
Profiling and

optimization for

Android applications

on the tATAmI platform
UNDERSTANDING THE TATAMI PLATFORM AND THE S-CLAIM LANGUAGE

Outline

 Intro

 The tATAmI Platform

 S-CLAIM

 An Example Scenario (ProCon Android App)

Intro

 Starting with

 A collaborative effort of Andrei Olaru, Thi Thuy Nga Nguyen and Marius-

Tudor Benea seeking a platform for the deployment and testing of AmI

applications.

 a diploma project that implements a simple scenario (The Android

application)

 The goal is

 optimize the platform

 profile and solve performance issues in the Android app

 optimize it in order to offer an enjoyable experience to the user

tATAmI

 towards Agent Technology for Ambient Intelligence

 Designed and built having the following requirements in mind:

 the use of a programming language for the high-level implementation

of agents

 a modular and extendable structure

 deployablity on mobile devices

 traceability and visualization

 the use of scenario-based simulation

 the possibility of integration with other platforms and protocols

tATAmI –

Structure

 The Core Component:

 Agent communication, mobility, and management - JADE agents are
used.

 Hierarchical mobility for agents - protocols and behaviors that allow
agents to automatically move together with their parents.

 Web service access

 S-CLAIM interpretation and execution - a parser for S-CLAIM agent
description files

 Knowledge Base - an interchangeable component that allows access
to knowledge through a standard set of functions

 Context-awareness - use of context matching for problem solving and
exchange of relevant context information.

tATAmI –

Structure (cont.)

 The Simulation component:

 serving for the repeatable execution of scenarios

 Uses as input XML files that define the execution scenario.

 Deploys the agents according to the scenarios

 The Visualization Component

 Receives log reports and mobility events from agents

 Displays all agent logs in a centralized, chronological manner

 Provides components for the automatic layout of agent windows on the

screen of the machine they execute on

tATAmI –

Structure (cont.)

Scenario

XML

Parsing

Simulation

WS

Access

Jade+ Hierarchies

V
is

u
a

l

L
o

g
g

in
g

Mobile device

agent

CLAIM

Agent

Context agent

CLAIM parser Knowledge Base

Knowledge

Representation

CLAIM

Specification

Scenario

specification

Window

Layout

Simulation Core Visualization

tATAmI -

SCENARIOS

 specified by means of an XML file that contains info about:

 The initial knowledge of Agents

 events to generate

 The purpose of a scenario is to reproduce an execution

 the mentioned information is all that is needed for this execution.

S-CLAIM

 Smart Computational Language for Autonomous Intelligent Mobile

agents

 An easy to use high-level declarative Agent-oriented programming

language that was created to allow the representation of cognitive

skills such as beliefs, goals and knowledge,

 Allows programmers to use the agent-oriented paradigm during the

whole process of designing and implementing an AmI application,

as it specifies only agent-related components and operations,

leaving algorithmic processes aside

S-CLAIM -

SEMANTICS
 Communication:

 send

 receive

 Mobility:

 in

 out

 Agent management:

 open

 acid

 new

 Control primitives:

 condition

 if

 Wait

 Knowledge management

 addK

 removeK

 readK

 forAllK

S-CLAIM -

SYNTAX

(agent SimpleAgent ?destination

 (behavior

 (initial sender

 (send ?destination (struct message hello)))))

 uses the notion of Blocks

 (<keyword>)

 Variables

 ?? re-assignable. or ?not

 3 Types of behaviors

 initial

 reactive

 proactive

JAVA FUNCTIONS

 There are processes that cannot be easily performed with the

default primitives (S-CLAIM), this is why the developer can attach

one or more Java class files

 all java-functions share the same signature (except for the name,

obviously); they take a vector of values as an argument and return

a boolean

 for the agent to use java functions, it has to contain a parameter

specifying the *.java file which includes the needed functions

 Examples in the next section

A PC/ANDROID SCENARIO

(The ProCon Debate App)

 Allows users to debate over a subject using their mobile java-based

devices

 By typing their opinions and sending them

 After classifying each opinion as either positive (Pro) or negative

(Con)

A PC/ANDROID SCENARIO

(The ProCon Debate App)

 Agent Structure

 There are three types of agents in this application that do all the

work:

• PDAAgent

• EmissaryAgent

• GroupCoordinatorAgent

A PC/ANDROID SCENARIO

(The ProCon Debate App)

 Joining a Group

A PC/ANDROID SCENARIO

(The ProCon Debate App)

 Adding an opinion

A PC/ANDROID SCENARIO

(The ProCon Debate App)

 Deleting an opinion

A PC/ANDROID SCENARIO

(The ProCon Debate App)

 Leaving a Group

(and

 joining

another

one)

FUTURE WORK

 Since the tATAmi platform had recently been re-structured, the application must
be ported fully to it making the necessary changes.

 More actions could be added to the Agents making the application richer.

 an editor that allows developers to write S-CLAIM code easily and elegantly
would be a very nice addition, offering some of the following features:

 Open the specific type of Agent file (*.adf2).

 Color and suggest auto-completion for S-CLAIM keywords.

 Find the existing variables and method in the *.java/xml files in the same project
and also color and suggest auto-completion for them while typing S-CLAIM
code.

 A kind of a "run" command/visual-button for the file (of the specific type) to
check if it follows some specific syntactic rules or not.

 Showing errors and the line numbers in which they occurred.

