

Faculty of Automatic Control and Computers

Generating context graphs using human activity recognition models

September 2016

Author

ing. Cătălin Badea <u>catalin.badea0105@cti.pub.ro</u>

Scientific Advisor

Ş.l.dr.ing. Andrei Olaru

- Method for generating context graphs by extracting a set of predefined attributes from sensor data
- these attributes can then be mapped to a context graph directly or using a rule-based system

- graph representation of user context
- nodes represent concepts
- edges represent associations between concepts
- can be used to store and operate on data in Ambient Intelligent Applications

Context graph generated from the Opportunity dataset

Problem statement

 Having available low-level sensor data, the goal is to obtain a corresponding high-level representation in the form of a context graph which can later be used for high level reasoning using context graphs and patterns.

• E.g. for the Opportunity dataset, 113 sensor inputs are mapped to 6 high-level attributes.

Semantic attributes

- The semantic attributes represent a list of characteristics or descriptions of the activities performed by the subject.
- can be mapped to edges in a context graph directly or using specific rules.
- E.g. the activity of making a sandwich is described by:
 - posture=stand
 - left_arm_object=knife
 - right_arm_object=cheese

Generating context graphs

- Select a list of semantic attributes that are relevant to the context graph representation
- identify these attributes in sensor data using machine learning
- generate context graphs using the identified attributes.
- E.g. for a given sensor output sample, the identified attribute may be holding_object_in_right_arm with the value knife, thus we can add the edge user-holding_object_in_right_arm->knife to the graph.

5

- Experiments were carried on two datasets:
 - WSU CASAS ambient sensors
 - Opportunity on-body sensors
- For each dataset, we selected a list of semantic attributes, trained classifiers that identify individual attributes and measured performance

- smart home environment
- Data was recorded using ambient sensors installed inside the house
- 8 daily life activities
- small number of training features

WSU CASAS sensors layout

5

- sensor readings were generated as timestamped events whenever a sensor would activate
- 16000 samples
- sliding window mechanism with K=15.
- used SVM and logistic regression. SVM proved slightly better overall.

WSU CASAS results

Attribute - Value pair	Precision	Accuracy	Recall	F1 score
using(can-of-water)	0.57	0.88	0.55	0.55
action(watering)	0.56	0.87	0.55	0.55
using(closet)	0.75	0.96	0.6	0.66
$\operatorname{watching}(\operatorname{dvd})$	0.74	0.91	0.47	0.57
$\operatorname{using}(\operatorname{tv})$	0.73	0.91	0.47	0.57
using(microwave)	0.62	0.89	0.68	0.64
location(living-room)	0.94	0.9	0.96	0.94
$\operatorname{action}(\operatorname{clean-kitchen})$	0.68	0.84	0.64	0.65
using(cleaning-supplies)	0.68	0.84	0.63	0.65
location(kitchen)	0.83	0.85	0.55	0.66
action(prepare-birthday-card)	0.8	0.94	0.67	0.72
using(phone)	0.59	0.94	0.28	0.37
$\operatorname{action}(\operatorname{clean-living-room})$	0.68	0.83	0.64	0.65
action(filling-medication-dispenser)	0.54	0.94	0.51	0.52
location(hallway)	0.74	0.96	0.59	0.656
$\operatorname{action}(\operatorname{choose-outfit})$	0.75	0.96	0.59	0.66
$\arctan(asnwering-phone)$	0.61	0.94	0.29	0.39
using(pot)	0.62	0.88	0.67	0.64
$\operatorname{action}(\operatorname{prepare-soup})$	0.62	0.89	0.68	0.64
using(phone-agenda	0.8	0.94	0.67	0.72
using(pill-dispenser)	0.54	0.94	0.51	0.524

WSU CASAS results

- average F1 score greater than 0.5
- Reference state-of-the-art on the activity recognition task(Krishnan, 2012): 0.54

The Opportunity Challenge

- The Opportunity dataset consists of a large number of annotated sensor data recorded while subjects performed daily life activities
- The data was recorded using 113 wearable sensors on 17 daily life activities, with 6 hours of recorded activities. E.g. cleaning the table, drinking water, etc.
- Sensors include accelerometers and gyroscopes

Opportunity dataset: sensors

Opportunity: ML model

- Used a deep neural network architecture which we optimized on the Opportunity Challenge gesture recognition task
- We then tested this architecture on identifying semantic attributes in the dataset

- 4 convolutional layers with 6 [4x1]
 - filters are applied among the time dimension
 - act as feature extractors
- 2 LSTM layers with 64 units each
 - model the temporal dynamics of the dataset
- Fully connected layer with Softmax activation

- We segmented the training samples using a sliding window mechanism of 800ms with 50% overlap
 - this resulted in 60000 samples
- feature scaling
- linear interpolation for missing values
- The input to the network is a [24 x 113] matrix

- Baseline CNN with no recurrent layers
- Baseline LSTM model with recurrent layers applied directly on the raw sensor data
- Models submitted to the Opportunity challenge

Opportunity: gesture task

Opportunity challenge submissions[4]			
Model	F1 score		
LDA	0.69		
QDA	0.53		
NCC	0.51		
1NN	0.87		
3NN	0.85		
UP	0.64		
NStar	0.84		
SStar	0.86		
CStar	0.88		

Deep learning approaches

CNN[Yang et. al. 2015]	0.851
LSTM[Hammerla et. al. 2016]	0.92
Baseline CNN	0.876
Baseline LSTM	0.881
CNN_LSTM	0.9096

S Opportunity: semantic attributes

Attribute	F1 score
posture	0.8916
general_activity	0.7688
$left_arm_action$	0.763
holding_object_in_left_arm	0.745
$right_arm_action$	0.748
holding_object_in_right_arm	0.701
performing_activity	0.905

Using deeper networks

Performance based on the number of convolutional layers

Number of convolutional layers

- Presented a method for generating context graphs using semantic attributes extracted from low level sensor data
- We evaluated the performance of ML models for identifying semantic attributes on two relevant datasets
- For the Opportunity dataset, our neural network architecture achieves high scores on the open challenge associated with the dataset

 on-body sensor experiments closer to real world scenarios. E.g. only using two sensors (smart phone and wristband)

Thank you!

Questions__?