WMTEHN,
<° S

A-ITIAS Growp

A
Artificial Intelligence and University ”Politehnica” of Master of Science in
Multi-Agent Systems Bucharest Artificial Intelligence

Laboratory

Visualization of Context Graphs - JUNG and Zest
15t MsC' Research Report

Nihal Ablachim

MsC' Research Title: Using context graphs to help users in their daily activities
Supervisor: S.1. dr. ing. Andrei Olaru
AI-MAS Laboratory, Computer Science Department, University ”Politehnica” of

Bucharest

February 2013

Contents

1 Introduction

2 JUNG Visualization Toolkit
2.1 Introduction to JUNG

2.2 Graphs,Vertices and

Edges

2.2.1 Basic Properties and Operations
2.2.2 Creating, Adding and Removing

2.3 Graph Visualization

2.3.1 The Basics for viewing a graph

2.3.2 Painting and
2.4 Getting Interactive

Labeling Issues for Vertices and Edges

2.5 Working with Algorithms
2.5.1 Paths problem solving algorithms
2.5.2 Transformation algorithms

3 Zest Visualization Toolkit

3.1 Introduction to Zest

3.2 Graphs, Vertices and Edges

3.3 Graph Visualization
3.3.1 Painting and
3.4 Layout Algorithms

4 Conclusions

Labeling Issues for Vertices and Edges

13
13
13
15
16
17

19

1 Introduction

The context of a user can be represented as a graph G = (V, E) in which the val-
ues stored in vertices and edges are Strings or URI’s that shows relations, concepts,
people’s name, place names etc. This kind of graphs are called context graphs.

The purpose of the main research is to develop an application that allows the
user to edit his context graph and that automatically detects the situation of the
user and proposes appropriate action, based on pre-existing context graphs.

In this circumstances, a starting point could be to implement a graphical inter-
face which permits the user to visualize and dinamically edit his context graphs.
Since there are already free and open-source softwares that provide the manipula-
tion and visualization of the graphs there is no need to reinvent the wheel again and
implement another framework but to make use of what already exists. In this paper
two of the most common graph visualization toolkits will be described: JUNG and
Zest each toolkit with its own features.

The document is divided into two main parts each part representing one of the
two above mentioned toolkits. For each of the toolkits a brief introduction is made
and then a subsection is allocated for each of the features. In subsection Graphs, Ver-
tices and Fdges it is described the fundamental properties and operations of graph,
vertex, and edge objects. Subsection Graph Visualization outlines each toolkit’s
architecture for creating graph visualizations. In Getting Interactive subsection is
presented how to dynamically change the graphs and subsection Working with algo-
rithms lists some of the algorithms used for graphs. In the last section, conclusions
are drawn.

2 JUNG Visualization Toolkit

2.1 Introduction to JUNG

JUNG(Java Universal Network/Graph Framework) is a software library that
provides a language for the modeling, analysis, and visualization of data that can be
represented as a graph or network. It is written in Java, which allows JUNG-based
applications to make use of the extensive built-in capabilities of the Java API.

The JUNG architecture is designed to support a variety of representations of
entities and their relations, such as directed and undirected graphs, multi-modal
graphs, graphs with parallel edges, and hypergraphs.

JUNG includes implementations of algorithms from different fields such as graph
theory, data mining, and social network analysis, including clustering, filtering, ran-
dom graph generation, blockmodeling, calculation of network distances and flows,
and a wide variety of metrics (PageRank, HITS, betweenness, closeness, etc.).

JUNG also provides a visualization framework that makes it easy to construct
tools for the interactive exploration of data. Users can make use of one of the layout
algorithms provided, or use the framework to create their own custom layouts.

2.2 Graphs,Vertices and Edges

The basic type implemented in JUNG is the graph. The base interface for all
JUNG graph types, Hypergraph defines a graph to be a container of vertices and
edges, with several methods for accessing and modifying these sets, for defining
vertex and edge constraints. The Graph interface extends the Hypergraph interface,
and is specialized for graphs whose edges connect exactly two vertices. Graph in
turn has subinterfaces for graphs that have only directed edges, only undirected
edges, or that are k-partite. The graph type hierarchy is shown in Figure 10 from
the Appendix section.

For visualizing and editing context graphs, Graph interface with its subinterfaces

will be used which is defined in edu.uci.ics.jung.graph package. So, in what follows
Graph interface will be described.

2.2.1 Basic Properties and Operations

Graphs, vertices and edges each have several properties that can be extracted,
and operations that they can perform. These properties and operations will be
presented in this subsection.

JUNG graphs are analogous to Java collections (such as List, Set, Map, and
so on) in the way that just as collections may specify the type of their elements
in the declaration (e.g., Set<Integer> or Map<String, SomeClass>), JUNG graph
declarations may specify the type of each of their element categories, that is, vertices
and edges.

As mentioned above JUNG has an interface Graph < V, E > which extends the
Hypergraph < V, E > interface and allows basic operations we can perform on a
graph such as:
adding and removing vertices and edges to a graph.
getting collections of all edges and vertices in a graph.
getting information concerning the endpoints of an edge in the graph.
getting information concerning vertices in a graph including various degree
measures(indegree,out-degree) and predecessor and successor vertices.

The Graph <V, E > interface allows working with both directed and undirected
edges, this being possible while adding edges (see next subsection). But Graph <
V,E > also has as subinterfaces: DirectedGraph < V,E >, Forest < V,E >,
K PartiteGraph < V,E >, Tree < V,E >, UndirectedGraph < V,E > which
allow working with only directed, undirected, k-partite, tree or forest graphs as the
name of the interfaces specifies.

In JUNG the same vertices and edges can appear in more than one graph. In
our case since we are dealing with context graphs that have in common nodes this
can be really useful. Also vertex and edge objects must be unique to a graph:
there cannot be two vertices, or two edges, such that vertexl.equals(vertex2), or
edgel.equals(edge2), neither two vertices/edges can have the same labels.

Working with graphs with parallel edges is also possible in JUNG; this can be
done using one of the classes in which names appear "multi” (e.g SparseMultigraph,
DirectedSparseMultigraph, UndirectedSparse Multipraph etc.).

2.2.2 Creating, Adding and Removing

The simplest way to create a graph is by calling the constructor for the desired type
of graph that is wanted, as in the following example:

Graph<Integer, String> g = new SparseMultigraph<Integer, String>();

Once the graph is created, vertices may be added to the graph:

g.addVertex((Integer) 1);
g.addVertex((Integer) 2);
g.addVertex((Integer) 3);

and once vertices exist, they may be connected by edges:

g.addEdge ("Edge-A", 1, 2, EdgeType.DIRECTED);
g.addEdge ("Edge-B", 2, 3);

Also if a vertex or an edge from a graph is no more useful we can remove it as
follows:

g.removeVertex (1) ;
g.removeEdge ("Edge-A") ;

Please note that if any removal operations are necessary, these should be done
after all the addition operations are finished. For example if the following code is
written:

.addVertex((Integer) 1);
.addVertex((Integer) 2);
.addVertex((Integer) 3);
.removeVertex (1) ;
.addEdge ("Edge-A", 1, 2);
g.addEdge ("Edge-B", 2, 3);

0] 08 0”9 03 OB

it won’t remove the vertex 1 because next in the code, an edge between 1 and 2
is added.

Removing an edge from a graph will not affect any other part of the graph but
removing a vertex from a graph will remove all the incident edges to that vertex.

2.3 Graph Visualization

JUNG provides mechanisms for laying out and rendering graphs. The current
renderer implementations use the Java Swing to display graphs. Some basics for
visualizing a graph will be presented in this subsection.

2.3.1 The Basics for viewing a graph

In general, a visualization requires one of each of the following:

e A Graph to be visualized.

e A Layout, which takes the graph and determines the location at which each of
its vertices will be drawn. This is achieved via JUNG’s Layout interface and
related classes (edu.uci.ics.jung.algorithms.layout). First of all the Layout
interface’s job is to return a coordinate location for a given vertex in a graph.
It does this and more by extending the Transformer <V, Point2D > inter-
face, which when given a vertex v will return an object of type Point2D that
encapsulates the vertex’s (x, y) coordinates. This Layout interface provides
additional mechanisms to initialize the locations of all vertices in a graph, set
the location of a particular vertex, lock or unlock the position of a vertex, etc.
JUNG provides many different layout algorithms for positioning the vertices
of a graph(e.g. CircleLayout, RadialTreeLayout, SpringLayout, TreeLayout
etc.). To visualize these layouts see figure 1.

e A (Swing) Component, which provides a drawing area upon which the data is
rendered. The basic class for viewing graphs in JUNG is the BasicVisualiza-
tionServer class(edu.uci.ics.jung.visualization). This implements the JUNG
VisualizationServer < V,E > interface and inherits from Swing’s JPanel
class (javax.swing.JPanel).

e A Renderer, which takes the data provided by the Layout and paints the
vertices and edges into the provided Component.Implementations of this class
can set specific renderers for each element, allowing custom control of each.

In figure 2 is presented the code for the simplest way to visualize a graph(it is

used the last version of the graph obtained above, after all the operations presented
were performed on the graph) and in figure 3 can be seen the graph when run the
code.

|| Circle Layout = =

NN

T valvS i

R NATAN\ AR

e VN
XV A
(K ".'.*?Aﬁi’ Vi

KSR

Ve vy eV

>

S

s
K
s

Figure 1: Diffrent type of layouts in JUNG

T

1|public static void main(String[] args) {

2| Layout<Integer, String> layout =

3| new CircleLayout<Integer ,String>(g);

4| layout.setSize (new Dimension (350, 350));

5| // sets the initial size of the space

6| BasicVisualizationServer<Integer, String> vv =
| new BasicVisualizationServer<Integer, String>(layout);

8| vv.setPreferredSize (new Dimension (350, 350));

9| // Sets the wiewing area size

10| JFrame frame = new JFrame("Simple,Graph, View");

11| frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);
| frame.getContentPane () .add (vv) ;

13| frame.pack () ;

].4:| frame.setVisible (true);

15|

Figure 2: Example of code for visualizing a graph

|£) Simple Graph View = DO

Figure 3: Simple view of a graph with JUNG
2.3.2 Painting and Labeling Issues for Vertices and Edges

The default implementation fetches the location of each vertex from the Lay-
out, paints each one with the Renderer inside the Swing Component, and paints
each edge as a straight line between its vertices. Users may customize this be-
havior as desired; JUNG includes utilities and support classes that facilitate such
customization. The two new sets of interfaces/classes that one should be familiar
with are the RenderContext (in edu.uci.ics.jung.visualization) and Renderer (from
edu.uci.ics.jung.visualization.renderers).

The JUNG renderers are used to actually draw four different items: edges, edge
labels, vertices, and vertex labels. Each BasicVisualizationServer (the interface used
to actually display the graph) contains a RenderContext object that one can access
to set various rendering parameter values such as vertex/edge color, vertex/edge
label,vertex/edge shape etc; these being possible using setVertezFillPaintTrans-
former(), setEdgeStroke Transformer(), setVertexLabelTransformer(), and setEdge-
LabelTransformer(). As one could assume from the names of these methods each
takes a Transformer class argument that converts an edge or vertex to the type of
information needed by a renderer. Implementing the code from figure 11 from the
Appendix section one can obtain the customized view of a graph from figure 4. This
is a simple example, but of course that playing with a little bit of imagination one
can obtain whatever graph display variation is wanted.

4] Simple Graph View = =

Figure 4: Customized view of a graph in JUNG

2.4 Getting Interactive

JUNG provides GUI features to let users interact with graphs in various ways.
Most interactions with a graph will take place via the mouse. Since there are quite a
number of conceivable ways that users may want to interact with a graph, JUNG has
the concept of a modal mouse, i.e. a mouse that will behave in certain ways based
on its assigned mode. Typical mouse modes include: picking, scaling (zooming),
transforming (rotation, shearing), translating (panning), editing (adding/deleting
nodes and edges), annotating etc. In this subsection these kind of mouse interactions
will be presented.

In providing interactivity DefaultModalGraphMouse class from
edu.uci.ics.jung.visualization. control can be used to provide a full set of picking
and transforming capabilities. In addition to the code from figure 2 it will be used
the derived class Visualization Viewer instead of Basic VisualizationServer that also
provides mouse functionality and it will be added the following code:

DefaultModalGraphMouse gm = new DefaultModalGraphMouse() ;
gm.setMode (ModalGraphMouse . Mode . TRANSFORMING) ;
vv.addKeyListener (gm.getModeKeyListener());
vv.setGraphMouse (gm) ;

Running this code the default behavior is:

e Left mouse click and mouse drag in the graph window allows to translate(pan)

the whole graph.

e Shift, left mouse click and drag in the graph window allows to rotate the graph.

e Control, left mouse click and drag in the graph window allows to shear the

graph.

e Mouse wheel or equivalent allows to scale(zoom) the graph.

Also JUNG provides a couple extra ways to control the current mouse mode
besides programmatically setting it ourselves. In this case it can be used a method
based on key listeners which listen for buttons pressed or keys typed. In particular
the DefaultModalGraphMouse provides a key listener that will change to translate
mode if the user types a ¢t and to picking mode if the user types a p. To get this
functionality one only needs to add the following line of code to the code from figure
2 using the above mentioned code too:

vv.addKeyListener (gm.getModeKeyListener());

DefaultModalGraphMouse has a default behavior as presented previously, but
in JUNG one can make its own behavior of mouse, for example while viewing the
graph it is wanted only to be able to translate or zoom the graph(no picking of
vertices and no rotating or skewing of the graph). For this to happen JUNG pro-
vides the concept of mouse plugins that do the heavy lifting for a particular pur-
pose such as picking, translating, zooming, editing, etc. For the above example
just translation and zooming is wanted so it can be used the TranslatingGraph-
MousePlugin and ScalingGraphMousePlugin (edu.uci.ics.jung.visualization. control)
classes. These classes are used together with PluggableGraphMouse object from
edu.uci.ics.jung.visualization.control. So, the idea is to choose the plugins wanted
then add them to a mouse that is defined as being Pluggable GraphMouse. In the
main method from figure 2 there is only need of the following four new lines of code:

PluggableGraphMouse gm = new PluggableGraphMouse();

gm.add(new TranslatingGraphMousePlugin(MouseEvent.BUTTON1_MASK)) ;
CrossoverScalingControl cs=new CrossoverScalingControl();
gm.add(new ScalingGraphMousePlugin(cs, 0, 1.1f, 0.9f));

If run the code, it can be seen that translating and zooming work but there is
no longer rotation and skewing nor can be switched to the picking mode.

2.5 Working with Algorithms

JUNG includes implementations of algorithms from different fields such as graph
theory, data mining, and social network analysis, including clustering, filtering, ran-
dom graph generation, blockmodeling, calculation of network distances and flows,
and a wide variety of metrics (PageRank, HITS, betweenness, closeness, etc.). The
algorithms from JUNG that can be useful for working with context graphs will be
presented in this section.

2.5.1 Paths problem solving algorithms

The algorithms that JUNG provides for finding the shortest paths within graphs
are stored in edu.uct.ics.jung.algorithms.shortestpath package. These algorithms in-
clude: DijkstraShortestPath(Dijkstra (1959)), which calculates the length of the
shortest paths from a specified vertex to other vertices in the same graph; Un-
weightedShortestPath that computes the shortest path distances for graphs whose
edges are not weighted(using BFS); BF'SDistanceLabeler, which labels each vertex in
a graph with the length of the shortest unweighted path from a specified vertex in
that graph.

2.5.2 Transformation algorithms

Sometimes it can be necessary to convert a graph of one type to another; this can
happen in a few different circumstances. For example:

e Certain algorithms operate only on directed (or undirected) graphs. The Direc-
tionTransformer class(edu.uci.ics.jung. algorithms.transformation) can trans-
form any Graph into either an DirectedGraph or an Undirected Graph.

e The process that resulted in the creation of a graph may not have identified all
the details of the graph type; for example, a graph may be a k-partite graph in
terms of its connectivity, but not have been created as an implementation of
KPartiteGraph. The KPartiteSparseGraph class can construct a KPartiteS-
parseGraph that is a copy of an existing Graph, given an appropriate set of
partition specifications that are known to apply to the graph. (That is, the
original graph is not modified structurally; this construction only works if the
original graph is actually k-partite.)

3 Zest Visualization Toolkit

3.1 Introduction to Zest

Zest Visualization Toolkit is a set of visualization components built for Eclipse. It
has been developed in SWT / Draw2D. Zest supports the viewer concept from JFace
Viewers and therefore allows to separate the model from the graphical representation
of the model.

3.2 Graphs, Vertices and Edges

For visualizing and editing context graphs, Eclipse Zest has the following compo-
nents(in org.eclipse.zest.core):

e GraphNode - Node in the graph with the properties

e GraphConnections - Arrow / Edge of the graph which connections to two

nodes

e GraphContainer - Use for a graph within a graph

e Graph - holds the other elements (nodes, connections, container)

In figure 5 is shown the simplest way to create a graph in Zest; this is done
by declaring the graph as a Graph type and then calling the constructor for Graph.
Since the graph is created then vertices may be created too, by calling the constructor
for GraphNode class in which should be specified the graph which belongs to each
vertex. And finally these vertices can be connected by edges, declared as being of
type GraphConnection. In the constructor of GraphConnection should be specified
the source vertex and the destination vertex(in this order) and the type of edge
wanted(directed or undirected).

TR WNHFOOOOTTHEWN -

= e

// Graph will hold all other objects
graph = new Graph(parent, SWT.NONE);
// Now a few nodes
GraphNode nodel
GraphNode node2

f

|

|

|

| GraphNode (graph, SWT.NONE, "1");
| new GraphNode (graph, SWT.NONE, "2");
| GraphNode node3 new GraphNode (graph, SWT.NONE, "3");
| GraphNode node4 GraphNode (graph, SWT.NONE, "4");
| GraphNode node5 new GraphNode (graph, SWT.NONE, "5");
|

|

|

|

|

|

|

non
B
)
=

nonon
B
®
=

GraphNode node6 = new GraphNode (graph, SWT.NONE, "6");

GraphConnection cl=new GraphConnection(graph, ZestStyles.NONE, nodel,node2);

cl.setText ("2");

GraphConnection c2=new GraphConnection(graph, ZestStyles.CONNECTIONS_DIRECTED, nodel,node6);
c2.setText ("1");

GraphConnection c3=new GraphConnection(graph, ZestStyles.CONNECTIONS_DIRECTED, nodel,node4);
c3.setText ("4");

16| GraphConnection c4=new GraphConnection(graph, ZestStyles.CONNECTIONS_DIRECTED, node2,node3);
17| cd.setText ("1");

GraphConnection cb=new GraphConnection(graph, ZestStyles.CONNECTIONS_DIRECTED, node2,node5);
c5.setText ("1");

20| GraphConnection c6=new GraphConnection(graph, ZestStyles.CONNECTIONS_DIRECTED, node4,node3);

c6.setText ("2");

Figure 5: Example of code for creating a graph in Zest

Graphs, vertices and edges each have several properties that can be extracted,
and operations that they can perform.

As above mentioned, Zest provide working with both directed and undirected
edges, this being possible while declaring the edges (see the code from figure 5).

In Zest the same vertices and edges can not appear in more than one graph. For
example, in code from figure 5, node6 is declared as a GrahNode and being part of
graph, first it can not be declared another node6 (because there is already one) nor
to declare it as being part from another graph. Instead, in Zest two vertices and/or
edges can have the same labels.

Working with graphs with parallel edges is not possible in Zest; in code from
figure 5 ¢2 was declared as being an edge which connects nodel with node2, if one
may wish to add another edge between the two nodes, for example c10, Zest will
take in consideration the last edge between these nodes.

If a vertex or an edge from a graph is no more useful we can remove it as follows:

node3.dispose();
c3.dispose();

Same as in JUNG, if any removal operations are necessary, these should be
done after all the vertices are declared and all the connections between vertices are
established.

Removing an edge from a graph will not affect any other part of the graph but
removing a vertex from a graph will remove all the incident edges to that vertex.

TreeLayoutAlgorithm Graph is displayed in the form of a vertical free
Horizontal TreeLayoutAlgorithm Similar to TreeLayoutAlgorithm butlayout is horizontal

RadialLayoutAlgorithm Rootis in the center, the others nodes are placed around this

node
GridLayoutAlgorithm
. oo Layout the graph so that all connections should have approx.
SpringLayoutAlgorithm the same length and that the edges overlap minimal
HorizontalShift Moves overlapping nodes to the right

Combines other layout algorithms, for example
HorizontalShift can be the second layout algorithm to move
nodes which were still overlapping ifanother algorithmis
used

CompositeLayoutAlgorithm

Figure 6: Zest Layout Manager

3.3 Graph Visualization

The Zest project contains a graph layout package which can be used indepen-
dently. The graph layout package can be used within existing Java applications
(SWT or AWT) to provide layout locations for a set of entities and relationships.
So, Eclipse Zest provides graph layout managers. A graph layout manager deter-
mines how the nodes (and the edges) of a graph are arranged on the screen. In
figure 6 are presented the layout managers of Zest.

The simplest way to visualize a graph in Zest is by declaring an instance of one
of the layouts from figure 6 and then calling the method setLayoutAlgorithm() of
the graph. So adding the below lines to the code from figure 2 one can be able
to visualize a graph with Zest framework. Figure 7 shows the graph when run the
code.

SpringLayoutAlgorithm SLA=
new SpringLayoutAlgorithm(LayoutStyles.NO_LAYOUT_NODE_RESIZING) ;
graph.setLayoutAlgorithm(SLA, true);

Figure 7: Simple view of a graph with Zest
3.3.1 Painting and Labeling Issues for Vertices and Edges

The default implementation fetches the location of each vertex from the Layout,
paints each one with the background color as being a medium blue, and then paints
each edge as a straight line between its vertices. Users may customize this behavior
as desired; Zest supports methods that facilitate such customization.

In Zest each of the GraphNode and GraphConnection have methods that permit
to user to set the desired characteristics(colour,shape,size etc.) for the graph’s ver-
tices and edges. Adding the code from figure 8 to the code from figure 5 one can
obtain the customized view of a graph from figure 9. One more time, this is a simple
example, but of course that playing with a little bit of imagination one can obtain
whatever graph display variation is wanted.

By default, Zest layout algorithms (see Subsection Layout Algorithms) shrink
the size of each node to a square based upon the overall size of the window. To
override this behavior, it can be passed

LayoutStyles.NO_LAYOUT_NODE_RESIZING

when specifying the layout algorithm. Once this statement is added, the nodes
are sized based upon their content rather than the overall size of the window. The
background color for each node is a medium blue, in the example provided in figure

—_

OO UTERWN

cl.setlLineColor (parent.getDisplay () .getSystemColor (SWT.COLOR_CYAN));
c4.setWeight (4);

nodel.setBackgroundColor (parent.getDisplay().getSystemColor (SWT.COLOR_DARK_YELLOW));
nodel.setBorderWidth (10);
node2.setBackgroundColor (parent.getDisplay () .getSystemColor (SWT.COLOR_CYAN));
node2.setForegroundColor (parent.getDisplay () .getSystemColor (SWT.COLOR_DARK_RED)) ;
node3.setBackgroundColor (parent.getDisplay () .getSystemColor (SWT.COLOR_RED)) ;
node3.setLocation (0, 0);
node4.setBackgroundColor (parent.getDisplay () .getSystemColor (SWT.COLOR_CYAN));
nodeb5.setBackgroundColor (parent.getDisplay () .getSystemColor (SWT.COLOR_MAGENTA));

node6.setBackgroundColor (parent.getDisplay () .getSystemColor (SWT.COLOR_YELLOW)) ; I

Figure 8: Example of code for customize a graph in Zest

o - N

File

Figure 9: Customized view of a graph in Zest

8 the foreground text color of node2 we set to be dark red rather than dark blue, or
the background color for each node it was changed to different colors.

3.4 Layout Algorithms

Zest has only layout managing algorithms, unlike JUNG which has a large variety
of algorithms. The default Zest layout algorithm, which was used up to this point,
is a spring layout(see figure 6) where the edges should have about the same length.
In these subsection will be described some of Zest layout algorithms.

Zest provides several different layout algorithms:

e GridLayoutAlgorithm positions nodes in a grid filled left to right,then top to
bottom(see figure 12).

int style = LayoutStyles.NO_LAYOUT_NODE_RESIZING;
graph.setLayoutAlgorithm(new GridLayoutAlgorithm(style),true);

e HorizontalLayoutAlgorithm positions all nodes in a single row(see figure 13).

int style = LayoutStyles.NO_LAYOUT_NODE_RESIZING;
graph.setLayoutAlgorithm(new HorizontalLayoutAlgorithm(style),true);

e HorizontalTreeLayoutAlgorithm similar to a TreeLayoutAlgorithm but posi-
tions root nodes in the first column, child nodes in the, grandchild nodes in
the third, and so on (see figure 14).

int style = LayoutStyles.NO_LAYOUT_NODE_RESIZING;
graph.setLayoutAlgorithm(new HorizontalTreeLayoutAlgorithm(style),true);

e RadialLayoutAlgorithm positions nodes similarly to the TreeLayoutAlgorithm
except with the roots at the center, child nodes in a circular fashion around
the root nodes, grandchild nodes in a circular fashion around the child nodes,
and so on (see figure 15).

int style = LayoutStyles.NO_LAYOUT_NODE_RESIZING;
graph.setLayoutAlgorithm(new RadialLayoutAlgorithm(style),true);

e TreeLayoutAlgorithm positions root nodes in the first row, child nodes in the
second row, grandchild nodes in the third row, and so on (see figure 16).

int style = LayoutStyles.NO_LAYOUT_NODE_RESIZING;
graph.setLayoutAlgorithm(new TreeLayoutAlgorithm(style),true);

4 Conclusions

JUNG is a powerful framework for working with graphs that provides algorithms
from different fields for graphs and also provides visualization framework that makes
it easy to construct tools for the interactive exploration of data.

Zest is a framework built on top of Draw2D that enables developers to graphically
show graph contents. The behavior of the nodes and edges of the graph can be highly
configured(changing details as color,connection types in the graph etc.). Finally,
multiple layout algorithms are provided, which can also be combined to make more
complex and specific layout processes.

So both of the frameworks presented in this document are toolkits for creating
and visualizing graphs each with its own structure. Even it may seem easier to work
with Zest, JUNG has more features than Zest and it is better documented which
helps a lot when time for implementing comes. Regarding the features, one difference
between the two of them would be that Zest has only algorithms for layout manager
while JUNG provides algorithms for calculating the shortest paths, maximum flows,
clustering algorithms and so on. The only advantage(if can call it so) for working
with Zest would be that has recent releases than JUNG;the last release of Zest(Zest
3.8.0) was in 2012 while JUNG’s last release(JUNG2) was in 2010.

In this paper two of the most common graph visualization toolkits were pre-
sented. Next in our work we are going to choose one of these tools to implement
a graphical user interface(GUI) which permits the visualization and interactively
editing of context graphs.

Hypergraph

3l nave the same £oge lype.
o simplify the

that s sutabletor sparse hat s sutable for sparse fHY.?‘-’J'_;’_?;D{H_I‘&:_IE_ELHaDE
graphs and permits both O Sparss grapns an

1\
l' A
|
] Vo

1 I [}
1 [
1 [Lo
] I 1 1
) I L
H i .‘1' o
: = : i b
: " i 4 '
H 1 AbstractGraph ~ - - —t " + = —
: @ 1 Abstract |mpl=m=r|g||or ofthe G‘rapb' - 7 vl ’ (e N
' L interface. Designed to simplify <L i i N T~ \
: ' 1 : implementation crf new graph classes | : M T~
] P!
i ' P e S \
: i Ve : !
i e |
0" e - I I
i whet A'?ftTaCt_wpqu?P'T sparseGraph SparseMultigraph 1 SetHypergraph |,
n L7 1 1| Ansbstract class for graphs whos2 An implementation of Graph & implementation of Graph 1 Animplementation of i
i ¥ ' "
" H :
1 H | - diractes ndirected sdges 1 permits parallel i
I \ H
it I I '
|:|} [} I~ |'
it ul ' r— !
i - [- - - Undirected SparseMultigraph i
:::‘ Directed SparseGraph i H Undirected SparseGraph DIrECtEUSParSEMl"t_Igmph An implementation of Un edGraphthat is |
i | Animplementation of DirectedGragh| 1 | An implementation of UndirectedGraph Anmplementation of Lirectedtiraph, 1 suabie tor sparse graphs and permis paraliel '
:::\ suabile tor Sparse graphs. h that 15 sutable for sparse graphs. suitable for sparse graphs, that permits i edges. !
yl i paralisl ¢ — 3
i L nNT o ——-—-=-= P
g 0¥ e . e o iuk e

DirectedOrderad SparseMultigraph

OrderedKAryTree

UndlrectedOrderedSparseMultlgrap

1
i
H Animplemant
i
I
I
I

o H Animplementation of Tree in which each vertex
An implementtion of DirectedGraph, suitable for sparss ani mentation of UndirectedGraph that is suitsble for has <= k chikiren. The value of K is spec
=n=vanax=r ge collections sparse graphs, orders its verex an |r=cor=|n.c|orp=r=ma|=r A specific chik
acco

can be retney

GraphDecorator
Animplementation of Graph that
delegates its method calls toa

constructor-specified Graph
instance. Th useful for 2
ional behavior (such as

. By
at the lowest index
specified.

ult, new

DelegateForest Sorted SparseMultigraph
A& implementation of Farest Animplementation of Graph that is suitable
that delegates to 3 specified for sparse graphs, orders its verex and

=:;=co|l=c|iors secon Animplementation of Graph that o1

DirectedGraph instance.

synchronization or un ifiability)
1o an existing instance.

ge collections ace:

A decorstor class for graphs

which generates events.

0bservableGraph

D teTree
Animplementation of Tree that
delegates to a specified instance

1
1
i
1
i
1
1
i
i
1
1
1
|
1
1
1
1
1
|
1
1
1
1
1
i
1
1
1
1
1
i
1
1
1
1
i
1
1
1
i
i
1
1
i
1
+
omereuSparseMulugraphJ
|

of DirectedGraph.

B extends A Bimplements A

Figure 10: Graph types hierarchy in JUNG

Appendices

T 1
1| public static void main(String[] args){ [|
2| g.addVertex ((Integer) 1); [|
3| g.addVertex ((Integer) 2); [|
4| g.addVertex ((Integer) 3); [|
5| g.addVertex ((Integer) 4); [|
6| g.addEdge ("Edge-A", 1, 2,EdgeType.DIRECTED); [|
7| g.addEdge ("Edge-B", 2, 3); I
8| g.addEdge ("Edge-C", 2, 3,EdgeType.DIRECTED); [|
9| layout.setSize (new Dimension (600,500)); I

10| BasicVisualizationServer<Integer,String> vv = I
11| new BasicVisualizationServer<Integer,String>(layout); I
12| vv.setPreferredSize (new Dimension (600,500)); I
13| vv.setBackground (Color.white); [|
].4| Transformer <Integer ,Paint> vertexPaint = [|
15| new Transformer<Integer ,Paint>() { [|
16| public Paint transform(Integer i) { [|
17| if (i%2==0) return Color.CYAN; I
18| else return Color.RED; [|
19 ¥ n
20| }; |
21| Transformer <String,Paint> edgePaint = I
22| new Transformer<String,Paint>() { I
23| public Paint transform(String i) { [|
24| return Color.MAGENTA; I
25| ¥ n
26| 53 |
27| float dash[] = {10.0f}; n
28| final Stroke edgeStroke = new BasicStroke(1.0f, BasicStroke.CAP_BUTT, I
29| BasicStroke.JOIN_MITER, 10.0f, dash, 0.0%); (]
30| Transformer <String, Stroke> edgeStrokeTransformer = I
31| new Transformer<String, Stroke>() { [|
32| public Stroke transform(String s) { [|
33| return edgeStroke; [|
34| } [
35| 15 |
36| Transformer <Integer ,Shape> vertexSize = new Transformer<Integer,b Shape>(){ I
37| public Shape transform(Integer i){ [|
38| Ellipse2D circle = new Ellipse2D.Double(-15,-15,40, 20); [|
39| if (i==1) []
40| return AffineTransform.getScalelnstance (3, 3).createTransformedShape(circle); I
41| else if(i==2) return circle; [|
42| else return new Rectangle(-20, -10, 40, 20); I
43| 3 |
44| }; |
45| vv.getRenderContext () .setVertexFillPaintTransformer (vertexPaint) ; [|
46| vv.getRenderContext () .setVertexShapeTransformer (vertexSize); [|
47| vv.getRenderContext () .setEdgeFillPaintTransformer (edgePaint); [|
48| vv.getRenderContext () .setEdgeStrokeTransformer (edgeStrokeTransformer) ; [|
49| vv.getRenderContext () .setVertexLabelTransformer (new ToStringLabeller ()); [|
50| vv.getRenderContext () .setEdgeLabelTransformer (new ToStringLabeller ()); [|
51| vv.getRenderer () .getVertexLabelRenderer () .setPosition(Position.CNTR); [|
52| JFrame frame = new JFrame("Simple, Graph, View"); [|
53| frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE); I
54| frame.getContentPane () .add (vv); [|
55| frame.pack () ; I
56| frame.setVisible (true); I
57|y I

Figure 11: Example of code for customized view of a graph in JUNG

File

Figure 12: View of a graph in Zest with grid layout algorithm

me & @ 8

Figure 13: View of a graph in Zest with horizontal layout algorithm

o SO RN

File

Figure 14: View of a graph in Zest with horizontal tree layout algorithm

References

[1] Andrei Olaru and Adina Magda Florea and Amal El Fallah Seghrouchni, Graphs
and Patterns for context awareness, 2011.

2] http://jung.sourceforge.net/
[3] http://stackoverflow.com/

[4] http://www.vogella.com/articles/EclipseZest /article.html

File

Figure 15: View of a graph in Zest with radial layout algorithm

Figure 16: View of a graph in Zest with radial layout algorithm

	Introduction
	JUNG Visualization Toolkit
	Introduction to JUNG
	Graphs,Vertices and Edges
	Basic Properties and Operations
	Creating, Adding and Removing

	Graph Visualization
	The Basics for viewing a graph
	Painting and Labeling Issues for Vertices and Edges

	Getting Interactive
	Working with Algorithms
	Paths problem solving algorithms
	Transformation algorithms

	Zest Visualization Toolkit
	Introduction to Zest
	Graphs, Vertices and Edges
	Graph Visualization
	Painting and Labeling Issues for Vertices and Edges

	Layout Algorithms

	Conclusions

