have a positive impact on classification,
both in terms of performance and fairness. The improvement is more remarkable for
the CNN than for the ST. However, several improvements to the pipeline are possible:

® |Improve preprocessing to enhance classifier performance

® Generate dark-skinned images starting from light-skinned images... but pay attention!
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Thank you for your attention!
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