
FACULTY OF AUTOMATIC CONTROL AND
COMPUTERS

COMPUTER SCIENCE DEPARTMENT

DIPLOMA PROJECT
Agent-Based Android Application for Conferences

Client-Server Communication and Architecture

Thesis supervisor:
Prof. Dr. Ing. Andrei Olaru
Ing. Alexandru Sorici

Alexandru-Dan Tomescu

BUCHAREST

2014

Table of Contents
1 . Introduction...2

 1.1. Ambient Intelligence..2
1 .2. Objective: Smart Conferences...4

2 . State of the Art..7
 2.1. Conference Management Applications..7
 2.2. Multi­Agent Systems...9

3 . The Smart Conference Application..12
 3.1. Application Scenarios..12
 3.2. Application modules..15

4 . Application Architecture and Implementation...18
 4.1. Server Application and Implementation..22
 4.2. Client Implementation and Server­Client Communication...25

 4.2.1. Server­Client Communication Module...25
 4.2.2. Agent Bridge Module...30

5 . Scenario and Testing...32
6 . Conclusion..36
7 . Appendix A...38

ABSTRACT

Ambient Intelligence (AmI) envisions an ubiquitous environment
which provides assistance to the people within it. This field has
been recently receiving more attention due to the fact that
devices are getting smaller and more powerful. The goal of this
thesis is to present the context of smart conferences and to
implement part of the architecture and specific functionalities of
the Envived Android application.

1

ALEXANDRU-DAN TOMESCU

1. Introduction

1.1. Ambient Intelligence

Ambient Intelligence (AmI) is the vision that technology will become invisible,
embedded, present whenever we need it, enabled by simple interactions,
attuned to our senses and adaptive to users and contexts [1].

The idea of Ambient Intelligence refers to a new way people interact with
technology, which is embedded in the environment. Some of the objectives of
Ambient Intelligence are the optimization of everyday tasks, the improvement of
human communication, comfort, security, health and others. Ambient
Intelligence is tied with other technologies including ubiquitous computing and
smart environments.

At the core of AmI we have the idea of non-intrusive computing with minimal
interaction from the user. This is finally feasible as devices and sensors have
become small and powerful enough that they can be concealed within ordinary
items though environments, fact which was predicted by Moore’s Law. Through
these devices and sensors specific environments can be enriched, so that they
can react to people and give assistance.

This area of Computer Science also targets to change the way people interact
with technology. What started with huge systems with very limited processing
power, maintained and used by specialists, transitioned to personal computers
which tech-savvy people would operate, then to small devices and wearables
(PDAs, Smartphones and recently other wearables such as smart glasses and
smart watches), and finally to devices embedded into the environment, which
people can interact with no effort.

“The most profound technologies are those that disappear. They weave
themselves into the fabric of everyday life until they are indistinguishable from
it.” [2]

In the environments enriched with Ami, the user provides input to the devices
that surround him with no effort, just by carrying his usual activities. These
devices should be able to anticipate the needs of the subject, to interpret his
actions and mood, to empathize. This means that the system doesn’t just collect
data and interacts based on the input, but it is an intelligent system, able to be
proactive when needed and to restrain itself in certain situations.

AmI is dependent on other fields in Computer Science like Sensors, Networks,
Ubiquitous Computing and Artificial Intelligence.

Sensors are small devices used to detect certain stimuli and measure them.
These are used to measure temperature in the environment, the composition of
the air and any other measurable quantity in the environment. These sensors
provide input for the AmI system, which can then choose a course of action.

2

Agent-Based Android Application for Conferences
Client-Server Communication and Architecture

Sensors can also be attached to the body of the subject to provide valuable
information. One example would be sensors that keep track of the users’ pulse
and other vital signs. This way the system would be able to provide help by
calling an ambulance in case of serious health problems affecting the subject.

Ubiquitous Computing, or Everyware is the computing concept in which
computing power is made available everywhere. This concept is based on small
processing devices, interconnected through networks.

“Ubiquitous computing names the third wave in computing, just now beginning.
First were mainframes, each shared by lots of people. Now we are in the personal
computing era, person and machine starting uneasily at each other across the
desktop. Next comes ubiquitous computing, or the age of calm technology, when
technology recedes into the background of our lives.” Mark Weisser [3]

The tie between Ambient Intelligence and Artificial Intelligence is obvious.
Sensors, networks and ubiquitous computing offer the framework for AmI, but
the decision making process is provided by the field of Artificial Intelligence. In
order for the system to be useful to the subjects it needs to make deductions
based on the environment data it gathers and, when needed, to act.

The “5Ws” have been identified and described in the AmI literature [4]: Who,
What, Where, When and Why.

Who: this refers to the identification of subjects throughout the environment:
people, pets, objects of interest. Another important part of this process is the
identification of the relations between the subjects (relations between the people
involved and between people and the objects that surround them).

What : involves spatial and temporal awareness and consists of identifying
actions performed by subjects in the environment. Based on this the system can
provide assistance to the user or can gather data and classify that data in a
context. For example if a smart home identifies that a subject is running on a
treadmill, it will adapt the heart-rate threshold over which it will call the
ambulance. In case the user is just sitting and the heart-rate goes really high, it
could mean that the user is having a panic attack and that it is in need of
assistance.

Where : involves tracking subjects throughout the environment, which can be
done using sensors, and GPS-equipped devices which the user might be wearing
(smartphones are very useful here, as most of the time they are kept close to the
users, and are usually equipped with GPS trackers).

When : adding the time dimension to the system helps means that it can
associate times and durations to activities, giving it a better understanding of
what is happening.

Why : understanding the intentions behind activities is really important to an AmI
system, as it enables it to be sensible to the needs of the users.

3

ALEXANDRU-DAN TOMESCU

Multiple applications and environments have been defined for AmI: smart homes,
smart conferences, smart hospital rooms and others. The objective of these
applications is improving the way people function within them.

1.2. Objective: Smart Conferences

For an AmI system to be effective (or even possible at the moment) a context
needs to be defined for it, when it is designed. A generic all-purpose AmI system
is too complex to build with the present advances in technology.

One context that seems to be very well suited to this vision consists of Smart
Conferences. A smart conference consists of a conference setting enriched with
an intelligent system which can help the conference attendants with information
they need about the schedule or about presentations and other more intelligent
tasks like suggesting presentation tracks or meeting people with similar
interests.

In the normal conference scenario presentations on certain topics are held in a
location containing presentation rooms. The presentations are held by speakers,
and sometimes a presentation can have a chair that helps organize and keep
order. Depending on the number of presentations and the amount of time
allocated, tracks can be set, each containing presentations related to a certain
topic or area of discussion.

Attendants register as they arrive and attend the presentations they prefer and
during the conference professional relationships are built which can lead to new
projects, as the conference attendants probably work in the same field and are
interested in similar topics.

The conference scenario (as described above), can be enhanced by adding a
digital dimension to the interactions between participants. To aid in this sense,
the environment has to be enriched by adding logical (QR codes) and/or physical
sensors (iBeacons) in order to detect the location of the attendants. Of course,
physical sensors would be optimal, as QR codes depend on whether the user
remembers/wants to check-in and it may be considered troublesome by some.

Also, for this scenario to be considered an AmI scenario, it needs to contain a
cognitive component: e.g. AI agents located on the participants smartphone
devices. Together with the sensors installed through the environment, these
agents can facilitate a number of features:

 presentation suggestions based on individual interests
 suggestions about other participants with similar interests and possible

topics to discuss
 alerts about schedule modifications
 smartphone automatic settings based on situation (silent mode or

automatic message responses during presentations)

4

Agent-Based Android Application for Conferences
Client-Server Communication and Architecture

 facilitating features for presenters and chairperson (presenter alert in case
of being late to his own presentation)

 easy communication between attendants and organizers

Throughout this document, an overview about the state of smart conference
applications will be presented, together with smart conference scenarios (which
are important as they provide a context for the AmI environment by describing
situations and features).

After the general overview of AmI and Smart Conferences, a presentation of the
Envived application is made, as the object of this thesis. Envived is a smart
conference application consisting of a client and a server side. By combining the
advantages of a smartphone with logical or physical sensors and with smart
agents, this application brings a new dimension to conferences. An overview of
the modules developed as part of this thesis is made.

The objective of this thesis is to provide a clear image on the smart conference
scenario, and to contribute to Envived, which puts the concepts into practice.
The intention is for the contributions to improve the communication mechanism
between server and client and also inter-module (agent bridge). Also, more
conference related features would make Envived better suited for conference
deployment.

In chapter 2 we present some state of the art contributions in terms of
applications and technologies and we discuss how Envived relates to them.
Further, in the chapter 3 (The Smart Conference Application), scenarios are
modeled for the smart conference application and the main modules are
presented. The implementation of these modules is discussed in-depth in chapter
4 (Application Architecture and Implementation). Afterward, chapter 5 (Scenario
and Testing) addresses further analysis and testing of each implemented
functionality. This thesis concludes with a summary of contributions and a
discussion of future work in chapter 6.

5

ALEXANDRU-DAN TOMESCU

2. State of the Art

2.1. Conference Management Applications

As the interest for big conferences has gone up in the last few years, so has the
interest in managing them using smart device applications.

In the following, we present a list of conference support applications, detailing
their most relevant features and pointing out key elements that are missing.

Groupio1

Groupio is available for smart devices (iOS, Android, Blackberry etc) and it
focuses on conference management without the artificial intelligence element.

As stated on the applications website, “Groupio makes it convenient for your
attendees to access concise and relevant event information when they need it
during the event. It also is a part of your event that they take home with them on
their device. Your event the way it is with branding, you advertisements, surveys,
the capability to message other attendees, and much more.”

The features delivered by this application are:
 CMS - the organizer has access to a platform through which he can upload

the data containing the participants and other relevant information
without going into the technical part of databases.

 branding - the opportunity to customize the way the attendees experience
the application by changing the app icon, the menu, background and other
elements.

 alerts - the organizer has the possibility to send popup messages to the
attendees to inform them on different aspects. There is also the option to
send the messages on fixes dates in the future depending on user
timezone.

 schedule - the attendee can check the event schedule to see what future
presentations are about and to check a description and the bio of the
speaker. The events can also be organized as parent-child sessions (much
like tracks), and they provide links to resources like pdfs, ppts, websites
and surveys.

 speakers - each speaker has a profile which the attendees can access to
read or to post questions directly. There is also a discussion board style
communications way.

 maps - integrated with Google Maps and Bing Maps, but also with static
maps for interiors.

 attendee messaging - attendees can message each other, and each has a
profile. Privacy rules can be changed.

 social - link to Facebook, Twitter and Google+

1http://www.groupio.com

6

Agent-Based Android Application for Conferences
Client-Server Communication and Architecture

 surveys - the possibility to ask attendees to fill in surveys in order to get
feedback and improve the experience in future events.

 analytics - charts of how the users used the application and also
information on how many times the ads were showed and clicked.

and other.

GenieConnect - SmartConnect2

SmartConnect is one of the conference management solutions provided by
GenieConnect and it offers the standard management features: designer layout -
the possibility to customize the application layout for your conference, smart
recommendations - the user can receive recommendations based on the way he
uses the application, crowdsourcing - the ability to present surveys and polls to
attendees to gather information and feedback, organizer push messaging - the
ability to send messages to all the participants’ smart devices when needed,
gamification - achievements are awarded to some users based on their actions,
analytics - graphs and other information about the event, CMS - content
management system which can be used by non-technical organizers.

As observed, these conference management applications do not have an
Ambient Intelligence side to them, but they only make use of the fact that
conference attendees have smart devices on themselves, and serve content
through them.

The concept of Smart Conference is much more than that, as it makes use not
only of smart devices that the attendees carry with them, but also of physical
and logical sensors spread through the environment. The data gathered there is
then processed by the system and use to generate new knowledge or to take
action when appropriate.

One way to achieve this additional reasoning is through the use of so called
Multi-Agent Systems which we focus on next.

2.2. Multi-Agent Systems

Multi-agent systems typically refers to software agents, but there is also the
possibility of robots or human teams.

In recent years multi-agent systems have received increasing attention as it
turns out that this concept can bring many improvements in certain situations.

Some of the advantages of multi-agent systems are:
 overall system performance improvements

2http://www.genie-connect.com/solutions/smartconnect

7

ALEXANDRU-DAN TOMESCU

 resource and computation distribution within a network which means there
is no “single point of failure” which makes the system more robust and
resistant to failure.

 better way to represent task allocation for different components
 more modular design

In [5] the concept of agent-based software engineering is presented as a way to
model complex industrial systems. Complex systems are defined as systems
composed of many autonomous parts which interact with each other (each part
can be considered an agent within the system).

There has been a lot of debate on what the best definition of an agent, but
seems to be a good candidate: “An agent is an encapsulated computer system
that is situated in some environment, and that is capable of flexible, autonomous
action in that environment in order to meets its design objectives.” [5] As the
definition states, the agent must be part of an environment (virtual, discrete or
continuous) and it must have clear objectives which he tries to achieve,
cooperating with other agents when needed. Also, the agent has to be
autonomous by working on its own and having control over it’s own behavior, it
must be able to adopt new goals when needed to achieve the design goal
(proactive) and it must be able to respond to changes in the environment
(reactive).

One possible context and application for agents is the smart conference context.
They enable the intelligent aspect of this scenario by analyzing and
disseminating data gathered by sensors - physical or virtual (user preferences)
which expand the environment by adding a digital dimension. For instance, when

8

Fig. 1 - The structure of a complex MAS system

Agent-Based Android Application for Conferences
Client-Server Communication and Architecture

the speaker of one of the presentations isn’t checked in the presentation room at
starting time, the agent should send a push notification, or the phone being
turned to silent mode when a presentation starts (these scenarios and more will
be thoroughly elaborated in the Application Scenario sub-chapter).

The problem of how the agents will behave, coordinate and communicate with
each other and the environment is fairly complex so agent architectures have
been designed. To give a better understanding of the agent architectures and the
differences between them, and to better explain our choice of architecture all the
major ones are described below [6]:

Reactive architectures - an architecture which does not need a symbolic model of
the environment, and only uses a mapping between situation and actions which
the agent can take. Although this method is faster than others that build models,
data gathered by sensors might not be enough sometimes. Also, complex tasks
might be hard to accomplish as they require lots of mapping of actions to
situations.

Logic architectures - architecture which uses a symbolic model of the
environment. Decisions are made based on reasoning which leads to good
results. The disadvantage of this architecture is that creating or even using the
models is a complex task so the system might have poor performance.

Belief, desire, intention architectures (BDI) - architecture which uses philosophy
concepts and has known widespread success. On example of this type of
architecture is Procedural Reasoning System (PRS) which beside beliefs, desires
and intentions also uses two more concepts: plans and interpreter. Beliefs are
knowledge which the agent considers true; desires are goal which it has to
achieve; intentions are desires which the agent wants to achieve next; plans are
the order of actions towards a fulfilling a goal. The interpreter takes all four
concepts into account and selects an action.

Layered architectures - a mix between reactive architectures and symbolic
model architectures, and it’s organized into layers, either vertically or
horizontally.

In the smart conference scenario all agent actions are triggered as a reaction to
environment changes so the reactive architecture is the most suitable for the
agent. Based on this, the tATAmI (towards Agent Technologies for Ambient
Intelligence) or Ao Dai platform was chosen. This platform was implemented
using a modular structure, and featuring tools for the visualization and tracking
of agents, as well as for realization of repeatable experiments, based on
repeated scenarios. The platform is underpinned by JADE for the management
and mobility of agents and it uses S-CLAIM as language. [7]

In the next chapter, the smart conference scenarios is presented with emphasis
on the “smart” aspects facilitated by the agents. Also each module of the project
will be detailed to give a perspective on how the application makes the scenarios
possible.

9

ALEXANDRU-DAN TOMESCU

3. The Smart Conference Application

A smart conference is one of the most practical implementations of Ambient
Intelligence and the topic of this document. In this chapter we want to provide
our vision of such an application. We start by presenting a series of interaction
episodes which define our envisioned conference application scenario. We then
present the high-level architecture overview, describing the main modules of the
application and how they are associated with each other. The means by which we
added intelligence (the agent component) to the existing Envived conference
support application will thus become apparent.

3.1. Application Scenarios

In the case of the smart conference, the environment is enriched with sensors
(e.g. physical - iBeacons or logical - QR Codes) and devices (smartphones) which
communicate with a system, enriching the conference experience for the
attendants.

A short episodic description of the scenarios enabled by Envived is made below:

Preaparation

The attendant (Bob) received an email a few days before the conference asking
him to fill up a form containing fields like: interests, affiliation and other. Also, if
he is chosen as a session chair, he receives a password which he can use to log
in as the chair during the conference. Bob agrees to disclose information about
himself, as it is specified that it will be used only in the context of the
conference. In the email he also gets a link to a smartphone (iOS, Android or
Windows Mobile) application that he can download.

Signup

When Bob arrives at the conference he registers at the reception desk and he
tries the application he received. Based on a check-in from a QR code located at
the registration booth or based on low-frequency bluetooth beacons, Bob is
located within the conference environment.

Schedule

The conference that Bob is attending is one of the biggest AI conferences in the
world, which means there are a lot of presentations separated into tracks. To
make an informed decision on what he should attend, and not waste time at
presentation that do not really interest him, Bob can use the schedule
functionality of the smartphone application. Short descriptions about the talk and
speaker and tags containing keywords are available. Bob can also choose to
mark the presentations that he wants to attend in order to get notifications when
one of them starts and he is not localized in the appropriate room.
Based on Bobs’ interests, presentations or tracks can be suggested to him.

10

Agent-Based Android Application for Conferences
Client-Server Communication and Architecture

Booth visit

The conference that Bob is attending doesn’t only offer presentations, but also
presentation booths. The interested companies and universities can occupy
these booths and offer information on their work or present products of their
work. If the booth attendant is busy talking to someone else, Bob doesn’t need to
wait for his turn, but can use the Envived application to check in at the booth and
get access to information about it.

Presentation attendance

When he enters the designated room, he receives a notification that he is
attending a presentation, and that the application would like to turn his phone
silent, so that it doesn’t create disturbances. He can also allow the application to
send a preset message to people that are calling him, letting them know that he
is busy attending a conference, and that he would get back to them as soon as
possible.

Bob also has the possibility to ask questions through the smartphone application:
all questions sent this way are presented at the end of the talk, and the speaker
can address each of them.

Session chair and speaker functionality

Each presentation has a set time, so that a schedule can be kept. This is held
together by the chairperson who announces that a new presentation is to be
started, and that the time is soon to run out. If a presenter is not inside the room
where his presentation is about to start in just 2-3 minutes, he is automatically
notified through the smartphone application that he might be late. When the
presenter gets close to the presentation stand where he is appointed, the
projects automatically switches to his presentation, and the lights are dimmed
for a better viewing experience.

As soon as the presentation is done, the lights are automatically set to their
normal intensity, so that people can leave or start asking questions. They also
have the possibility to write questions on their smartphones, and they all appear
at the end so that the presenter can go through each of them.
If by any reasons the schedule is delayed because of one presentation, it is
rearranged automatically or manually by the session chair.

Interest based meetings

Alice has also completed the form with information about her interests, and is
attending the conference. Shortly after registering, she is notified through her
smartphone application that there is a significant similarity between her profile
and Bob’s so they should meet. As she was last located at the registration kiosk,
and Bob is at a presentation, the application suggests that they should meet in

11

ALEXANDRU-DAN TOMESCU

the break area closest to them. As soon as they both agree to meet, the time is
set after the presentation Bob is attending finishes. This way the two attendants
get to talk about their projects, and maybe start a joint project for the future.

Organizer messages and notifications

Sometimes the organizers of a conference want to contact specific participants
to give them messages (maybe some changes in the schedule for a presentation
and the speaker needs to approve it). This can be easily done through the
messaging module of the application.

Sometimes coffee and networking breaks are organized in the middle of the
conference to give the participants a chance to discuss the topics presented.
Everyone can be announce or reminded through a preset notification about the
break and the location.

After the conference

Right after the conference Bob has the possibility of viewing the profiles of other
participants and maybe get in touch with them about a project that he believes
that they may be interested in. He also can save vCards in his phone during the
conference so that he can contact them afterwards.

Also, the conference organizers have the possibility to analyze data about how
people used the application and which presentations they attended. This way the
organizers can extract relevant information and improve the conference for
upcoming editions.

Presentation resources

In case Bob is very impressed about one of the talks he can check the application
for resources. When a speaker registers a talk he can upload papers and other
resources which he believes would be relevant and of interest to the people
attending.

The functionalities described above are desired, but in this document I will be
addressing a portion of them, the others possibly being addressed in future work.
Taking into account the desired functionality described, the main modules of the
Envived application are described further below together with the way these
address different scenarios.

3.2. Application modules

As Envived is a complex application, dividing it into modules has been an obvious
choice. The project consists of two main parts (the client and the server) and
each of them is divided into modules:

 1. Client
 a) Android Client Agent - The agent module which is located on the client

12

Agent-Based Android Application for Conferences
Client-Server Communication and Architecture

 b) Android Client Agent - Application Bridge - The module which facilitates
communication between the client agent and the client application

 c) Android Client Application Module - The application client which the
user interacts with

 2. Server
 a) Server Agent Module - The agent module located on the server which

synchronizes knowledge between all the client agents
 b) Server Agent - Application Bridge - The module which facilitates

communication between the server agent and the server application
 c) Server Application Module - The RESTful Django application located on

the server which, among other functionalities, manages interaction
with the database

As seen in Fig. 2, on the server side, the application consists of three modules:
Server Agent Module, Server Agent-Application Bridge Module and Server
Application Module. The agent module is the same on both client and server
applications and it is implemented through the tATAmI framework3. Based on
information received from other agents or from the agent bridge module, the
agent builds a knowledge base modeled as a labeled graph. The graph is used to
facilitate internal agent reasoning based on graph pattern matching. The
reasoning process results either in the addition of new edges and nodes to the
existing graph (knowledge base update), or in the generation of actions, which
are carried out in the environment (the client application acts as the environment
or a proxy for the environment).

The agent receives two kinds of messages:

3https://github.com/tATAmI-Project

13

Fig. 2 - Envived Server Architecture - Colored nodes represent
contributions of this thesis

ALEXANDRU-DAN TOMESCU

facts - represent information that is considered to be static (does not change
during the lifetime of the application) and are always true. This information is
usually perceived by the agent module at startup.
events - represent dynamic information which effect changes (additions or
removals) in the knowledge graph.

These messages are exchanged between agent and client/server through the
agent bridge.

The server application is the module which assures the persistence of data, as
the client only presents relevant information to the user and ensures interaction.
To this end, data models are used. Also, information is structured into classes
using python classes which are used in modeling of the interactions.

On the client side, the agent and agent bridge modules are similar to the
ones on the server. The difference is the Android Client Application Module, which
contains the user interface and implements communication mechanisms with the
server API.

On the server side, there is also an agent implemented through the tATAmI
framework. This agent handles the global events and changes, while the client
agent manages events that are of concern to that particular client.

14

Fig. 3 - Envived Server Architecture - Colored nodes represent
contributions of this thesis

Agent-Based Android Application for Conferences
Client-Server Communication and Architecture

4. Application Architecture and Implementation

Envived is designed to be a general application for smart environments, not only
smart conference. As a first use and a subject of this document, conference
specific features have been developed.

At the base of the design lie a few concepts which make Envived general and
modular: environments, areas, features and annotations.

Environments and Areas

Because Envived was conceived with the purpose of creating general smart
environments (not only conferences), the first step was to find a way of modeling
a physical location and its partitioning. As such, environments model physical
locations and, as shown by the parent property in Fig. 4, they can be stand-alone
or they can have other environments as parents. Areas model areas of interest
within the environments and their definition also contains physical layout
description (e.g. shape).

15

Fig. 4 - Environment and Area Diagram

ALEXANDRU-DAN TOMESCU

For example, the AIWO 2013 Conference4 is an Environment, and each
presentation room or booth is an area.

Each area and environment have linked resources on the server-side application
and associated features.

On the client-side, Environments and Areas are implemented through the
Location class, which has both Environment and Area specific fields and
methods.

Features

Features are components which can be attached or detached to an environment.
This means that if the application is used for a smart conference, then specific
features will be attached, but if it is used for some other purpose, other features
will.

Server-side, features manage the way information associated to them and
persisted in a database is serialized/deserialized, sent or received from the
client, and imprement the corresponding resource views as part of the RESTful
client-server communication service (e.g. what to return or what to do when GET,
POST, PUT and DELETE requests are received from the client).

Client-side, a Feature base class is defined which contains fields and methods
common to all the features:
protected Calendar timestamp; // timestamp of the initialization of the

 // feature
protected String featureResourceUrl; // URI or the feature resource used by

 // requests
protected String environmentUrl; // URI of the environment to which

 // the feature is attached
protected String areaUrl; // URI of the area within the
 //environment to which the feature is attached

This base class also contains methods for initializing the feature and making GET
and POST requests to the corresponding resources.

4http://www.aiolympics.ro/

16

Agent-Based Android Application for Conferences
Client-Server Communication and Architecture

The way custom features expand the base feature class is illustrated in Fig. 5.
The features available for the conference scenario are:

 Booth Description - a description page for each booth containing
information about the respective booth

 Program (Conference Schedule) - all presentations are arranged into a list
ordered by time or by session. Also each presentation has a description
page containing relevant information (e.g. keywords, description, time of
start and end, speaker)

 Conference Role - each attendee can choose a role as part of the
conference (participant, speaker or session chair)

The conference participant can have three roles:
1. participant - simply attends presentations without having any extra duties.
2. speaker - can attend presentations but also has to hold one or more of his

own
3. session chair - hosts presentations, one of the duties being that the chair

has to change the time of a presentation in case it gets delayed. The
session chair also receives a password that he needs to use in order to
have access to the role actions.

When checking into an Environment, the attendee can access the Conference
Role feature in order to choose the appropriate role. Other functionality depends
(e.g. session chair functionality) in the future on the role chosen by the attendee.

When the user chooses a role, a PUT request is made from the client to the
server. The URI used for this request is the features’ resource URI. In case the
user is not checked in to the environment, or in case the session chair password
is wrong, a 401 - Unauthorized error is sent back. Also, in case the JSON sent as

17

Fig. 5 - Feature Diagram

ALEXANDRU-DAN TOMESCU

payload through the PUT request is wrong (does not contain the role requested),
then a 400 - Bad Request error is sent back. If the request is okay, and the role is
changed, a string containing the role of the user is saved in the cached
preferences of the application. This way the client doesn’t have to make a GET
request every time it needs the role.

Annotations

Annotations are one of the core concepts within Envived, and are used in relation
to Environments and Areas. Annotations is a base class which contains a
reference the environment or area that it is tied to, a reference to the user that
generated it, a category and a timestamp. This base class is then extended by
other feature-specific classes which contain other information and used as
portrayed in Fig. 6 as a way for the client to communicate to the server.

One example of the way annotations are used is the comments section in the
booth and presentation descriptions. Whenever a user posts a comment in the
presentation comments activity, an annotation is generated containing the
“booth_description_ann” or “program_ann” category, the location which the
comment is in relation to, the timestamp and the comment content, and then it
is sent through a POST request to the server.

The server processes the received annotation based on its category and then
stores it as a ProgramAnnotation or BoothDescriptionAnnotation, which as shown
in Fig. 7, extend the base Annotation class.

18

Fig. 6 - Annotation mechanism (from client to server)

Agent-Based Android Application for Conferences
Client-Server Communication and Architecture

Whenever the user starts the comments activity, a request is made for all the
annotations related to that location with a certain category. After all the
annotations are received, they are parsed and displayed as a list.

4.1. Server Application and Implementation

The server side of the Envived application is implemented in the python
language, using the Django framework.

Django is an open source framework which follows the MVC (model-view-
controller) pattern. It offers some general modules and functionalities
(login/logout, registration or admin panel) and also an efficient way of organizing
custom-created modules and functionalities into apps. The apps defined for
Envived are:

 agent - the agent logic
 client - implementation of the RESTful API mechanism
 coresql - contains data models and abstract classes used by the features
 features - contains the implementation of the features and extensions of

the abstract classes defined in the coresql package
 messaging - implements the agent inboxes and communication which

makes the long polling mechanism possible.

From the MVC architectural pattern the View component is less used compared
to Model and Controller, as the only front-end component consists of the admin

19

Fig. 7 - Annotation Diagram

ALEXANDRU-DAN TOMESCU

functionality which is mainly used to add alter and remove records from the
database (ex. Environments and Areas).

The Model component is used to create and manipulate the applications’
database. The central models.py file (apps/coresql) contains classes which model
relational database tables like UserProfile, UserSubProfile, Environment, Area,
Announcement, Annotation, History, Privacy and Feature.

Other than the MVC architecture provided by the Django framework, the server
application also uses the RESTful architecture in relation to the client.

REST (Representation State Transfer) applications are based on resources and
not actions (like in SOAP) and follow a set of constraints[8]:

 Uniform Interface - the interface between the client and the server. In the
case of the project discussed in this document, HTTP is used: HTTP verbs
are used (GET, POST, UPDATE, DELETE), resources are identified through
URIs and the responses are HTTP responses.

 Stateless - the server doesn’t know or care about the state of the client,
and it’s the clients’ job to request resources based on it’s state and needs,

 Client-Server
 Cachable - all the requested information can be cached on the client either

implicitly, explicitly, or based on a negotiation schema
 Layered System

In Envived the REST architectural style is enabled using Tastypie. “Tastypie is a
webservice API framework for Django. It provides a convenient, yet powerful and
highly customizable abstraction for creating REST-style interfaces.” [9]

As portrayed in Fig. 85, the way the server communicates with the client is
through the HTTP protocol, based on resources. Each feature is considered a
resource, and it corresponds to an URI, so that when the client needs to retrieve

5 http://restful-api-design.readthedocs.org/en/latest/scope.html

20

Fig. 8 - Restful API Architecture

Agent-Based Android Application for Conferences
Client-Server Communication and Architecture

some information from the server it makes a GET request on the resource, and
when it needs to send information to the server it uses a PUT HTTP request.

For example, the URI accessed for updating a presentation within a conference
program resource could be:
http://localhost:8080/envived/client/v2/resources/features/program/60/
And the payload can contain a JSON with parameters:
{
 “old_starting_time”: “12-05-2014 14:00:00”,
 “new_starting_time”: “12-05-2014 14:30:00”,
 “old_ending_time: “12-05-2014 15:00:00”,
 “new_ending_time: “12-05-2014 15:30:00”,
 “session_id”: “id”
}, the time parameters being used to identify and change the details of the
presentation, and the session id being used to determine which of the
presentations should have their time changed.

The resources are defined in the apps/client/api.py file in the server project. Each
class models a resources specifying the URLs used and also some metadata to
define the way that resource can be used:

class Meta:
 allowed_methods = ['get'] # one can only retrieve data from this source
 excludes = ['id', 'is_general'] # the following fields don’t end up in the
serialization
 filtering = { # choose the type of filters to be applied on the data
 'area' : ['exact'],
 'environment' : ['exact'],
 'category' : ['exact']
 }

The data sent from the server to the client when requested by the client is
encoded as JSON. For example when logging in, the user makes a POST request
at the following URI containing its username and password:
http://localhost:8080/envived/client/v2/actions/login/

The response from the server is the following JSON:
{
 "code":200,
 "data":{
 "first_name":"Alexandru",
 "last_name":"Tomescu",
 "resource_uri":"/envived/client/v2/resources/user/2/"
 },
 "success":true
}

21

ALEXANDRU-DAN TOMESCU

4.2. Client Implementation and Server-Client Communication

4.2.1. Server-Client Communication Module

The communication between Server and Client (Server -> Client) is an important
module of the whole project, as it is often the case that not only the client
requests data, but that the server has to send updates (e.g. when the conference
schedule is changed).

While in the case of Client->Server communication, the client can make requests
on the resources the server holds, in the Server->Client communication, this
cannot be done the same way. The chosen method for this side of the
communication process is long polling.

One of the scenarios in which the server needs to send messages to the client is
when the conference schedule changes (either changed by one of the session
chairs, or changed by someone from the admin interface). When this happens,
the server has to send the update (in this case, the new schedule) to all the
clients in that environment. There are three types of messages the server can
send to the client:

 envived_app_update - messages sent when the content a feature needs to
be updated (schedule changes, speakers etc)

 envived_app_message - messages from the server for certain features
within the environment

 envived_event - changes in environment that are sent to the client agent,
where they are translated into a labeled graph representation form that is
consumed by the agent

The Envived client application starts a service called EnvivedMessageService at
bootup. This service makes a GET HTTP request to the
http://localhost:8080/envived/client/notifications/me/ URL containing a session
cookie. Based on the session cookie, the URL is linked to the REDIS queue
corresponding to an user.

22

Agent-Based Android Application for Conferences
Client-Server Communication and Architecture

After a set amount of time, the GET request times out. If the application is still
running, a new GET request is made, as seen in Fig. 9. Whenever the server has
a message for the client, a response for the request is received, and the content
is forwarded to the class that processes it (e.g. a message sent for the agent is
forwarded to the agent bridge). After this, the long polling mechanism is
resumed.

The EnvivedMessageService is implemented as an Android Intent Service and the
whole long polling logic is contained in the onHandleIntent(Intent arg) method
which is called at client startup. This means that when the long polling stops, the
service can also stop working.

23

Fig. 9 - Long polling mechanism

ALEXANDRU-DAN TOMESCU

As seen in fig. 10, when the client polls for messages on the
http://<base_url>/envived/notifications/me URI, the message is retrieved from a
Redis inbox mechanism. This system implements queues for each user which act
as inboxes, so that all messages addressed to a specific user are placed there,
and retrieved polled for by the client application. Separate from the user inbox
queues, an app_event_queue is implemented for the agent so that the server
agent can access the event messages it receives. Like in the case when the
server application sends updates to clients, when the server agent needs to
communicate to the client agents it places the envived_event messages in the
user inboxes.

Messages received by the EnvivedMessageService are serialized as JSON:
 envived_app_update and envived_app_message (only the type field

differs)

{
 "content":{
 "location_uri":"location_uri_example",
 "resource_uri":"resource_uri_example",
 "feature":"program",
 "params":[
 {
 "name":"type",

24

Fig. 10 - Envived Communication

Agent-Based Android Application for Conferences
Client-Server Communication and Architecture

 "value":"new_request"
 }
]
 },
 "type":"envived_app_update",
 "timestamp":"4-06-2014 15:34"
}

 envived_event
{
 “facts”: [
 {
 “fact_label”: “fact_label”,
 “subject_label”: “fact_subject_label”,
 “object_label”: “fact_object_label”
 }
],
 “events”: [
 {
 “performative”: “INSERT/DELETE”,
 “event_label”: “event_label”,
 “subject_label”: “event_subject_label”,
 “object_label”: “event_object_label”,
 }
]
}

The envived_app_update message contains updates made within feature data on
the server.

This is automatically sent when feature model instances are updated. The Django
framework offers the ability to set up function hooks to post database
save/update events which allow us to implement the above mentioned
automated update notifications.

As an example, the session chair has the possibility to update the schedule of a
certain presentation (in case it should start early, or more often, in case it ends
later than planned). Whenever a presentation finishes later than planned, the
subsequent presentations should also be updated, as they cannot start until the
current one finishes, and the changes have to be made on all the clients within
the environment.

When the session chair adds time to a presentation, a PUT request is made to
the program resource on the server containing a JSON with the old and new start
and end times. This way the server can update the model for the respective
presentation and to all the subsequent presentations. When the model is saved,
a function is triggered which sends the envived_app_update message to all the
clients checked in that environment. This message is polled by the Envived
Message Service and dispatched to the corresponding feature which updates the
local database.

25

ALEXANDRU-DAN TOMESCU

The JSON deserialization is made using the Gson6 library from Google. This
provided a much cleaner and simpler code. Instead of using the java JSONObject
and JSONArray classes, this automatically converts the JSON objects into
instantiated class objects. The only requirement was to create the three classes:
EnvivedAppUpdate, EnvivedAppMessage and EnvivedEvent. The JSON is
deserialized based on the names of the fields of the containing classes, and also
based on the @SerializedName Java Annotation. If the JSON contains an object or
list of objects, such as “facts” or “events” from the envived_event message,
containing classes have to be provided (such as
com.envived.android.api.agent.Fact and com.envived.android.api.agent.Event).

public class Fact implements Serializable {
private static final long serialVersionUID = 1L;
@SerializedName("fact_label") private String factLabel;
@SerializedName("subject_label") private String subjectLabel;
@SerializedName("object_label") private String objectLabel;

…
}

After deserializing the JSON payload from the messages, the new objects are
passed on to the activities or services that process them.

In the case of EnvivedAppUpdate and EnvivedAppMessage, these are
broadcasted to all dispatcher classes, where they are forwarded to the features
for which they are meant for. For instance, EnvivedAppUpdates are sent to
EnvivedAppUpdateDispatcher, where features register handlers for certain
messages.

EnvivedEvents are not broadcasted, because there is only one class that handles
them, and that is EnvivedAgentBridge, so they are sent as an intent to this
service.

In order for the EnvivedMessageService service to stop, a flag is set true when
the onDestroy() callback method is called. This flag is used as a condition for the
long polling loop, so that when the flag is true, it stops and finishes the current
onHandleIntent() method.

4.2.2. Agent Bridge Module

The Agent Bridge Module consists of a class containing an Android Service which
intermediates communication between the Envived client application and the
agent environment. As with the EnvivedMessageService, it extends the Android
IntentService class.

When EnvivedMessageService receives a message with the “envived_event”
type, then it deserializes it and it passes it to the AgentBridge inside an intent.
The EnvivedEvent class contains an ArrayList of Event object and an ArrayList of
6https://code.google.com/p/google-gson/

26

Agent-Based Android Application for Conferences
Client-Server Communication and Architecture

Fact objects. These classes both contain three String labels, and in addition, an
Event also contains a performative (action).

Both Event and Fact can be modeled as simple oriented graphs containing two
nodes (the object and the subject) connected through an edge with the fact_label
or the event_label strings as label.

One possible example is the fact that a user is the speaker for one of the
presentations. In this case, the agent would receive the following JSON:
{
 “subject”: <presentation_id>,
 “edge”: “speaker”,
 “object”: <user_id>
}
This translates into the following graph:
<presentation_id> --speaker→ <user_id>

Facts are considered the known information about the environment in which the
agent is working, such as the conference program or information about the areas
within the environment. Most facts are sent to the agent at startup, in order for it
to build its knowledge graph.

Events are new information that comes from the environment and needs to
change the agent's current knowledge graph. One example of event that can
occur is when a session chair changes the starting or ending time of a
presentation, and this change needs to propagate to all the agents in the
environment + the server agent. This means that an update is to be performed
on the knowledge graph, which is done by deleting the current edges that we
want to change, and inserting the updated ones (based on the performative field
in the event).

In this chapter, the implementation of the modules and mechanisms of Envived
has been presented in order to give more technical insight into the project.
Further, the mechanisms described above are illustrated as part of the scenarios
added in the third chapter of the thesis (Application Scenarios).

27

ALEXANDRU-DAN TOMESCU

5. Scenario and Testing

After the technical and in-depth exposition of the Envived modules from the
fourth chapter of this thesis, the results of this project are presented in relation
to the scenarios presented in Section 3.2. Each implemented episode of the
scenario is revisited and the interaction with the client application is portrayed
through screenshots:

Signup

When the user arrives at the conference where Envived is deployed, he logs in
with the account he has created for himself or he has received from the
organizers. This takes the user to the main dashboard of the application. As all
features are dependent on checking in an environment or location, this step is
very important to the overall flow of the application.

The user has two possibilities: a physical checkin or a virtual checkin. In order to
physically checkin to a location, the user has to use the “Check In” button which
launches the Barcode Scanner7 application. After scanning the QR code of the
targeted location, the application flow directs the user to another activity which

7https://play.google.com/store/apps/details?id=com.google.zxing.client.android&hl=ro

28

Fig. 11 - Registration Activity Fig. 12 - Main Dashboard

Agent-Based Android Application for Conferences
Client-Server Communication and Architecture

contains the available features and functionalities. If the user comes back to this
dashboard activity, he can revisit the features list by clicking on the current
checkin entry (still considered a physical checkin).

In order to check in virtually, the user can select the conference he is attending
from the featured locations section. This means that he has limited access to the
features of the conference. Also, the user has the possibility to virtually checkin
using the recent checkins section.

Schedule

One of the main features that a conference attendee can use is the Program
Features. When he wants to check the conference schedule to see the time of
one of the presentations that he is interested in, or just to choose a presentation
by reading its description, he can navigate to the Program Feature. This feature
displays the list of presentations scheduled for this conference, ordered by time
or by session. Each entry in the list contains the name of the presentation, the
room (Area) where it takes place, the time interval in which it is held, and the
session it is a part of.

29

Fig. 13 - Schedule Activity
Fig. 14 - Presentation Details

ALEXANDRU-DAN TOMESCU

When the user chooses one of the presentations and clicks on it, a new activity is
started containing more information about the respective presentation. Other
than the information shown in the previous list, a list of keywords is presented,
an abstract for the presentation, as well as a bio of the speaker.

Booth visit

In between presentations, the conference attendee can go check the
organization booths (if provided). By checking in at the booths in question, the
user gains access to their available information (contact details, a description
and keywords). A list of projects from the respective company or university is
also available. The user can also post a comment to this booth, in order to
communicate with other participants or to leave a message for the booth
attendant.

30

Fig. 15 - Booth Description Fig. 16 - Comments Section

Agent-Based Android Application for Conferences
Client-Server Communication and Architecture

Session chair functionality

If the conference attendee is also a session chair, he receives a password which
he can use to log into the respective conference role (the “participant” and
“speaker” roles don’t require passwords, as they currently don’t have any special
actions associated). After identifying as the session chair, a user can change the
starting and ending time of a presentation (most frequently, the ending time, in
case a presentation takes more than expected). Whenever the ending time of a
presentation is delayed, all the future presentations from that session are
delayed, in order not to overlap.

The functionality presented above as part of scenarios is only part of the
functionality Envived is meant to deliver. Features like interest-based similarities
and suggestions, push notifications from the organizers and bluetooth beacon
integration will be tackled in future work.

31

Fig. 17 - Presentation Details
with Session Chair

functionality

Fig. 18 - Conference Role

ALEXANDRU-DAN TOMESCU

6. Conclusion

The Envived application is designed to bring a new dimension to the conference
context. While there is still work to do, and there are many improvements to be
made, Envived can already be deployed in a real conference, making it a more
enjoyable experience for the users.

Contribution Overview

The goals related to the Envived project described in the introduction of this
thesis have been achieved: the communication between client and server is
complete now through the long polling mechanism; the communication between
the agent module and the client module is implemented; more conference
related functionality has been added, to enrich the users experience.
Implementing these components meant working on both the client and the
server sides of the application:

On the client side the Agent Bridge Module is the proxy between the Client Agent
and the Android Application. When the Application receives a “envived_event”
message from the server it hands it over to the Agent Bridge Service which runs
in a separate thread in the background. It is then processed and transformed into
a graph structure which the Agent can recognize, from which point it can be
handled by it.

The mechanism through which the Android Client Application gets messages
from the Server Application is long polling: the client starts a separate thread
service which continuously polls for messages on the inbox URI of the logged in
user. The request made by the client has a well-defined timeout, after which, if
the service was not stopped (in case the application was stopped), retries. When
a message is received from the server, depending on its type, it is either
broadcasted as an intent so that all the interested receivers get it, or it is sent to
the Agent Bridge (in case of “envived_event” messages).

Some features and functionalities that were implemented meant working on both
the agent and the client applications.

For instance, the Conference Role features is one contribution which allows the
user to choose a role when joining a conference: participant, speaker or session
chair. The participant role is the basic role, and might not presume any special
functionalities, but the speaker and session chair roles indicate that a user has
certain responsibilities, which Envived can facilitate.

For the case of the session chair, the program feature allows the specific action
of changing the time of a presentation. In case the ending time of a presentation
is delayed, all other presentations in the same session are also delayed to make
sure they don’t overlap.

One other functionality consists of the comments sections in the program
description and the booth description. When a user wants to communicate
something to the other participants or organizers, concerning one of the booths

32

Agent-Based Android Application for Conferences
Client-Server Communication and Architecture

or one of the presentations (before, during or after), the user can access the
comments activity and post there. On creation of the activity, all the annotations
associated with that location and that category are retrieved through a request.
These annotations contain the message, the timestamp and the author of the
comment and so are processed and displayed. Whenever a user wants to post a
message an annotation is created and sent to the server, where it is stored.

The functionalities above are the ones we have worked on as part of this project.
At this point Envived is close to the other smart conference applications on the
market, but it can differentiate itself through a few upcoming functionalities.

Future Work

One major improvement would be the use of interest based similarities and
suggestions, which would certainly improve the “smart” aspect. Based on
information provided by the user and collected by sensors and from the way the
application is used, a profile can be made for each attendee and smart
suggestions can be made.

Another important improvement can be the use of physical checkins instead of
virtual ones through beacon devices: iBeacon or Estimote beacons. These
beacons send a low frequency bluetooth signal, so they can be placed into the
different areas at the conference, and when the smartphone of a user receives a
signal from one of the beacons it can conclude that the user is in that room. This
adds context to the application without the user having to go through the hassle
of manually checking in every time they enter a different area.

33

ALEXANDRU-DAN TOMESCU

APPENDIX A

34

Agent-Based Android Application for Conferences
Client-Server Communication and Architecture

7. Bibliography

[1] - Ducatel, Ken. Scenarios for Ambient Intelligence in 2010: Final Report;
February 2001. Luxembourg: Office for Official Publications of the European
Communities, 2001. Print.

[2] - Weiser, Mark. "The Computer for the 21st Century." Scientific American
265.3 (1991): 94-104. Print.

[3] - "Ubiquitous Computing."Ubiquitous Computing. Web. 02 Apr. 2014.
<http://www-sul.stanford.edu/weiser/Ubiq.html>

[4] - K. Brooks, “The context quintet: narrative elements applied to context
awareness”. Proceedings of the International Conference on Human Computer
Interaction. Erlbaum Associates, Inc., 2003.

[5] - Nicholas R. Jennings and Michael Wooldridge, “Agent-Oriented Software
Engineering”

[6] - Fabio Bellifemine, Giovanni Caire and Dominic Greenwood, “Developing
Multi-Agent Systems with JADE”

[7] - A Context-Aware Multi-Agent System as a Middleware for Ambient
Intelligence, Andrei Olaru, Adina Magda Florea, Amal El Fallah Seghrouchni

35

http://www-sul.stanford.edu/weiser/Ubiq.html

	1 . Introduction
	1.1. Ambient Intelligence
	1 .2. Objective: Smart Conferences

	2 . State of the Art
	2.1. Conference Management Applications
	2.2. Multi-Agent Systems

	3 . The Smart Conference Application
	3.1. Application Scenarios
	3.2. Application modules

	4 . Application Architecture and Implementation
	4.1. Server Application and Implementation
	4.2. Client Implementation and Server-Client Communication
	4.2.1. Server-Client Communication Module
	4.2.2. Agent Bridge Module

	5 . Scenario and Testing
	6 . Conclusion
	7 . Bibliography

