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Abstract

In the field of Ambient Intelligence(AmI), context-awareness has gained a lot of interest as a
research topic. Context-awareness refers to the property of a computer system or device of
reacting to information gathered from observing the user. Accurately representing user context
is a very important task that needs to be solved for more complex AmI applications to be
developed. A solution to this task is based on the idea of using graphs to store and operate on
contextual information. Considerable research on this topic was carried to evaluate the applica-
bility of context graphs to real world scenarios and optimized algorithms for matching context
graphs to specific patterns were developed. In this paper we discuss a method for generating
context graphs from ambient and on-body sensors using semantic attributes. Towards this
end, we explore the use of machine learning models for identifying predefined sets of attributes
from human activity recognition datasets and provide directions on how these attributes can be
mapped in a context graph. We test these models using two open and representative datasets
and provide performance analysis on the results using a benchmark of state-of-the-art models
associated with these datasets.
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Chapter 1

Introduction

Ambient Intelligence - commonly abbreviated as AmI - is a concept of computer systems em-
bedded in common use items that are capable of interacting with human users by responding
to their presence or actions. The purpose of such devices is to assist the user whenever possi-
ble, with the requirement that they should act in an unobtrusive manner. The range of AmI
systems vary from simple house assistants to specialized social platforms focused on providing
interaction between people with common interests (e.g. remote study sessions)[8].

A key feature of AmI system is context-awareness. Context-awareness[16] refers to the property
of a computer system or device of reacting to data gathered by observing the users. Contextual
information may include an individuals’ current location, the list of items in his schedule,
his posture or current arm movement. For a context-aware system to be effective one key
requirement is the use of models that are able to extensively describe user context and facilitate
decision making in response to this information.

An approach to model contextual information is based on the idea of context graphs[19]. The
concept of context graphs is similar to semantic networks, but provides more flexible semantics.
Nodes in the graph represent concepts, with edges representing associations between these
concepts. Decision making is the result of matching context graph patterns against a given
context graph. A pattern is stored in the form of a special context graph which contains
generic components: nodes or edges that can match more than one graph component. As
such, the problem is reduced to comparing two graphs. An algorithm for matching patterns to
context graphs was described by Olaru et al.[17].

Before context graph models can be effectively used in real world application, a key problem
must be solved: generating context graph models from sensor data. In this paper we discuss
and analyse a method for generating context graph models using sensor output data. We focus
on two categories of sensors:

• on-body sensors, such as accelerometers and gyroscopes.

• ambient sensors, door sensors, proximity sensors etc.

The next sections will first define concept graphs more thoroughly and provide some motivation
for this work before giving a more detailed description of the problem.

1



CHAPTER 1. INTRODUCTION 2

1.1 Problem Context

1.1.1 Context graphs

The approach consists of representing a set of concepts as nodes in a graph with edges repre-
senting associations between these concepts. Specific situations can be identified by matching
patterns against the current context graph. A pattern is a special context graph which contains
generic components. When using context graphs, interpreting user context becomes a problem
of comparing two graphs. Olaru et al.[17] propose an algorithm for efficiently matching graphs
to patterns.

Using graphs for context modelling is based on existing knowledge representation methods like
semantic networks, concept maps and conceptual graphs. The graph stores associations between
a number of concepts which are relevant for the user’s context. These concepts are part of a
knowledge base used by an Ambient Intelligent (AmI) system[18]. Formally, a context graph is
defined as:

G = (V,E)

V = vi, E = ek, ek = (vi, vj , value)

where vi, vj ∈ V, i, j = 1, n, k = 1,m

The values of vertices and edges can be: Strings, URI identifiers, null.

URI identifiers can designate people, objects, relations or more advanced concepts. The value
of null does not hold a special status, thus it can be assigned to nodes or edges.

Graph patterns come as an extension over context graphs by allowing wildcard nodes, marked
as ?. As an intuition, we consider that the context graph G matches a pattern P if:

• every vertex from P matches a different vertex from G.

– generic vertices can match any vertex from G.

– non-generic vertices can only match vertices with the same value.

• every edge not containing a regular expression from P matches a different edge from G.

A more thorough description of context graphs can be found in previous research [19]. Figure
1.1 shows an example of a context graph. The graph contains information about an user named
Bob that is a attending a conference in Paris.

Figure 1.1: The knowledge of the AmI system: Bob attends a conference in Paris.
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As previously mentioned, context graphs provide the means for building models used in AmI
applications. However, real world AmI applications require multiple components in order to
perform their tasks such as: means of acquiring data about its users as well as interfaces to
communicate with the user. These components are often tailored for a specific task and are
designed on a case by case basis.

To address this situation, the tATAmI agent platform was designed with the goal to facilitate
some of these tasks by providing abstractions and APIs which greatly reduce the development
time of AmI applications that use context graphs. In the following section we will give some
background on this framework.

1.1.2 The tATAmI agent platform

tATAmI[23] is an agent based platform which uses the S-CLAIM language to implement
behaviour rules. tATAmI allows the development and deployment of unified agent system.
S-CLAIM is an extension of the CLAIM language: Computational Language for Autonomous
Intelligent and Mobile agents. It is written in Java, and, using a custom class loading mecha-
nism, was ported to both desktop and mobile platforms, running on Android, Windows, Linux
and MacOS. Agents in tATAmI can use contextual information represented as context graphs
and can take decisions based on full pattern matches as well as partial matches. The tATAmI
framework is useful for quickly building context information models and performing reasoning
tasks.

1.2 Generating context graphs from data

A typical AmI system with the purpose of assisting users in their daily activities would maintain
a permanent context graph representing the state of the user. The graph should be updated
automatically based on sensor inputs. The system uses graph matching for prompting the
user when required. Sensor data is usually represented as a sequence S = e1, e2, e3.. of sensor
events. This representation also applies to continuous sensor data using sampling in specific
time frames.

Given an initial context graph G and a sequence of sensor inputs S, the task is to mutate the
graph G to a meaningful representation of the user’s state at the end of sequence S. This
is a very complex task because context graphs use an open-ended ontology of concepts and
relations. Using the tATAmI agent platform, this problem may be solved for specific cases.
This is achieved by first restricting the type of nodes that are used in the context graph model,
using a fixed ontology that’s relevant to the application’s domain.

Next, because the graph models associations between high level concepts, making changes in
the graph is not trivial. Using the tATAmI platform, the solution would be to provide the
agent with a rule based system that applies the transformations on the graph, written in S-
CLAIM. However, one final task remains. Mapping the sensor data to the ontology used by the
rule based system. In practice, sensor outputs cannot be mapped directly to any meaningful
symbolic representation in the context graph.

To solve this step, we propose using machine learning algorithms to extract symbolic attributes
from sensor data, that can be fed to the rule based system, which will then be able to generate
meaningful changes in the context graph.

Towards this purpose, we studied the use of machine learning models used in human activity
recognition research to generate symbolic attributes that can be used to generate context graphs.
The results presented in this paper are based on two public human activity recognition datasets:



CHAPTER 1. INTRODUCTION 4

WSU CASAS dataset[6] and the Opportunity dataset[3]. The sensor samples include readings
from both ambient sensors and on-body sensors.

1.3 Dissertation plan

Chapter 2 will present current state of the art algorithms used in human activity recognition
tasks that are relevant to the problem of learning semantic attributes for context graph genera-
tion. For each of these algorithms we discuss the usefulness for the current task. Next, Chapter
refchapter:proposed will outline the steps of the algorithm for learning semantic attributes from
sensor data and using them to produce context graphs. The following two chapters will present
how the algorithm was applied on each of the datasets used, detailing specific requirements
and methods used, with Chapter 4 focusing on ambient sensors dataset and Chapter 5 focusing
on the on-body sensors dataset. Next, in Chapter 6 we describe the evaluation methods used,
present the results for each experiment and provide an interpretation of these results. Finally,
Chapter 7 will present the conclusion of this research and provide some directions for future
work.



Chapter 2

Related Work

In the field of ubiquitous computing, one of the key problems that is currently being studied
is human activity recognition (or HAR). Human activity recognition refers to the process of
labelling sensor data with human-readable tags that describe the activity performed by the
subject. Common HAR tasks include identifying activities based on input from sensors such
as accelerometers or gyroscopes. Solutions to these task usually include the use of engineered
features obtained through heuristic processes.

HAR systems usually differ based on sensor choice and the prediction model used. Example
of sensor choices range from on-body accelerometers to ambient, fixed sensors (e.g. proximity
sensor or video cameras). Yang et. al. argue that wearable sensors are preferred over informa-
tion acquired from video sources citing less limitations related to the environment as well as
privacy concerns[25]. Commercial applications include fitness wristbands and fall detectors for
impaired individuals.

There are various different approaches proposed in literature, which differ primarily in terms of
sensor choice, the machine learning(ML) model used and the environment in which the activity
information was gathered, as well as the level of preprocessing applied on the sensor data. We
consider HAR to be a relevant and closely related topic to the problem of automating context
graph generation. However, context graphs provide an in detail symbolic description of the
user’s state, while current HAR system usually produce a more brief representation.

This chapter will present several state of the art approaches to the problem of human activity
recognition from sensor inputs. For each approach, we will discuss how it can be applied for
the task of generating meaningful context graphs from sensor data.

2.1 Human Activity Recognition

As previously mentioned, considerable work was carried in the field of Human Activity Recog-
nition. Several different directions can be identified:

1. Learning predefined activity models from labelled data

2. Online activity recognition

3. Unsupervised activity classification

4. Identifying unseen activities based on supervised learning of semantic attributes

5. Hierarchical structuring of activities using probabilistic models

5
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2.2 Learning predefined activity models from labelled data

For the purpose of recognizing a set of predefined activities, various machine learning models
have been tested. These can be broadly categorized into template matching, generative and
discriminative approaches. Template matching techniques use a K-nearest neighbour classifier
based on euclidean distance or dynamic time warping. Generative approaches like Bayesian
classifiers model activity samples as Gaussian mixtures[15]. Discriminative approaches, includ-
ing support vector machines (SVM) and conditional random fields have also been used with
great success[14][21].

Krishnan et al. successfully used support vector machines classifiers to learn activity models on
sensor data collected from smart home environments[13]. With sensor events stored as tuples
<Date, Time, SensorId, Message>, the learning problem was to map a sequence of K sensor
events to an activity label. Other work which used data from body sensor targeted the same
learning problem, the difference being that a time window was chosen to sample the events used
as inputs for the classifiers[4].

The experiments discussed in this paper fall roughly under this category, the datasets that were
used both contain labelled activity data. However, we used this samples to generate training
datasets for targets that were not explicitly marked in the datasets, as explained in Chapter 3.

2.3 Online Activity Recognition

The same method can be applied for online activity recognition, however the size of the reference
window holds a definitive role in the performance of the classifier. There are three different
methods proposed in current literature for handling the size of the window[14].

Explicit segmentation. This is usually done in a two step approach. In the first step, the
streaming sensor events are split into chunks, with each chunk corresponding to a possible
activity. The second step performs classification on the chunks resulted from the previous step.

Time based windowing. The second approach for handling the streaming of data is to divide
the sequence into equally sized time frames. This approach simplifies the complexity of handling
the data and proved to be efficient when dealing with sensors that operate continuously in time.
This approach is common with accelerometers and gyroscopes, where data is sampled at regular
intervals. The challenge for this approach is choosing the appropriate time frame. If the window
is too small, there’s a chance that relevant information will be left out. On the other hand, if
the time frame is too big, data related to multiple activities can be included in the same frame,
leading to poor classification performance.

Sensor event based windowing. The third approach is to divide the sequence into windows
of equal sizes. This method may lead to cases where events from different activities are included
in the same window. The relevance of events from the same window is uniformly distributed
and a weighting mechanism should be used. Experiments by Krishnan et al. used this approach
yielding good results [14].

This category falls outside the scope of this research, but the segmentation techniques are still
valid for the problem of learning semantic attributes.

2.4 Unsupervized learning for activity patterns

A different approach for activity recognition is the use of clustering algorithms for grouping
activities with similar characteristics. This approach was used to learn a taxonomy for activities
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performed in different environments[13]. Hyunh et al. used soft clustering labels as the input
features for learning high-level activity patterns using topic models[11].

This approach was not used, the nodes in a context graphs are well defined concepts, thus it is
difficult to use clusters generated by unsupervised learning models to build these nodes.

2.5 Attribute-Based Learning

Cheng et al. [4] studied the problem of recognizing previously unseen activities using low level
attributes of the activity. This task is often referred to as the zero-shot learning problem. The
human activity recognition system designed by Chen et al. is comprised of two layers. The
first layers maps sensor data to an attribute matrix, while the second layer uses a Bayesian
classifier to determine the activity being performed. Experiments were carried on activities
from two domains: exercise activities and daily life activities and were based on data from
on-body inertial sensors. Features used for classification included mean standard deviation of
sensor data, pair-wise correlation between pairs of dimension and local slope of sensor data. The
attributes identified by the system were atomic steps of the action currently being performed
and were previously selected by a supervisor. The system provides an uncertainty measure and
prompts the user when an unseen activity was performed.

These results are also relevant for the problem of generating context graphs. The approach
we used for learning semantic attributes, which are then used to generate context graphs, is
done in a similar fashion with some exceptions. In the experiments presented in this paper,
the value of attributes is extended to include consequences, descriptions and side-effects of the
actions. Next, we also evaluate the approach using ambient sensors in the context of smart
house systems.

2.6 Activity Patterns using topic models

Another approach based on algorithms from natural language processing was studied by Huynh
et al. [11]. The proposed method uses topic modeling to recognize daily routines as probabilistic
combination of activity patterns. Activities performed on a daily basis can be characterized on
different levels of granularity, fine-grained activities tend to be correlated to physical movement
and body posture. For many types of activities, a small window of sensor data is sufficient
to recognize them. However, when trying to recognize higher level activities the task becomes
more difficult because these activities are not identified by physical properties measured by
sensors. The complexity stems from the following causes:

1. they are composed of variable patterns of multiple activities

2. they range over large periods of time

3. often vary significantly between instances.

Probabilistic models such LDA are very effective in capturing the correlating between these
activities as higher level activity pattern. The results of this work are three-fold. First, the
approach was validated using labeled activity data by measuring the activation level of each
high-level pattern. Second, topic modeling proved successful as a mean of inferring high-level
structure from a vocabulary of labels representing relatively short-term activities. The labels
were learned using supervised learning from sensor data streams. What’s interesting with
this approach is that the estimated topics carry an inherent meaning. The drawback lies
in the amount of effort associated with the supervised learning part. Third, evaluation of



CHAPTER 2. RELATED WORK 8

applying topic modelling over a vocabulary learned using unsupervised learning algorithms
yields surprisingly good results without any activity annotation.

This approach yields high level activity patterns which are comparable to context graph rep-
resentations. When compared to the results published by Hynh et al.[11], the datasets used in
this work produced a considerable smaller vocabulary, which is why we considered LDA not to
be an effective solution. However, it would be interesting to evaluate LDA on datasets with
more complex activities, which would have a more complex associated vocabulary.

2.7 Deep learning for HAR tasks

In recent years, deep learning has become one of the biggest trends in machine learning. With
both commercial and academic interest in the subject, a significant amount of work was put
into developing models that learn high level abstractions from data. Furthermore, with the
development of frameworks such as torch7, TensorFlow and Theano, deep learning has become
considerably more accesible to both researchers and software engineers. Current research sug-
gests that deep learning models are well suited for solving human activity recognition tasks. In
particular the use of convolutional neural network proved a good choice for automating feature
extraction sensor inputs[25].

One of the main advantages of neural networks is that they behave very well when using
raw signals as their input. One of the key tasks in HAR is engineering good feature extractors,
traditional systems often relying on heuristics or expert knowledge. Using deep learning models
has the potential of overcoming this limitation, greatly facilitating the process of optimizing
model parameters in a systematic manner.

We used deep learning models for learning semantic attributes from on-body sensors. For the
ambient sensors dataset, the number of available features was too small and using deep learning
models didn’t yield any improvements over traditional machine learning models.

2.7.1 Convolutional Neural Networks

The use of Convolutional Neural Networks, or CNN, for human activity recognition was studied
by a number of authors[25] [22][26]. CNN are extremely effective at identifying salient patterns
from input data. The lower level layers usually learn to match simple patterns that describe
basic movement, with subsequent layers learning increasingly more abstract patterns within the
data. Most CNN approaches employ the use of pooling layers after convolution layers. These
have the effect of multiple salient features learned from different parts of the input being jointly
considered for the classification. As such, convolutional layers can act as automatic feature
extractors while pooling layers are used to obtain higher level features.

An important aspect is that in HAR problems, the input consists of multiple channel signals,
over which traditional convolution filters cannot be used directly. Instead, the convolution
filters and pooling layers are required to operate only along the temporal dimension.

2.7.2 Recurrent Neural Networks

An issue with traditional feedforward networks lies in the assumption that inputs are indepen-
dent variables. To successfully model temporal dynamics in data, the input should include tem-
poral information. The solution to this limitation is using recurrent neural networks (RNNs).
In recurrent neural networks, the output of a node is fed back to itself with a delay using a
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recurrent connection. This connection to the past activation allows RNN units to model tem-
poral sequences. While in principle the RNN is a simple and powerful model, in practice, it is
difficult to train properly. The main reason for this is the vanishing gradient problem [10].

2.7.3 Long short term memory

Long short term memory(LSTM) is a solution to the vanishing gradient problem encountered
with RNNs. LSTM uses memory cells instead of recurrent units that store information using a
gating mechanism and are capable of learning long-term dependencies with hundreds of steps.
Each unit keeps track of its memory using 3 gates: output gate, input gate and forget gate.
Figure 2.1 shows the gating mechanism used for a single LSTM unit.

Figure 2.1: Unit inside an LSTM layer



Chapter 3

Generating context graphs using
semantic attributes

In this chapter we present the steps for generating context graphs using the semantic attribute
approach. We discuss the steps taken for training the classifiers that produce the list of semantic
attributes and describe an example of how a rule-based system can transform these attributes
into transactions on the context graph model.

3.1 Overview

As mentioned in Chapter 1, the first step is to select a list of semantic attributes that are
relevant in a given AmI application’s domain. While it is possible to build attributes sets
that cover multiple situations that fall in the same domain, such as the domain of daily life
activities, we consider this step to be specific to individual AmI applications and, as such, for
the experiments presented in this work, the attributes are preselected.

With a given list of semantic attributes, the next step is training classifiers that recognize
these attributes. We applied general machine learning techniques that are often used in human
activity recognition tasks. There are some differences between the two types of sensor data
sources: ambient sensors and on-body sensors. In the following sections we describe the steps
for preprocessing, feature extraction and training of the classifiers. Finally, we describe how a
rule based system can use these semantic attributes to generate a context graph.

3.2 Preprocessing

The preprocessing steps are slightly different for each of the two datasets. The ambient sensors
dataset, WSU CASAS, contained mostly binary sensors which would generate a sample only
when their output switched in value. For the continuous sensors (e.g. water-tap sensor) we
performed feature scaling. The time between two sensor samples’ timestamps is in the order of
seconds. With the exception of the proximity sensors, which were connected wirelessly using
bluetooth, all the sensors were hard-wired and didn’t exhibit missing values. Because of this,
the dataset doesn’t include samples with empty values, but rather just includes small gaps with
no events.

The on-body sensors dataset included only continuous value data which exhibited numerous
missing values. We performed per-channel unity-based normalization, and filled in the missing
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values using linear interpolation. The sample rate that was used in the experiments on the
Opportunity dataset was 30Hz.

3.3 Feature extraction

For both types of experiments we applied a windowing technique. This means that features for
a sample at time t is actually a sequence with data from samples from time t−K to time t. The
main difference between how feature extraction was applied on the two datasets stems from the
samples’ structure. For the WSU CASAS dataset, a sample would be a tuple containing the
following items:

• timestamp.

• type of sensor.

• sensor value.

As noted in the previous section, the time difference between timestamps could vary signifi-
cantly. The Opportunity dataset, on the other hand, contained vectors of raw values which
were measured at a fixed sample rate. The Opportunity dataset contained also considerably
more samples. As such the features extracted from the WSU CASAS dataset include:

• sequence of (type of sensor, sensor value)

• time offsets between the first sample in the sequence and all subsequent samples.

For the Opportunity the features used were comprised of a matrix of all sensor readings in a
800ms time frame.

3.4 Machine learning models

Depending on the dataset, we experimented with two types of classifiers. For WU CASAS we
used linear regression and support vector machines. For the Opportunity dataset we used deep
learning models with convolutional layers and long short term memory units. The deciding
factor in this case was the amount of available data. For the first dataset, the size of the
feature size was [windowsize, 4] with 16000 entries, while for the second one the feature size
was [windowsize, 113] with 46000 entries. Because of this, using deep learning models on the
WU CASAS didn’t yield any improvements.

3.5 Training

Given an activity-attribute matrix, we train detectors which can infer the presence or absence
of a given attribute from features extracted from the sensor data.

Training the classifiers poses a number of issues. First, the number of attributes can be quite
large and collecting separate training datasets for each attribute is not practical. Next, low
level attributes can be descriptions, consequences or just side effects of the activity a subject is
performing. Finally, a lot of attributes are common to different types of activities. The solution
is to reuse a dataset for high level activities and provide both negative and positive samples for
each attribute classifier. Positive samples are obtained by merging labelled data of all activities
associated with an attribute, while the negative samples are assembled using all the high level
activities which are not associated with the attribute.
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3.6 Graph generation

With a list of attributes provided by the trained classifiers, the final step is to feed this list
into a tATAmI agent which translates it to changes in a context graph using a set of rules.
As mentioned in Chapter 1 this step is solved on a case by case basis and is considered a task
left for the AmI agent’s developer. In this section, using a subset of the semantic attributes
extracted from the Opportunity dataset, we provide an examples of how the set of rules can be
defined. Table 3.1 lists the set of attributes used for this example.

Table 3.1: Example Attributes for generating context graphs

Attribute Value range
posture stand, walk, sit, lie
general_activity relaxing, coffee time, early morning, cleanup, sandwich time.
holding_object_in_left_arm bottle, salami, bread, sugar, dishwasher, switch, milk, drawer3, spoon.
holding_object_in_right_arm knife cheese, drawer2, table, glass, cheese, chair, door1, door2, plate.

We consider the initial context graph to be a single node graph with the label user. Inspecting
the attribute list, we notice that we can map each attribute name to an outward edge from the
root node connected to a new node with label from the attribute’s range of values. Next, the
user cannot be performing two general activities at the same time, hold multiple objects in the
same hand or have different postures at the same time. From this observation, we can infer an
update rule for the graph for each attribute:

Given a context graph G and a list of (attribute, value) pairs:
For each attribute, value pair in the input vector:
Let P = pattern constructed from the attribute’s label, the root node and a generic node:
user − attribute− >?
Let M = matching subgraph when comparing pattern P to the graph G.
If M is not null then:
Remove M from the context graph.
Let N = subgraph constructed from the root node, attribute’s label and the attribute’s value:
user − attribute− > value
Add N to G.

In figure 3.1 we can view the results of applying the rule set on the following input:
posture=stand, general_activity=sandwich_time,
holding_object_in_left_arm=knife, holding_object_in_right_arm=cheese. Next, if the
value of holding_object_in_left_arm, holding_object_in_right_arm attributes changed
to null and drawer_handle the changes applied to the graph would be removing the edge as-
sociated with holding_object_in_left_arm and changing the label of the node that describes
the object held in the right hand. The resulting graph is displayed in figure 3.2.

The holding_object_in_left and holding_object_in_right_arm attributes could be interpreted
differently. For example, they could be used together to build a single branch in the context
graph for using_item. We believe that there are multiple approaches on how the attributes can
be translated into changes in the context graph, but this depends on the specifics of the AmI
application in which they are used.
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Figure 3.1: Example resulting context graph after applying the ruleset.

Figure 3.2: Example resulting context graph when the value of the
holding_object_in_left_arm attribute changed to null.



Chapter 4

Learning semantic attributes from
ambient sensors

In this chapter we discuss the experiments carried for the task of extracting semantic attributes
from ambient sensor data resulted from recording test subjects performing daily life activities.
As mentioned in Chapter 3, in order to produce semantic attributes from data, we select a list
of semantic attributes that can be mapped in a context graph and train classifiers for each of
these attributes. In the following sections we describe the WSU CASAS[6] dataset, discuss the
selection of attributes and detail how the learning was performed.

4.1 The WSU CASAS Dataset

The experiment was carried on a dataset from the WSU CASAS smart home project[6]. The
dataset consists of sensor events for 8 annotated activities from the domain of daily life activities.
Participants perform each activity separately and then are asked to perform the entire set of 8
activities in any order they prefer.

The following is a list of the 8 activities the participants were asked to perform:

1. Fill medication dispenser. The participant moves to the kitchen, retrieves a pill dis-
penser and bottle of pills, and follows directions to fill the dispenser.

2. Watch DVD. The participant moves to the living room, puts a DVD in the player and
watches a news clip on TV.

3. Water plants. The participant retrieves a watering can from the kitchen supply closet
and waters three plants.

4. Answer the phone. The phone rings and the participant answers it. The participant
converses over the phone with the experimenter to answer some questions about the news
clip they watched.

5. Prepare birthday card. The participant fills out a birthday card with a check to a
friend and addresses the envelope.

6. Prepare soup. The participant moves to the kitchen and prepares a cup of noodle soup
in the microwave, following the directions on the package. The participant brings the
soup and a glass of water to the dining room table.
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7. Clean. The participant sweeps the kitchen floor and dusts the living room and dining
room using supplies retrieved from the kitchen supply closet.

8. Choose outfit. The participant selects an outfit from the clothes closet that their friend
will wear for a job interview.

The dataset includes approximately 16000 events from sensors installed around a smart house
environment. Most of the sensors types have binary output. Table 4.1 shows a complete list
of the sensor types used. Figure 4.1 shows the positioning of the sensors inside the smart
apartment, also the path of participant performing task 7 can be observed.

Table 4.1: Sensor types

Sensor Output type Notes
motion sensors binary
item sensors binary for oatmeal, raisins, brown sugar, bowl, measuring spoon
medicine container sensor binary
pot sensor binary
phone book sensor binary
cabinet sensor binary
water sensor continuous
water sensor continuous
burner sensor continuous
phone sensor binary
temperature sensors continuous

Figure 4.1: WSU CASAS smart apartment layout and path of the subject performing task 7.
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4.2 Learning semantic attributes

Based on the activity descriptions mentioned above, we encoded three types of semantic at-
tributes which are listed in table 4.2. Inspecting the table of attributes, we can observe that
they map directly to nodes and edges in the context graph using a rule set similar to the
one presented in Chapter 3.For example, the activity of cleaning the kitchen is characterized by
location−is−kitchen = true , activity−is−cleaning = true and using−cleaning−supplies =
true, with all other attributes being false. The choice of location as a semantic attribute might
be put into question, because location correlated directly to raw sensor inputs (since their
position in the house is known). However, our goal is to validate the usefulness of semantic
attributes for context graph generation and not to produce the very best output from the given
dataset. The mapping between each attribute and the set of 8 activities can be defined as a [N,
8] matrix.

For each pair of (attribute, value), we trained a binary classifier on the annotated single-activity
datasets and measured the performance on the interwoven datasets. We tested two different
classifiers: support vector machines (SVM) and logistic regression. Early tests revealed similar
performance between the two and we decided to use latter for the final evaluation. We used
the logistic regression and SVM implementation from the python package sklearn1.

Table 4.2: Attributes for the WSU CASAS ambient sensors dataset

Attribute Value range
location kitchen, living-room, hallway
using pill-dispenser, dvd, tv, can-of-water, sink, phone,

phone-agenda, microwave, pot, cleaning-supplies, closet
action filling-medication-dispenser, watching-dvd, watering-flowers

answering-phone, prepare-birthday-card, prepare-soup, clean-kitchen,
clean-living-room, choose-outfit.

4.2.1 Feature extraction

The features used in training the classifiers are extracted from sequences of K = 15 sensor
events. This value was chosen empirically after some initial tests. The extracted features
include: type of the sensor, sensor value, position in the sequence, time offsets between the first
event and all subsequent events in the sequence.

4.2.2 Training

Because the dataset contains annotations only for the general activity being performed, we
lacked training sets for each of the binary classifier. To overcome this we used the dataset to
provide both negative and positive samples for each of the training targets. By merging the
samples of all activities associated with an attribute we obtained a positive training set. The
set of negative samples was assembled in a similar fashion, by merging the samples of activities
not associated with those attributes.

1http://scikit-learn.org/stable/

http://scikit-learn.org/stable/


Chapter 5

Learning semantic attributes from
on-body sensors

In this chapter we discuss the task of learning semantic attributes from on-body sensors. We
use the Opportunity dataset to train and evaluate the performance of deep neural network
classifiers for 7 types of attributes.

One of the main advantages of neural networks is that they behave very well when using raw
signals as their input. As mentioned in Chapter 3, the task of learning attributes is very
similar to HAR problems. One of the key tasks in HAR is engineering good feature extractions,
traditional systems often relying on heuristics or expert knowledge. Using deep learning models
has the potential of overcoming this limitation, greatly facilitating the process of optimizing
model parameters in a systematic manner.

5.1 The Opportunity challenge dataset

The OPPORTUNITY dataset[1][3] consists of a set of daily user activities performed in an
environment measured through a high number of sensors. The data was recorded using four
subjects in a daily living scenario and amounts to 6 hours of recorded material. Each subject
performed 5 sessions with daily life activities plus an extra drill session. When performing
the activities, subjects followed a loose description of the task with no restrictions. Examples
of activities include: 1. preparing and drinking coffee; 2. preparing and eating lunch; 3.
cleaning the table; The drill sessions consisted of twenty repetitions of predefined sorted lists
of activities. Activities performed during the drill sessions display a considerable amount of
overlap, the subjects being give a lot of leeway in the manner in which they performed the
activities. Figure 5.1 shows a view of the room in which the activities were recorded.

Regarding sensor setup, the set of on-body sensors used includes 5 RS485-networked XSense
inertial measurement units attached to a special jacket worn by the subjects, 2 commercial
InertiaCube3 inertial sensors located on the subjects’ feet and 12 bluetooth acceleration sensors
on the limbs. Each measurement unit is composed of a 3D accelerometer, a 3D gyroscope and a
3D magnetic sensor. Figure 5.2 offers a representation of the sensors’ position. The dataset was
used in an open challenge for human activity recognition. As part of the challenge, each sensor
axis is treated as an individual channel. Therefore, the input space consists of 113 different
channels with a sample rate of 30 Hz[3].

The Opportunity dataset includes annotations for several different challenges:
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Figure 5.1: View of the room in which the activities were recorded. Dashed lines mark the
subjects’ trajectory within the room. Picture from Chavarriaga, R., et al.[3]

1. recognition of modes of locomotion and postures. 5-class segmentation and classification
problem.

2. hand gesture recognition. This consists of different right-arm actions. 18-class segmenta-
tion and classification problem.

These challenges received numerous submission for the human activity recognition tasks. While
our target was to learn semantic attributes, we leveraged existing results to design the archi-
tecture of a deep neural network that delivers state of the art results on the gesture recognition
tasks. We then used this architecture for the semantic attributes classifiers.

The current state of the art model for the gesture recognition model was reported by Hammerla
et. al.[9] with F1 score of 0.92 on the Opportunity gesture recognition task. The model uses
3 bidirectional LSTM layers applied on the normalized sensor data using a sliding window
mechanism. The window size used was 1 second, as opposed to a window size 800ms used in
our experiments.

5.2 Semantic attributes from the Opportunity dataset

As per the steps presented in Chapter 3 we extracted a list of semantic attributes for which we
trained individual classifiers. A full list of these attributes can be viewed in table 6.4. Unlike the
WSU CASAS dataset, the Opportunity dataset has rich annotations for the actions performed,
thus we didn’t need to generate positive and negative samples for each classifier.
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Figure 5.2: On-body sensor position used for activity recognition data in the Opportunity
dataset. Picture from Chavarriaga, R., et al.[3]

Table 5.1: Attributes extracted from the Opportunity dataset

Predicate Value range
posture stand, walk, sit, lie
general_activity relaxing, coffee time, early morning, cleanup, sandwich time
left_arm_action unlock, stir, lock, close, reach, open, sip, clean, bite, cut, spread,

release, move
holding_object_in_left_arm bottle, salami, bread, sugar, dishwasher, switch, milk, drawer3, spoon,

knife cheese, drawer2, table, glass, cheese, chair, door1, door2, plate,
drawer1, fridge, cup, knife salami, lazychair

right_arm_action unlock, stir, lock, close, reach, open, sip, clean, bite, cut, spread,
release, move

holding_object_in_right_arm bottle, salami, bread, sugar, dishwasher, switch, milk, drawer3, spoon,
knife cheese, drawer2, table, glass, cheese, chair, door1, door2, plate,
drawer1, fridge, cup, knife salami, lazychair

performing_activity open door 1, open door 2, close door 1, cloose door 2, open fridge,
close fridge, open dishwasher, close dishwasher, open drawer 1,
close drawer 1, open drawer 2, close drawer 2, open drawer 3.
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5.3 Deep Neural Network Architecture for Learning Se-
mantic Attributes

In this section we introduce a deep learning model for learning semantic attributes which uses
a combination of convolutional layers and LSTM layers referred to as CNN_LSTM in the
following sections.

The purpose of the convolutional layers is to automatically extract higher level features from
the sampled data, while the recurrent layers attempt to model the temporal dependency within
the time series. For comparison, we also present a baseline model that only uses convolutional
layers(baseline CNN) and a second baseline model that only uses recurrent layers(baseline
LSTM). All three models have the same configuration on layers of the same type and use
a fully connected (dense) layer with 18 units as the output layer. Figure 5.3 offers a rough
representation of the CNN_LSTM network.

Figure 5.3: Architecture of the deep neural network for learning semantic attributes

As mentioned in the beginning of this chapter, we designed the CNN_LSTM network by it-
erating over layer configurations that were evaluated on the gesture recognition task from the
Opportunity challenge.

5.3.1 Network input and preprocessing

The input of the network is bidimensional vector of size [24 x 113] corresponding to a 800ms
time frame with 113 sensor channels. As mentioned in the previous section, the input data
was segmented using a sliding window method with 50% overlap. As it is often the case in
real world scenarios, sensor channels suffer from noise or missing output. This was an issue
with the bluetooth sensors in particular. To fill missing entries in the dataset we used linear
interpolation and performed (per channel) input normalization to the [0,1] interval.

5.3.2 Convolutional layers

Our network uses 4 convolutional layers. Each layers applies 6 [4x1] filters. Note that the first
dimension represents time, thus the filters will be applied for each sensor channel individually.
The activation function used for these layer is rectified linear unit(ReLU) relu(x) = max(0, x).
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We experimented with adding pooling layers between the convolutional layers. However, no
performance increased was observed. This can be explained by the presence of the LSTM
layers, with temporal convolutional filters performing the same task as the LSTM layer, but on
considerable smaller time intervals. The network’s output after the convolutional layer consists
of 5 feature maps of size [24, 113].

5.3.3 Recurrent layers

On top of the convolutional layers our network stacks 2 LSTM layers with 64 units each. The
activation function between the recurrent layer cells is tanh. When training the network for
more than 45 epochs, it starts to manifest some degree of overfitting. To counter this issue, we
experimented with adding dropout to each recurrent layer’s input. The results reported in this
paper were obtained using a dropout rate of 0.4 on the inputs of the recurrent layers.

5.3.4 Training

The network output is computed using the Softmax activation function from the top level fully
connected (dense) layer. Training was performed in a supervised fashion, minimizing the output
of the categorical cross entropy loss function. We used batch gradient descent with rmsprop[7].
All models were trained using batches of 100 samples.

After performing segmentation on the training data, we obtained 46000 training samples. This
training set is considered small for deep learning models. Experimenting with deeper neural
networks lead to overfitting problems. We followed the general guidelines from existing deep
learning research[24] and applied dropout factors greater than 0.5 for the lower layers and
between 0.4 and 0.5 for higher layers. Other methods of regularization reported in existing
research include max norm regularization[9] and L1 regularization[20].

5.3.5 Implementation

To implement the CNN_LSTM network and the two other baseline networks we used two
popular libraries: Keras[5] with the TensorFlow[2] backend. TensorFlow is an open source
library for numerical computation using data flow graphs. Keras is machine learning library
built on top of TensorFlow and Numpy which facilitates prototyping with deep learning tasks.
Training and classification were executed using libcudnn on an Amazon Web Service instance
which provided a K520 series GPU with 1500 cuda cores running at 850MHz and 4GB video
ram.



Chapter 6

Results evaluation

In this chapter we present the experimental results for the task of learning semantic attributes
using human activity recognition models on the two datasets we described in Chapter 4 and
Chapter 5. Furthermore, we compare the deep learning model that was trained on the Oppor-
tunity dataset with existing models from research published for the open challenge associated
with the dataset. As previously mentioned, this comparison was the method used to validate
the neural networks’ architecture before applying it on the semantic attribute learning task.
Before presenting the results we provide some observation on the metrics used for performance
measuring.

6.1 Null class and class imbalance

A common issue with human activity datasets is that they are often highly unbalanced. Class
imbalance means that a small set of classes are represented by a large number of samples, while
others are underrepresented[12]. For activity recognition problems, the most widely encountered
source of imbalance is the Null class; the Null class is used to label samples in which the subject
is not performing any particular activity. Because the semantic attributes we extracted from
the datasets are directly correlated with activities being performed, this problem also applies to
our experiments. For the Opportunity dataset, the Null class represents more than 75% of the
recorded samples. The exact percentages for the first 3 subjects are: 76%, 82% and 76%. As
such, using classification accuracy is a poor choice for measuring performance. Using a simple
classifier that just returns the Null class for any input will score a very high accuracy. The
suggested method for measuring classifiers’ performance in this case is the F1 score. The F1

score combines precision and recall, measurements that are often used in information retrieval.

F1 =
∑

2 · wi
precisioni·recalli
precisioni+recalli

where i is the class number and wi is the weight of class i within the dataset; precisioni and
recalli are the measurements for class i and are defined as follows:

precision = true_positives
true_positives+false_positives

recall = true_positives
true_positives+false_negatives
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6.2 Results: learning semantic attributes from ambient sen-
sors using the WSU CASAS dataset

To measure the performance of the classifiers we computed the precision, accuracy, recall and
F1 score for attributes predicted by the SVM classifiers. The results are displayed in figure 6.1.
All classifiers achieved a high accuracy score, however this is mostly due to the large number
of true negative samples for each classifier. As mentioned in the previous section, the relevant
metric is the F1 score. All classifiers achieved a precision greater than 55% which improve
over the baseline random classifier which achieves a precision of 32% on average. Recall ranged
from 0.29 to to 0.96, depending on how often the attribute was represented in the generated
training samples. As mentioned in the previous section, the relevant measure is the F1 score.
The complete results, including the F1 scores are presented in table 6.1.

The best results were for location attribute, this due to the fact that all activities included at
least one positive value for this attribute.

Figure 6.1: Performance measure for attribute classification

Inspecting table 6.1 we can observe that the classifiers achieved a F1 score greater 0.5 on
average. This is consistent with the results published by Krishnan et al.[13] on the activity
recognition task of 0.54 F1 score. However, for real world applications this is a rather poor
result. We consider the main cause for these results to be attributed to the small number of
features available for learning.
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Table 6.1: Complete performance measurements for the WSU CASAS dataset

Attribute - Value pair Precision Accuracy Recall F1 score
using(can-of-water) 0.57 0.88 0.55 0.55
action(watering) 0.56 0.87 0.55 0.55
using(closet) 0.75 0.96 0.6 0.66
watching(dvd) 0.74 0.91 0.47 0.57
using(tv) 0.73 0.91 0.47 0.57
using(microwave) 0.62 0.89 0.68 0.64
location(living-room) 0.94 0.9 0.96 0.94
action(clean-kitchen) 0.68 0.84 0.64 0.65
using(cleaning-supplies) 0.68 0.84 0.63 0.65
location(kitchen) 0.83 0.85 0.55 0.66
action(prepare-birthday-card) 0.8 0.94 0.67 0.72
using(phone) 0.59 0.94 0.28 0.37
action(clean-living-room) 0.68 0.83 0.64 0.65
action(filling-medication-dispenser) 0.54 0.94 0.51 0.52
location(hallway) 0.74 0.96 0.59 0.656
action(choose-outfit) 0.75 0.96 0.59 0.66
action(asnwering-phone) 0.61 0.94 0.29 0.39
using(pot) 0.62 0.88 0.67 0.64
action(prepare-soup) 0.62 0.89 0.68 0.64
using(phone-agenda 0.8 0.94 0.67 0.72
using(pill-dispenser) 0.54 0.94 0.51 0.524

6.2.1 Results: CNN_LSTM deep neural network for human activity
recognition on the Opportunity dataset

As mentioned in Chapter 5 we validated the architecture of the CNN_LSTM neural network
on the gesture recognition task from the Opportunity dataset challenge. In this sections we
present the results for this task and benchmark it against two baseline models, other submission
to the challenge as well as the state of the art solutions published by different authors. Table
6.3 contains descriptions of the models used as benchmarks.

From table 6.2 we can see the CNN_LSTM model outperforms the Opportunity challenge
submission and the baseline CNN and LSTM models. When compared to the best non deep
learning submission, CStar, the performance increase in the F1 score is around 2%. The CNN_-
LSTM also improves over the baseline models with 2-3%.

The baseline models have better performance than the non deep learning models submitted in
the Opportunity challenge with one notable exception: CStar. The performance of the baseline
CNN network has consistent results with the CNN model reported by Yang. et. al.[25].

The 2-layer LSTM baseline model performed slightly better than the convolutional only net-
work. CNN_LSTM performing better than both baseline methods is evidence that recurrent
neural networks are a good choice for modelling on-body sensor data.

However, CNN_LSTM falls short in comparison with the current state of the art by 0.1 on the
F1 score. This can be attributed to a number of factors:

1. LSTM[9] uses 3 LSTM layers with bi-directional connections, while our model only uses
forward (in time) connections for the LSTM layers.

2. LSTM[9] was trained on a slightly longer window frame.
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Table 6.2: F1 score on the Opportunity gesture recognition task

Opportunity challenge submissions[3]
Model F1 score
LDA 0.69
QDA 0.53
NCC 0.51
1NN 0.87
3NN 0.85
UP 0.64
NStar 0.84
SStar 0.86
CStar 0.88

Deep learning approaches

CNN[Yang et. al. 2015] 0.851
LSTM[Hammerla et. al. 2016] 0.92
Baseline CNN 0.876
Baseline LSTM 0.881
CNN_LSTM 0.9096

Table 6.3: Opportunity dataset benchmark for the gesture recognition tasks

Opportunity challenge submissions[3]
Model Description
LDA Linear discriminant analysis. Gaussian classifier,

assumes features are normally distributed and all classes have
the same covariance matrix.

QDA Quadratic discriminant analysis. Similar to LDA, but class
covariance may differ.

NCC Nearest centroid classifier. Uses euclidean distance.
1NN K-nearest neighbour algorithm with k=1.
3NN K-nearest neighbour algorithm with k=3.
UP Submission to the Opportunity challenge from University of

Parma. Uses mean, variance, maximum and minimum values for
comparing patterns.

NStar Submission from the University of Singapore. K-nearest
neighbour algorithm with k=1, uses normalized data.

SStar Submission from the University of Singapore, based on
support vector machines with normalized data.

CStar Submission from the University of Singapore. Uses both
K-nearest neighbour and SVMs.

Deep learning approaches

CNN[25] Results reported by Yang et. al.[25].
LSTM[9] Results reported by Hammerla et. al.[9]. Current state of the art

on the Opportunity dataset.
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It is unclear what is the size of LSTM layers used by Hammerla et. al. in their model. As
such, we can only speculate on the difference in performance between the two network. Even
so, CNN_LSTM achieves a very good F1 score on the dataset that is comparable to the current
state-of-the-art.

6.2.2 Overfitting

As mentioned in Chapter 5, one of the main challenges when training the deep neural network
was overfitting. When training CNN_LSTM, after 30 epochs, we can observe how the perfor-
mance on the validation set plateaus at 0.90 (F1 score), while the model starts overfitting the
training data. Figure 6.2 displays this issue.

Figure 6.2: Plot with performance on the validation set during training. After 30 epochs, the
performance on the validation set plateaus at 0.90 while model starts overfitting.

6.2.3 Using deeper networks

We also investigated the effect of adding more convolutional layers to the network. From our
experiments, we found that after 4 layers, the performance of the network no longer increases
and overfitting becomes more difficult to control. This can be observed in figure 6.3.

Another direction we experimented with was using a higher number of filters in the convolutional
layers. We tested networks with filters between 10 and 32. However, we were unsuccessful in
increasing the network’s performance.
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Figure 6.3: Performance of the neural network in relation to the number of convolutional layers
used.

6.2.4 Results: CNN_LSTM deep neural network performance on
learning semantic attributes from the Opportunity dataset

For the task of learning semantic attributes from the Opportunity dataset using the CNN_-
LSTM deep neural network described in Chapter 5 we measured the accuracy and F1 score for 7
classifiers corresponding to the list of extracted attributes. As explained in the beginning of this
chapter, because of the class imbalance, even trivial models achieve accuracy measures greater
than 75%. In this particular case, the deep neural models achieved accuracy scores of 99%.
The F1 score measures for each attribute classifiers can be viewed in table 6.4. For the posture
and performing_activity attributes, the scores are consistent with the results on the gesture
recognition task from the open challenge. For the attributes describing low level characteristics
of the performed activities such as left_arm_action, holding_object_in_left_arm etc., The
performance is considerably lower with an average F1 score of 0.75. We attribute this to the
difficulty of correlating the data with such fine characteristics of the activities. Finally, the
classifier for the general_activity attribute also had lower performance with a score of 0.76.
This result can be attributed to the fact that the time frame was too small to effectively identify
this attribute.

We also measured the performance of the classifiers on the validation set during training. A
plot of the measurements can be observed in Figure 6.4. The findings are consistent with the
overfitting problem mentioned in previous sections.
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Figure 6.4: Performance of the network on the validation during training

Table 6.4: Classifiers’ performance on semantic attributes extracted from the Opportunity
dataset

Attribute F1 score
posture 0.8916
general_activity 0.7688
left_arm_action 0.763
holding_object_in_left_arm 0.745
right_arm_action 0.748
holding_object_in_right_arm 0.701
performing_activity 0.905

6.3 Results interpretation

Regarding the task of extracting semantic attributes from sensor data, results from both exper-
iments yielded promising results that were consistent with results published in human activity
recognition literature on the corresponding datasets. Through these experiments we provided
evidence that semantic attributes can be extracted from sensor data, which could then be used
to generate context graph using the method detailed in Chapter 3. We also observe, that deep
neural networks with LSTM units are well suited for capturing temporal dynamics from sensor
data.



Chapter 7

Conclusion

In this paper we proposed a method for generating context graphs using semantic attributes
extracted from sensor data. We discussed the architecture of machine learning models capable
of identifying these attributes from both ambient and on-body sensors and evaluated their per-
formance on two popular human activity recognition datasets: WSU CASAS and Opportunity.
We presented some of the main difficulties in training these models and provided options to
overcome them.

For the Opportunity dataset, we designed a deep neural network architecture that uses both
convolutional layers and LSTM units. This architecture was validated on the gesture recognition
task from the open challenge associated with the dataset. Our network achieved performance
comparable to current state of the art submission from this challenge.

Our findings provide evidence that extracting semantic attributes from sensor data is feasible
and, using the algorithm proposed in Chapter 3, that these attributes can then be used to easily
generate context graph representations.

7.1 Future work

During the course of work we have identified several research directions that could be pursued
in the future.

First, the experiments presented in this paper are all based on labelled data and use supervised
machine learning approaches. It would be interesting to study how unsupervised learning
algorithms could be used to synthesize symbolic knowledge from human activity sensor data.

Second, our datasets consisted of readings from a large number of sensors, for the on-body
sensors experiment the subject had 19 accelerometers and gyroscopes attached to his body.
We believe it is worth investigating setups that more closely resemble real world scenarios,
for example measuring the performance of the attribute classifiers on readings from only two
on-body sensor: a smart wristband and a phone.

Finally, context graphs models have the potential to cover a wider range of activity domains.
It would be worth studying the performance of our approach on sensor data from other activity
domains.
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