
Profiling and

optimization for

Android applications

on the tATAmI platform
UNDERSTANDING THE TATAMI PLATFORM AND THE S-CLAIM LANGUAGE

Outline

 Intro

 The tATAmI Platform

 S-CLAIM

 An Example Scenario (ProCon Android App)

Intro

 Starting with

 A collaborative effort of Andrei Olaru, Thi Thuy Nga Nguyen and Marius-

Tudor Benea seeking a platform for the deployment and testing of AmI

applications.

 a diploma project that implements a simple scenario (The Android

application)

 The goal is

 optimize the platform

 profile and solve performance issues in the Android app

 optimize it in order to offer an enjoyable experience to the user

tATAmI

 towards Agent Technology for Ambient Intelligence

 Designed and built having the following requirements in mind:

 the use of a programming language for the high-level implementation

of agents

 a modular and extendable structure

 deployablity on mobile devices

 traceability and visualization

 the use of scenario-based simulation

 the possibility of integration with other platforms and protocols

tATAmI –

Structure

 The Core Component:

 Agent communication, mobility, and management - JADE agents are
used.

 Hierarchical mobility for agents - protocols and behaviors that allow
agents to automatically move together with their parents.

 Web service access

 S-CLAIM interpretation and execution - a parser for S-CLAIM agent
description files

 Knowledge Base - an interchangeable component that allows access
to knowledge through a standard set of functions

 Context-awareness - use of context matching for problem solving and
exchange of relevant context information.

tATAmI –

Structure (cont.)

 The Simulation component:

 serving for the repeatable execution of scenarios

 Uses as input XML files that define the execution scenario.

 Deploys the agents according to the scenarios

 The Visualization Component

 Receives log reports and mobility events from agents

 Displays all agent logs in a centralized, chronological manner

 Provides components for the automatic layout of agent windows on the

screen of the machine they execute on

tATAmI –

Structure (cont.)

Scenario

XML

Parsing

Simulation

WS

Access

Jade+ Hierarchies

V
is

u
a

l

L
o

g
g

in
g

Mobile device

agent

CLAIM

Agent

Context agent

CLAIM parser Knowledge Base

Knowledge

Representation

CLAIM

Specification

Scenario

specification

Window

Layout

Simulation Core Visualization

tATAmI -

SCENARIOS

 specified by means of an XML file that contains info about:

 The initial knowledge of Agents

 events to generate

 The purpose of a scenario is to reproduce an execution

 the mentioned information is all that is needed for this execution.

S-CLAIM

 Smart Computational Language for Autonomous Intelligent Mobile

agents

 An easy to use high-level declarative Agent-oriented programming

language that was created to allow the representation of cognitive

skills such as beliefs, goals and knowledge,

 Allows programmers to use the agent-oriented paradigm during the

whole process of designing and implementing an AmI application,

as it specifies only agent-related components and operations,

leaving algorithmic processes aside

S-CLAIM -

SEMANTICS
 Communication:

 send

 receive

 Mobility:

 in

 out

 Agent management:

 open

 acid

 new

 Control primitives:

 condition

 if

 Wait

 Knowledge management

 addK

 removeK

 readK

 forAllK

S-CLAIM -

SYNTAX

(agent SimpleAgent ?destination

 (behavior

 (initial sender

 (send ?destination (struct message hello)))))

 uses the notion of Blocks

 (<keyword>)

 Variables

 ?? re-assignable. or ?not

 3 Types of behaviors

 initial

 reactive

 proactive

JAVA FUNCTIONS

 There are processes that cannot be easily performed with the

default primitives (S-CLAIM), this is why the developer can attach

one or more Java class files

 all java-functions share the same signature (except for the name,

obviously); they take a vector of values as an argument and return

a boolean

 for the agent to use java functions, it has to contain a parameter

specifying the *.java file which includes the needed functions

 Examples in the next section

A PC/ANDROID SCENARIO

(The ProCon Debate App)

 Allows users to debate over a subject using their mobile java-based

devices

 By typing their opinions and sending them

 After classifying each opinion as either positive (Pro) or negative

(Con)

A PC/ANDROID SCENARIO

(The ProCon Debate App)

 Agent Structure

 There are three types of agents in this application that do all the

work:

• PDAAgent

• EmissaryAgent

• GroupCoordinatorAgent

A PC/ANDROID SCENARIO

(The ProCon Debate App)

 Joining a Group

A PC/ANDROID SCENARIO

(The ProCon Debate App)

 Adding an opinion

A PC/ANDROID SCENARIO

(The ProCon Debate App)

 Deleting an opinion

A PC/ANDROID SCENARIO

(The ProCon Debate App)

 Leaving a Group

(and

 joining

another

one)

FUTURE WORK

 Since the tATAmi platform had recently been re-structured, the application must
be ported fully to it making the necessary changes.

 More actions could be added to the Agents making the application richer.

 an editor that allows developers to write S-CLAIM code easily and elegantly
would be a very nice addition, offering some of the following features:

 Open the specific type of Agent file (*.adf2).

 Color and suggest auto-completion for S-CLAIM keywords.

 Find the existing variables and method in the *.java/xml files in the same project
and also color and suggest auto-completion for them while typing S-CLAIM
code.

 A kind of a "run" command/visual-button for the file (of the specific type) to
check if it follows some specific syntactic rules or not.

 Showing errors and the line numbers in which they occurred.

