
Modern Methods for Communication, Mobility and
Portability for the tATAmI Framework

Author: ing. Ionuț Cosmin Mihai
Scientific adviser: Ș.l. dr. ing. Andrei Olaru

Context and motivation
● Ambient Intelligence technologies are

currently expanding
● Embedded systems are powerful

enough to run higher level of
abstraction

● MAS-enabled Ambient Intelligence /
Ubiquitous Computing research is in
need of MAS Deployment platforms
that are flexible and easy to use

2

What is tATAmI
● Flexible Multi Agent System deployment framework implemented in Java

○ Component-based architecture
○ Several options for the means of inter-agent communication

● tATAmI back in 2014:
○ Local communication
○ JADE based communication
○ PC deployment

● tATAmI now in 2016:
○ Added Websocket communication
○ Added agent mobility
○ Added deployment on Android and Raspbian

3

Objectives for this research - successfully completed
● Websocket-based communication

○ Modern flexible, easy to use technology

● Agent mobility
○ Enables the MMAS paradigm for implementing ambient services

● Support for Android
● Support for Raspbian
● New components for sensors and actuators

○ Enables context-aware applications

● Integrate the framework on a Raspberry Pi based system
● Architecture changes to support several types of User Interface and

specialized logging

4

State of the art
● Multi Agent System frameworks with support for embedded targets

○ JIAC / microJIAC (Targeted for embedded)
○ JADE / JADE for Android (The most used)
○ Agent Factory / Agent Factory Micro Edition (Large palette of components)
○ MAS C++ (C++ example)

● Current MAS Systems aspects to be improved:
○ resource consumption adjustment - now it is affordable to use more resources on

embedded systems

○ ignore some MAS unnecessary features that are not necessarily needed (e.g. Ontology
support)

○ the Micro Editions versions have a reduced set of features: no dynamic class loading,
precompiled XML configuration file

5

Websocket communication
● Full Duplex Communication for the Web
● Increased security

○ well known, intense tested
○ no additional ports are required to be opened(only the traditional 80)
○ Encrypted connection due to WSS

● Increased Client-Server efficiency
○ the overhead relative to usual HTTP is reduced up to 1:1000

● SOA oriented architecture
○ simpler to make the server available

6

Agents mobility
● A paradigm-specific feature specified in the FIPA standard

● Uses Java serialization but is not enough
○ The agent can have transient members
○ Methods for pausing and resuming needed

● Limitation: raise security issues
○ The agent can be corrupted

7

Portable core extraction
● Extract the functionality that can be used on all target devices

● Add a new component for agent control

● Split the log into agent level log and development level log

● Interfaces for generic HMI (Human Machine Interface)
8

Android Implementation
Several issues:

● the only available IPC method is AIDL, not suitable:
○ Can’t be ported
○ Considerable overhead for marshalling and serialization
○ Solved by directly including the core library in the application

● XML Validation bug on Android - not available for now
● Android restricted policy - the resources are kept differently in the

application context instead of a certain path on disk

9

Raspbian Implementation
● Basic control from command line with two way Java RMI for framework

Control
● Used sensors with several types of interfaces:

○ Medium range distance sensor connected to the GPIO pins
○ Accelerometer interfaced through I2C
○ Force analogous sensor interfaced through SPI
○ Electric motors interfaced through GPIO pins

● Used Pi4J library for Raspberry Pi - tATAmI
interfacing

10

Testing
● Individual testing for every hardware component (sensors and motors)

using Python scripts and simple Pi4J programs
● Manual checking:

○ The websocket server and client loads correctly
○ The Communication between agents works
○ The Mobility works
○ Sensor sample checking against the samples obtained with the python scripts

11

Results

● Sensors samples per second

● Agent transport speed

(seconds)

● Memory footprint

12

Designed
SPS Real Maximum SPS tATAmI SPS

HC-SR04(Distance sensor,
GPIO) N/A 5 4.6
MMA8452Q(Accelerometer,
I2C) 800 647 100
Force sensor(SPI) 200 170 90

from \ to PC Android Raspbian

PC 0.34 0.42 4.6

Android 0.42 0.4 0.55

Windows 37.8MB
Android 34.7MB
Raspbian 36.9 MB

Conclusion & Further development
● Successfully implemented the project objectives

● Extend the Control component to receive commands

● Implementation of a new ML component (i.e. using TensorFlow)

● Study of the agents behaviour composed of different components

● More sensors components to add

13

Thank You!

14

