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The ICU case

Intensive care unit (ICU) readmission prediction
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KUMAR, ET AL. (2023)

• Using PRISMA (Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses) and 

a standardized methodology to estimate risk 

of bias (ROB)

• 48 studies distributed across tabular, imaging, 

and hybrid data models

• Often related to absent sociodemographic 

data, imbalanced or incomplete datasets, or 

weak algorithm design
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Medical and Health AI biases in 
publication
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• Using the PROBAST (Prediction model Risk 

Of Bias ASsessment Tool) framework

• 555 published neuroimaging-based AI models 

for psychiatric diagnosis
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Metrics for biases used in studies

The systematic review from Chen F et al. (2024), focusing on AI models 
used for HER datasets, concluded that, out of the 20 selected studies: 

• 8 studies (40%) applied only performance metrics as sensitivity, specificity, 
accuracy, mean squared error (MSE) and AUROC.

• 12 (60%) employed fairness metrics and all of them focused on group 
fairness which tests for some form of statistical parity (eg, between positive 
outcomes, or errors) for members of different protected groups.

13.51%



Objective

These studies emphasize a critical need for improved 
awareness of bias in healthcare AI, and the routine adoption 

of mitigation strategies capable of bridging model 
conception through to fair and equitable clinical adoption.

Clinical/ 
Medical 

approach
Statistics/Model 

development 
approach

16.22%



Medical Approach:
Reproducibility



Reproducibility

DL models must be reproducible to be reliable for clinical 
application. To achieve full reproducibility the following criteria
should be satisfied:

1. Technical reproducibility

2. Statistical reproducibility

3. Conceptual reproducibility (= replicability)

21.62%



Technical reproducibility

= the ability of an independent research team to produce the same 
results using the same DL method based on the documentation 
made by the original research team. To achieve this, the following 
should be shared:

• Dataset

• Code (preprocessing and model)

24.32%



Technical reproducibility

= the ability of an independent research team to produce the same 
results using the same DL method based on the documentation 
made by the original research team. To achieve this, the following 
should be shared:

• Dataset  …few are public, de-identification/usefulness
balance

• Code (preprocessing and model) …may not run correctly

27.03%



Technical reproducibility

= the ability of an independent research team to produce the same 
results using the same DL method based on the documentation 
made by the original research team. To achieve this, the following 
should be shared:

• Dataset  → All studies (theoretically)

• Code (preprocessing and model) → Only four studies (17%)

In our review

29.73%



Statistical reproducibility

= the ability to obtain statistically equivalent results under 
resampled conditions (= internal validity). Generally addressed by 
DL model development studies, but how to assess?

• K-fold cross-validation and/or other data splits

• Variance (e.g., SD) of performance metrics is reported

32.43%



Statistical reproducibility

= the ability to obtain statistically equivalent results under 
resampled conditions (= internal validity). Generally addressed by 
DL model development studies, but how to assess?

• K-fold cross-validation and/or other data splits.

→ Only one study did not report internal validation
method

• Variance (e.g., SD) of performance metrics is reported.

→ 11 of 22 (50%) studies reporting AUROC

In our review

35.14%



Conceptual reproducibility (= 
replicability)

= the ability to reproduce the desired results under conceptually
similar conditions (= external validation). Task-definition dependent. 
Issues:

• External validation rarely performed

• Multi-institution datasets

37.84%



Conceptual reproducibility (= 
replicability)

= the ability to reproduce the desired results under conceptually
similar conditions (= external validation). Task-definition dependent. 
Issues:

• External validation rarely performed → 2 studies (8%)

• Multi-institution datasets → 3 studies (13%). No studies 
integrated multiple datasets

In our review

40.54%



Statistical Approach:
Generalization



Predictive modelling

• Predictive modeling → multiple factors/predictors for accurate prediction 
(causal inference/reasoning)

• The main focus of prediction model studies is the overall predictive or 
diagnostic performance of the model which should also be assessed in 
new patients (validation) → generalization 

45.95%



Common Types of statistical Biases 
from AI

Statistical/ 
Development 

Biases

Sampling Bias

Confounding 
Bias

Algorithmic 
Bias

48.65%



Sampling bias

• This type of bias, aka population bias, occurs when the way of 
the selected objects is leading to results representing specific 
groups of data and not the targeted population.

• Asking or selecting the wrong population/characteristics

• Missing the necessary response

• Question in focus “why do some patients have complete data 
and others do not?”

51.35%



Common Types of 
Sampling/Population bias

Selection bias 

• Systematically selected 
population is the not 
correct one based on the 
inclusion and exclusion 
criteria for the specific 
problem

• Sampling Frame Bias -
the sampling frame used 
to collect data does not 
cover the entire 
population of interest

Survivorship Bias 

• How many participants 
“survived” during the 
duration of the study

• “Non-survivors” means 
losing participants from 
any cause (e.g. death, 
leaving the study, injury, 
etc.) not related to the 
study objectives, at any 
point of the study. 

• Is death/mortality an 
event in the ICU 
readmission case? 

Non-Response Bias 

• Missing values and the 
way to manage those.

• Participants not 
responding due to 
ethical/psychological 
reasons

• Reporting problems from 
the medical team 
(textual and nontextual, 
forgetfulness of 
reporting, etc.)

54.05%



Causes of sampling bias

• Inadequate Data Collection
• Reporting issues → such as low-quality data coming from low-income countries e.g. 

the study from Tolera A. et al. (2024) that showed a shortage of data entry formats 
and/or delays in supplies that affected healthcare data quality.

• Data Preprocessing 
• Various data types in machine-learning approaches employed within the predicted 

process → 3 most frequent data types include image, text, and tabular/numerical 
making data cleaning and data transformation a difficult task. (Albahra et al., 2023)

• Missing values handling → different statistical approaches for each case and scope

• Data Imbalance/ fairness
• when not all observed characteristics are equally represented in the dataset 

• Representative results through clearly defining the target population. All 
characteristics being equally represented. 

56.76%



Confounding factor

• Confounding factors may mask an actual association or, more 
commonly, falsely demonstrate an apparent association 
between the treatment and outcome when no real association 
between them exists.

• For confounding bias, the relevant question is: why did a patient 
receive one particular drug over any other?

• The effects of confounding may result in:
• An observed association when no real association exists.

• No observed association when a true association does exist.
• An underestimate of the association (negative confounding).

• An overestimate of the association (positive confounding).

59.46%



Confounding outcomes

• n the study by Ramspek et al. (2021), 30% of the prediction studies reviewed interpreted 
included predictors in a causal manner, by suggesting that modifying a predictor could 
improve a patient’s prognosis.. 

• Misinterpretation: since predictors in prediction models do not need to be causally 
associated with the outcome, such studies cannot validly conclude that an individual’s 
prognosis would change if these predictors were modified.

• Another study presenting a dementia risk score, concluded that a high BMI is protective. 
These conclusions may mislead readers into thinking obesity has health benefits (Li J, et 
al. 2018)

• Confounding also constitute to poor research methodology if not be adjusted properly.

• Unfortunately, machine learning algorithms cannot distinguish mediators from 
confounders or recognize bias (Lin S-H, et al. 2020)

62.16%



Dealing with Confounders
Identifying and manage the cofounding factor, generally focusing 

on controlling it or remove it entirely.

Assessing predictive models 

Predictive models are 
assessed by their prediction 
accuracy. Cross-validation 

through k-fold. 

(Chyzhyk D. et al. 2022; 
Soneson et al., 2014)

Deconfounding 

Removing the confounding 
factor after discovering it. 

Many papers propose different 
approaches of doing this, 
depended on the targeted 

problem. (Zhao et al., 2020; 
Zhang et al., 2019)

Controlling the confounding 
factor 

Minimize or stabilize  the 
factor after identifying it (D. 

Chyzhyk, et al., 2018; Chyzhyk 
D. et al. 2022)

64.86%



Algorithmic bias

• Algorithmic bias emerges because of wrong assumptions made 
during the training of prediction models, frequently mirroring 
biases present in the real world or originating from incorrect or 
insufficient datasets leading to bad trained algorithms.

• Within the realm of healthcare, this bias has the potential to 
result in inaccurate diagnoses/ decision making or 
suboptimal interventions.

• All parties should focus on fairness in the data & equal 
treatment of the patients.

67.57%



Algorithmic bias

Colacci et al., (2025) through a study of
760 articles reporting on a clinical ML 
model, concluded that 

• Algorithmic bias assessments was only 
performed in roughly 12% of the 
articles, 75% of which identified a bias

• The efficaciousness of bias mitigation 
techniques ranged from 25% to 89%, 
with participant reweighting and 
varying model type being the most 
effective methods
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72.97%
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standard of 

fairness

Lack of 
contextual 
specificity

The black-box 
nature of deep 
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Mitigating the Algorithmic bias

Technical approachData approach

• Correct framing of the problem 
– target population

• Data diversification and 
representation (equality)

• Managing bias in data 
preprocessing (missing data, 
confounders, etc.)

• Eliminating bias during model 
development and validation

• Equitable model implementation 
(following reporting guidelines 
and updates in data) (Kolbinger 
et al., 2024)

• Create an explainable 
framework of the model (SHAP, 
LIME, visual explanation, etc.)

75.68%



Explainability



Explainability

The adoption of DL models as advanced decision-making tools in 
healthcare is limited by their lack of transparecy and interpretability
→ «black box» problem

A potential solution are Explainable Artificifial Intelligence (XAI) 
methods

The most commonly used is SHAP, followed by LIME and 
GradCAM (Aziz et al., 2025)

81.08%



XAI methods

Can be defined based on:

1. Stage → post hoc vs ante hoc

2. Applicability → model-agnostic vs model-specific

3. Scope → global vs local

4. Form → rule-based vs. visual representation

5. Type → e.g., feature important rankings

83.78%



XAI methods – an example

Shapley Additive Explanations (SHAP). Assigns each feature an 
importance value for a particular prediction by calculating Shapley 
values derived from cooperative game theory.

1. Stage → post hoc 

2. Applicability → model-agnostic

3. Scope → global and local

4. Form → rule-based and visual representation

5. Type → feature important rankings

86.49%



XAI methods - SHAP

Two studies employed SHAP:

• Lim et al. (2025) found that peripheral oxygen saturation, respiratory

rate and heart rate were key predictors for ICU readmission.

• Pishgar et al. (2022) highlighted the importance of severity scores for 

the specific ICU subpopulation of patients with heart failure diagnosis.

In our review

89.19%



Take-home messages: 
should we trust AI predictions?

• DL model development articles still showing high RoB. 

• Reporting issues reduce fairness and reliability of AI models. 

• Reproducible and generalizable results are fundamental for 
clinical applicability. 

• Even if the above are achieved, explainability still remains a 
major concern and should be adequately addressed.

• Medical staff, researchers and developers should work in 
alignment and under common conception of the results aimed.

91.89%
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