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Motivation

Vision Transformers (ViTs)

What are ViTs?
▶ Transformer models adapted for computer vision tasks
▶ ViTs process images using self-attention mechanisms

Why use ViTs?
▶ Good capturing of long-range dependencies
▶ Superior performance on large datasets

Explainable Artificial Intelligence (XAI)

How does a model reach a conclusion?
▶ Transparency
▶ Trust

ViT: visualization-based approaches
▶ Helps highlight which image regions contribute most to a prediction
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Problem

Given a ViT model and an image, identify which parts of the input image
influence the classification of the ViT.

Relevant for:

Model Validation

Region of Interest Segmentation
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Overview of existing methods

Attention-Based Methods

Gradient-Based Methods

Attribution Propagation Methods

Causal Explanations

Hybrid Methods
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Attention-Based Methods

These methods analyze how attention is distributed across layers.

Attention Rollout
▶ aggregates attention maps layer by layer

Attention Flow
▶ models information propagation using a flow-based approach
▶ computationally expensive
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Gradient Based Methods

Compute the gradients of the model’s output with respect to the

input features

Vanilla Saliency

maximum absolute gradient across channels

Gradient Class Activation Map (GradCAM)

combine importance scores derived from gradients with
▶ activation maps (CNNs)
▶ attention maps (ViTs)
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Attribution Propagation & Causal Explanations

Attribution Propagation Methods

Layer-wise Relevance Propagation (LRP)

propagates relevance scores from the model’s output back to the
input features

Causal Explanations Based Methods

Uncover cause-and-effect relationships between input features and

model predictions
ViT-CX framework

examine how changes in model input affect its output
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Hybrid Methods

Combine attention mechanisms, gradient-based approaches, and

attribution propagation

Transition Attention Maps (TAM)

Models information flow in ViTs as a Markov process.
▶ Chain states: ouput embeddings
▶ State transition matrix: attention weights and residual connections
▶ Explanation: combine state with gradients
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Contributions

Unexplored area

Are explainability methods consistent across different data
domains?

Most techniques evaluated on standard object recognition datasets

Explainability is key in real world applications

Contributions

Hybrid explainability approach integrating LRP, CAM, Saliency,
Rollout

Improved performance

Consistent results: tested across general and medical datasets
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Solution

Hypothesis

Combining multiple explainability methods enhances interpretability by
leveraging their individual strengths.

Pigeonhole Principle

If n pigeons are placed in k holes, at least one hole must contain
⌈n/k⌉ pigeons.

Feature attribution represented as matrices A = [aij ], B = [bij ].

Geometric mean for each pair:
√

aij · bkl
Total pairs: n4, distinct mean values: V .

If n4 > V , by Pigeonhole Principle, at least one geometric mean
appears multiple times

▶ areas of interest will be highlighted by more than one method
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Precision gain (Quantify)
After thresholding each attribution map into a binary mask Xi ∈ {0, 1}n×n

on the ViT patch grid, let R ⊆ {1, . . . , n}2 be the set of truly relevant
patches. For any patch t define

p = Pr[Xi (t) = 1 | t ∈ R],

q = Pr[Xi (t) = 1 | t /∈ R], 0 < q < p < 1.

Assuming the masks are conditionally independent given R, the posterior
precision of their k-way intersection X̂k(t) =

∏k
i=1 Xi (t) is

Pr
[
t ∈ R | X̂k(t) = 1

]
=

pk

pk + qk
>

p

p + q
(1)

where the right-hand fraction is exactly the precision obtained from a

single explanation map (k = 1). Because pk

pk+qk
is strictly increasing in k ,

each additional explainer that agrees on a pixel raises the probability that
the pixel truly belongs to R, while the expected number of false positives
drops geometrically with k .
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Empirical link to metrics

Equation (1) predicts lower deletion-AUC and higher IoU/Dice for fused
maps.
On Pascal VOC dataset the two-way fusion of LRP and Attention Rollout
lowers deletion-AUC from 0.53 (best single map) to 0.43 and raises IoU by
+7.1 points.
Similar improvements appear on ImageNet and PH2. Hence, the theory is
consistent with the observed quantitative gains.
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Solution

Methodology

Integrate 4 explainability methods in two-way and three-way
combinations.

▶ GradCAM
▶ LRP
▶ Saliency
▶ Attention Rollout

Fusion strategies:
▶ element-wise multiplication
▶ geometric mean

Output formats:
▶ heatmaps
▶ mask
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Two way combinations - Masks
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Two way combinations - Heatmaps
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Evaluation Metrics

Segmentation-Based Metrics

IoU, F1 Score, and Pixel Accuracy measure the alignment between the
predicted and ground truth masks.

Explainability Metric

Deletion AUC evaluates how much classification confidence decreases
when high-attribution pixels are removed, verifying feature importance.
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Results on ImageNet Subset

Table: Results using geometric mean for 2way methods. Best Results are
highlighted.

Method IoU F1 PA Deletion

1Way Methods
CAM 14.33 21.23 19.40 0.40
LRP 42.59 56.72 53.32 0.19
Rollout 36.55 50.79 66.32 0.24
Saliency 7.94 12.78 13.37 0.44

2Way Methods
LRP+CAM 21.62 31.03 27.72 0.37
LRP+Rollout 52.33 65.71 68.71 0.18
Rollout+CAM 20.63 29.01 28.95 0.39
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Results on Pascal VOC

Table: Results using geometric mean for 2way methods. Best Results are
highlighted. Only for images with a predicted probability above 0.85 for the main
class.

Method IoU F1 PA Deletion

1Way Methods
CAM 12.43 19.13 65.94 0.25
LRP 36.41 50.19 75.52 0.12
Rollout 43.27 57.90 73.30 0.14
Saliency 11.15 17.59 64.24 0.27

2Way Methods
LRP+CAM 22.31 32.74 69.70 0.22
LRP+Rollout 48.65 62.48 79.09 0.12
Rollout+CAM 20.45 29.68 67.55 0.23

Darian M. Onchis Vision Transformer Explainability 19 / 23



Motivation Problem State of the Art Contributions Solution Results Conclusions

Results on PH2

Table: Results using geometric mean for 2way methods. Best Results are
highlighted. Model was finetuned on the dataset and reached an accuracy of 85%

Method IoU F1 PA Deletion

1Way Methods
CAM 34.83 45.15 39.98 0.50
LRP 52.20 66.54 53.25 0.45
Rollout 53.66 67.43 67.61 0.46
Saliency 39.09 52.62 47.22 0.49

2Way Methods
LRP+CAM 44.10 56.63 45.50 0.38
LRP+Rollout 64.49 76.66 67.13 0.32
Rollout+CAM 46.32 57.40 55.69 0.40
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We also provide a comparison between the regions highlighted by individual
XAI methods and those produced by our mixed approach, ViTmiX. Notice
that ViTmiX consistently emphasizes key areas that align closely with
human-perceived salient regions, while the single-method heatmaps tend
to be vaguer and less comprehensive. This suggests improved spatial focus
on the main objects, consistent with human-marked regions.

Figure: Comparison of human-perceived regions with XAI maps.
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Ground Truth Student Mask

Method IoU F1 PA IoU F1 PA Del

1way Methods
CAM 34.83 45.15 39.98 30.68 41.21 35.03 0.50
LRP 52.20 66.54 53.25 46.95 62.01 48.76 0.45
Rollout 53.66 67.43 67.61 49.93 64.08 62.04 0.46
Saliency 39.09 52.62 47.22 36.94 50.50 43.58 0.49

2way Mean
LRP+CAM 44.10 56.63 45.50 38.40 51.40 40.25 0.38
LRP+Rollout 64.49 76.66 67.13 58.15 71.73 61.53 0.32
LRP+Saliency 58.18 71.62 60.74 52.45 66.89 55.59 0.32
Rollout+CAM 46.32 57.40 55.69 41.66 53.18 49.72 0.40
Saliency+CAM 46.10 57.93 51.53 40.95 53.28 46.04 0.39
Saliency+Rollout 55.13 69.00 66.28 52.17 66.35 61.53 0.35

3way Mean
LRP+Rollout+CAM 43.72 56.04 44.91 37.71 50.66 39.31 0.37
LRP+Saliency+CAM 39.32 52.09 39.99 34.02 47.14 35.14 0.36
LRP+Saliency+Rollout 56.81 69.75 59.51 51.69 65.47 54.52 0.33
Saliency+Rollout+CAM 42.15 54.10 47.45 37.04 49.54 41.93 0.37
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Conclusions

Combining multiple explainability methods improves ViT
interpretability.

LRP and Rollout emerge as the most effective individual techniques.

Geometric mean aggregation enhances attribution map clarity.

Pigeonhole Principle provides theoretical proof for explainability gain.

Approach generalizes well across datasets, including medical imaging.
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