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CPRD and Synthetic Data




2 CPRD

Clinical Practice Research Datalink (CPRD) is a UK government health data research service
supporting observational and interventional public health and clinical studies by academics,
industry and regulators worldwide.

CPRD operates GP practices Researchers must apply
on a cost-recovery voluntarily contribute and studies be approved
basis data to CPRD to use CPRD data
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. _ Median 10
>16 million GP Network
>60 million 6 millio years

Patients for Patients for trials follow-up 1in every 4 GP

observa_ltional & clinical studies 25% 20 years practices in UK
studies

follow-up

. One of the largest sources of primary care data for public health and research
. Service based on >30 years collecting primary care EHR

. Daily data collection
. ~25% UK population coverage



Synthetic Data
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Synthetic data

CPRD has generated a number of synthetic datasets that can be used for training purposes or to
improve algorithms or machine learmning workflows.

« High-fidelity synthetic datasets

o CPRD cardiovascular disease synthetic dataset

o CPRD COVID-19 symptoms and risk factors synthetic dataset
« Medium-fidelity synthetic datasets

o CPRD Auruim and CPRND GOI N samnle datasets
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CPRD data
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Model sampling

What is Synthetic data?

Synthetic data mimics the characters of
real data without containing a one-to-one

mapping with real individuals.

Key advantages

Ease of access, cost and test efficiency,

privacy, data augmentation, ...
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Bias In Real-World data



The problem of bias in real-world data
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Borden was rated high risk for future crime after she and a friend

took a kid's bike and scooter that were sitting outside. She did not
reoffend.

COMMENT | VOLUM )286, P1684-1685, MAY 08, 2021

COVID-19 and disparities affecting ethnic minorities
Daniel R Morales £ « Sarah N Ali

Published: April 30,2021 « DOI: https://doi.org/10.1016/50140-6736(21)00949-1
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Amazon scrapped 'sexist Al' tool

nature > news & views forum > article

NEWS & VIEWS FORUM ‘ 19 October 2022

Skin colour affects the accuracy of
medical oxygen sensors

‘COVID-19 broadened the use of pulse oximeters for rapid blood-oxygen readings, butit
also highlighted the fact that skin pi; ion alters Two groups of
researchers analyse this issue, and its effects on people with dark skin.

By Matthew D. Keller &, Brandon Harrison-Smith &, Chetan Patil & & Mohamm
vy f =
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The algorit

An algorithm that was being tested as a recruitment tool by online giant
Amazon was sexist and had to be scrapped, according to a Reuters report.

The artificial intslligence system was trained on data submitted by applicants
over a 10-year period, much of which came from men, it claimed




From bias in real-world healthcare to unfair clinical models
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How synthetic data can help




From Synthetic Data Generation...

Synthetic Data Generation
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CPRD data Synthetic data ML Community

Model sampling




From Synthetic Data Generation...
... to Bias-Aware Synthetic Data Generation

Bias-Aware Synthetic Data Generation
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Quantify bias in large (A) and small (B) data

(A) Uncertainty Analysis (B) Representation Bias

1
I Sensitive Attribute
1

Labels

Sensitive attribute +

| Labels
\
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Coverage metrics help identify whether specific patient groups
are under-represented or over-represented in the dataset.




3. Evaluation

Quantify
Representation
Bias

Model Training

Predictions

Test data
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Quantify
Fairness
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accuracy, precision, recall, AUC

Model-based fairness:

- accuracy parity, equalised odds,

predictive rate parity
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Some key results (1)

« Case study on bias relating to ethnic group data. Testing the approach on the CVD data.
« Predicting stroke and heart attacks.

Ethnicity

80%
B GT (Uncorrected for bias)

70% Uncertain analysis

m BB (Corrected for bias)
60%
If the yellow bar is lower than the

50% green bar, it means there are
enough data for them already

40%

30%

20%

10%

White or not Indian Pakistani  Bangladeshi Other Asian Black Black African ~ Chinese Other ethnic
stated Caribbean group




Fairness metrics

Some key results (2)

Original data Corrected data
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e 05% Confidence 0.793 0.828 Equalized Odds Equalized Odds
Interval
= 05% Confidence
Interval 0.796 0.831
Mean Accuracy 0.795 0.83 Achievements [1]

95% Confidence Interval

= 95% Confidence Interval )
Detected biases for one protected

attribute

Mean Accuracy

Improved Classification Accuracy and
Fairness for target disease prediction

[1] Draghi B, Wang Z, Myles P, Tucker A. Identifying and handling data bias within primary healthcare data using synthetic data generators. Heliyon. 2024;10(2):e24164. Published 2024 Jan 10.
doi:10.1016/j.heliyon.2024.e24164




EMULATE: a self-service synthetic data generation platform

« Based on the synthetic data research and development undertaken by the MHRA
« Data-driven approach using BN-based approaches

* Web application with ‘no code’ user-friendly interface

« Privacy- utility reports

» Generate high-fidelity synthetic data versions of your own tabular coded datasets
« No storage of your data or data patterns

* You retain the IP and ownership of synthetic data generated from your data

For expressions of interest to try the prototype, contact enquiries@cprd.com with
"Emulate EOI" in the subject header
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