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About me – Traian

Started working in 2003 (year 2 of studies): J2EE developer

Then founded my own company with a colleague (in 2005)
Web projects, involved in some startups as tech advisors (e.g. Happyfish TV)

Started teaching at A&C, UPB (in 2006)
TA for Algorithms, Natural Language Processing

Soon I also started my PhD (in 2007)
Natural Language Processing, Discourse Analysis, Technology-Enhanced Learning

Now I am lecturer for: Algorithm Design, Algorithm Design and Complexity, Symbolic and Statistical 
Learning, Information Retrieval 

Working on several topics in NLP: opinion mining, conversational agents, question-answering, 
culturonomics

Interested in all new projects that use NLP, ML and IR as well as any other “smart” applications

NLP and ML-related collaborations with PeopleGraph, Teamnet, Bitdefender, Treeworks
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Why machine learning?

“Simply put, machine learning is the part of artificial intelligence that 
actually works” (Forbes, link)

Most popular course on Coursera

Popular?
Meaning practical: ML results are nice and easy to show to others

Meaning well-paid/in demand: companies are increasing demand for ML specialists

Large volumes of data, corpora, etc.

Computer science, data science, almost any other domain (especially in 
research)
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Why ML?

Mix of Computer science and Math (Statistics) skills

Why is math essential to ML?
http://courses.washington.edu/css490/2012.Winter/lecture_slides/02_math_essentials.pdf

“To get really useful results, you need good mathematical intuitions 
about certain general machine learning principles, as well as the inner 
workings of the individual algorithms.”
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Basic notions for ML

• Different tasks in ML

• Supervised 
• Regression

• Classification

• Unsupervised
• Clustering

• Dimensionality reduction / visualization

• Semi-supervised 
• Label propagation

• Advanced notions are not treated here (reinforcement, deep learning, etc.)
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Supervised learning

• Dataset consisting of labeled examples

• Each example has one or several attributes and a dependent variable 
(label, output, response, predicted variable)

• After building, selection and assessing the model on the labeled data, 
it is used to find labels for new data
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Supervised learning

• Dataset is usually split into three parts 
• A rule is 50-25-25

• Training set
• Used to build models
• Compute the basic parameters of the model

• Holdout/validation set
• Used to find out the best model and adjust some parameters of the model (usually, 

in order to minimize some error)
• Also called model selection

• Test set
• Used to assess the final model on new data, after model building and selection
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• Source: http://blogs.sas.com/content/jmp/2010/07/06/train-validate-and-test-for-
data-mining-in-jmp/
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Cross-validation

If no of partitions (S) = no of training instances 
leave-one-out (only for small datasets)

Main disadvantages:
- no of runs is 

increased  by a factor 
of S

- Multiple parameters 
for the same model
for different runs
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Regression

• Supervised learning when the output variable is continous 
• This is the usual textbook definition

• Also may be used for binary output variables (e.g. Not-spam=0, Spam=1) or 
output variables that have an ordering (e.g. integer numbers, sentiment 
levels, etc.)
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• Source: http://smlv.cc.gatech.edu/2010/10/06/linear-regression-and-least-squares-
estimation/
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Classification

• Supervised learning when the output variable is discrete (classes)
• Can also be used for binary or integer outputs

• Even if they are ordered, but classification usually does not account for the 
order
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• CIFAR dataset: http://www.cs.toronto.edu/~kriz/cifar.html (also image source)
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Classification

• Several important types
• Binary vs. multiple classes

• Hard vs. soft

• Single-label vs. multi-label (per example)

• Balanced vs. unbalanced classes

• Extensions that are semi-supervised
• One-class classification

• PU (Positive and Unlabeled) learning 
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Unsupervised learning

• For an unlabeled dataset, infer properties (find “hidden” structure) 
about the distribution of the objects in the dataset 
• without any help related to correct answers

• Generally, much more data than for supervised learning

• There are several techniques that can be applied
• Clustering (cluster analysis)

• Dimensionality reduction (visualization of data)

• Association rules, frequent itemsets
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Clustering

• Partition dataset into clusters (groups) of objects such that the ones 
in the same cluster are more similar to each other than to objects in 
different clusters

• Similarity 
• The most important notion when clustering

• “Inverse of a distance”

• Possible objective: approximate the modes of the input dataset 
distribution
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• Source: https://sites.google.com/site/statsr4us/advanced/multivariate/cluster
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Dimensionality reduction

• Usually, unsupervised datasets are large both in number of examples 
and in number of attributes (features)

• Reduce the number of features in order to improve (human) 
readability and interpretation of data

• Mainly linked to visualization
• Also used for feature selection, data compression or denoising
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• Source: http://www.ifs.tuwien.ac.at/ifs/research/pub_pdf/rau_ecdl01.pdf
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Semi-supervised learning

• Mix of labeled and unlabeled data in the dataset

• Enlarge the labeled dataset with unlabeled instances for which we 
might determine the correct label with a high probability 

• Unlabeled data is much cheaper or simpler to get than labeled data
• Human annotation either requires experts or is not challenging (it is boring)
• Annotation may also require specific software or other types of devices
• Students (or Amazon Mturk users) are not always good annotators

• More information: 
http://pages.cs.wisc.edu/~jerryzhu/pub/sslicml07.pdf
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Label propagation

• Start with the labeled dataset

• Want to assign labels to some (or all) of the unlabeled instances

• Assumption: “data points that are close have similar labels”

• Build a fully connected graph with both labeled and unlabeled instances as 
vertices

• The weight of an edge represents the similarity between the points (or inverse of 
a distance)

• Repeat until convergence
• Propagate labels through edges (larger weights allow a more quick 

propagation)
• Nodes will have soft labels

• More info: http://lvk.cs.msu.su/~bruzz/articles/classification/zhu02learning.pdf
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• Source: http://web.ornl.gov/sci/knowledgediscovery/Projects.htm
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Basic Notions of ML

• How to asses the performance of a model?

• Used to choose the best model

• Supervised learning
• Assessing errors of the model on the validation and test sets
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Performance measures - supervised

• Regression
• Mean error, mean squared error (MSE), root MSE, etc.

• Classification
• Accuracy

• Precision / recall (possibly weighted)

• F-measure

• Confusion matrix

• TP, TN, FP, FN

• AUC / ROC
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• Source: http://www.resacorp.com/lsmse2.htm
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• Source: http://en.wikipedia.org/wiki/Sensitivity_and_specificity
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Basic Notions of ML

• Overfitting
• Low error on training data

• High error on (unseen/new) test data

• The model does not generalize well from the training data on unseen data

• Possible causes:
• Too few training examples

• Model too complex (too many parameters)

• Underfitting
• High error both on training and test data

• Model is too simple to capture the information in the training data
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• Source: http://gerardnico.com/wiki/data_mining/overfitting
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What is NLP?

• Language = Words + Rules + Exceptions + More
• dictionary (vocabulary) + grammar + more

• Dictionary 
• set of words defined in the language (static or dynamic)

• Grammar
• set of rules which describe what is allowable in a language

• Natural Language
• languages spoken by people (English, French, German, etc.) as opposed to artificial 

languages (C++, Java, Python, etc.) built for computer manipulation

• Natural Language Processing
• computer applications that automatically analyze natural language

Machine Learning for Natural Language Processing23-Jun-16 30



Why NLP?

• More and more unstructured data (e.g. text, images) available 

• Understanding natural language is deeply linked with real AI (e.g. Turing test)
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Why NLP ?
• 這是英文的一個非常簡單的文本。

• Αυτό είναι ένα πολύ απλό κείμενο στην αγγλική γλώσσα.

• Tämä on hyvin yksinkertainen teksti Englanti.

• .هذا هو نص بسيط جدا في اللغة الإنجليزية

• Computers “see” text in natural languages the same you see the previous text!

• People have no trouble understanding language

• Common sense knowledge

• Reasoning capacity

• Experience

• … but computers do!
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Possible NLP applications
• Classify text documents into categories (e.g. customer e-mails, spam, 

etc.)
• Index and search large collections of texts (Information Retrieval, Google)
• Machine translation (Google Translate)
• Information extraction (Extract useful information from resumes)
• Automatic summarization (Condense a large text into a much smaller one 

without loosing relevant information)
• Question answering (Who was the 24th president of the USA?)
• Speech recognition (Understand phone conversations)
• Plagiarism detection (Detect if two text documents are very similar)
• Text proofreading – spelling & grammar (Spellcheckers)
• Conversational agents (Siri, Cortana, etc.)
• ….
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Natural language is complex
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Morphology

• Low-level NLP processing, receives as input a string of letters/symbols 
and outputs information about the words/tokens in the document

• Tokenization
• process of breaking a stream of text up into tokens ( = words, phrases, 

symbols, or other meaningful elements)

• Typically performed at the “word” level

• Not easy: Hewlett-Packard, U.S.A., in some languages there is no “space” 
between words!

Machine Learning for Natural Language Processing23-Jun-16 35



Morphology

• Stemming
• Reduces similar words to a given “stem”
• E.g. detects, detected, detecting, detect => detect (stem).
• Usually set of rules for suffix stripping 
• Most popular for English: Porter's Algorithm 
• 36% reduction in indexing vocabulary (English)
• Linguistic correctness of resulting stems not necessary (sensitivities  sensit)

• Lemmatization
• Uses a vocabulary and full morphological analysis of words
• Aims to remove inflectional endings only 
• Return the base or dictionary form of a word, which is known as the lemma.
• E.g. saw => see,                    been, was => be

• Other language specific issues
• Split compound words (e.g. German)
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Morphology

• POS tagging
• POS = Part Of Speech

• Determine for each word its grammatical category (whether it is a noun, 
adjective, verb, preposition, article, etc.)

• POS tags = Represents a pretty much stable set across languages Most 
commonly used POS sets for English have 50-80 different tags (Brown Corpus 
Tags)

• Very high accuracy (98%+ for English)

• Most words have only one POS tag!
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Syntax

• Syntax captures structural relationships between words and phrases, i.e. describes the 
constituent structure of NL expressions 

• Constituents: Noun Phrase, Verb Phrase, Determiners....

• Grammars are used to describe the syntax of a language (Just like the syntax in programming 
languages) – e.g. next slide

• structures and patterns in phrases 
• how phrases are formed by smaller phrases and words

• Syntactic analyzers assign a syntactic structure (parse tree) to a string on the basis of a grammar 
 syntactic analyzers are also called parsers

• Why parsing? 
• Identifying the structure is the first step towards understanding the meaning of the sentence or to comparing 

strings (for machine translation)
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Syntax

• Sample English grammar
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Parsing

• Sentence  parse tree

• Input:
• sequence of pairs (lemma, (morphological) tag)

• Output:
• sentence structure (tree) with annotated nodes (all lemmas, 

(morphosyntactic) tags, functions), of various forms

• Deals with:
• the relation between lemmas & morphological categories and the sentence 

structure
• uses syntactic categories such as Subject, Verb, Object,…
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How is parsing done?

• Augment the grammar with probabilities computed on corpora 
manually annotated by linguists

• Use dynamic programming to construct structures from substructures
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Syntax: Representation of the results

• Tree structure (“tree” in the sense of graph theory)
• one tree per sentence

• Two main ideas for the shape of the tree:
• phrase structure (~ derivation tree, cf. parsing later)

• using bracketed grouping
• brackets annotated by phrase type
• heads (often) explicitly marked

• dependency structure (lexical relations “local”, functions)
• basic relation: head (governor) - dependent
• links (edges) annotated by syntactic function (Sb, Obj, ...)
• phrase structure: implicitly present
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E.g.: Phrase Structure Tree

• ((DaimlerChrysler’s shares)NP (rose (three eights)NUMP

(to 22)PP-NUM )VP )S
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E.g.: Dependency Tree

• rosePred(sharesSb(DaimlerChrysler’sAtr),eightsAdv(threeAt

r),toAuxP(22Adv))
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Semantics

• Semantics and pragmatics contain complex high-level NLP tasks

• Semantics = understanding “meaning” of words

• Pragmatics = language use in context (jokes, irony, dialogue related 
aspects, etc.)

• What is the meaning of words? 
• Dictionary definitions?
• Synonyms, antonyms, etc.
• Is “car” related to “engine”? How about “car” and “gas”?
• The meaning requires lots of common-sense knowledge – human specific
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Semantics

• How can computers use/understand human knowledge?

• Either use human-made knowledge bases (called ontologies)
• WordNet 
• FrameNet
• Etc.

• Try to build knowledge bases on their own by analyzing large collections of texts (maybe 
use some human “seeds” for relations and concepts)

• NELL (Never Ending Language Learning)
• Probase
• Freebase, Dbpedia
• Google Knowledge Graph

• Try to assess meaning from the context of words
• The meaning of a word is actually distributed in the “meaning” of the words used together with it
• Compute these distributed word embeddings
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Word embeddings

• Compute a vector representing the distributed representation for every word

• Various methods to do this

• For example, Latent Semantic Analysis (LSA) uses Singular Value Decomposition (SVD)

23-Jun-16 Machine Learning for Natural Language Processing 47



Word2Vec

• Neural Network language model

• Released in 2013 by Google 

• Advantages
• Can compute word embeddings on datasets larger than any previous method

• They seem to capture “subtle semantic relationships between words” (in the 
embedding space)
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Continuous Skip-gram Model

• Instead of predicting the current word based on the context

• Tries to maximize classification of a word based on another word in the 
same sentence

• Thus, uses each current word as an input to a log-linear classifier

• Predicts words within a certain window

• Observations
• Larger window size => better quality of the resulting word vectors, higher training 

time
• More distant words are usually less related to the current word than those close to it
• Give less weight to the distant words by sampling less from those words in the 

training examples



Continuous Skip-gram Model



Dependency-based Contexts

• Levi and Goldberg, 2014: Propose to use dependency-based contexts
instead of linear BoW (windows of size k)



Finding vandalism on Wikipedia

• Work with Dan Cioiu
• Vandalism = editing in a malicious manner that is intentionally disruptive
• Dataset used at PAN 2011

• Real articles extracted from Wikipedia in 2009 and 2010
• Training data: 32,000 edits
• Test data: 130,000 edits

• An edit consists of:
• the old and new content of the article
• author information
• revision comment and timestamp

• We chose to use only the actual text in the revision (no author and 
timestamp information) to predict vandalism
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Features
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Using several classifiers
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Cross-validation results
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Combining results using a meta-classifier
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Final results on test set

• Source: http://link.springer.com/chapter/10.1007%2F978-3-642-40495-5_32
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Main conclusions

• Feature extraction is important in ML
• Which are the best features?

• Syntactic and context analysis are the most important

• Semantic analysis is slow but increases detection by 10%

• Using features related to users would further improve our results

• A meta-classifier sometimes improves the results of several 
individual classifiers
• Not always! Maybe another discussion on this…
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Sexual predator detection

• Work with Claudia Cardei

• Automatically detect sexual predators in a chat discussion in order to 
alert the parents or the police

• Corpus from PAN 2012
• 60000+ chat conversations (around 10000 after removing outliers)

• 90000+ users

• 142 sexual predators

• Sexual predator is used “to describe a person seen as obtaining or 
trying to obtain sexual contact with another person in a 
metaphorically predatory manner” (Wikipedia)
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Problem description

• Decide either a user is a predator or not

• Use only the chats that have a predator (balanced corpus: 50% 
predators - 50% victims)

• One document for each user

• How to determine the features?
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Simple solution

• “Bag of words” (BoW) features with tf-idf weighting

• Feature extraction using mutual information

• MLP (neural network) with 500 features: 89%
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Going beyond

• The should be other features that are discriminative for predators

• Investigated behavioral features:
• Percentage of questions and inquiries initiated by an user
• Percentage of negations
• Expressions that might denote an underage user (“don’t know”, “never did”,…)
• The age of the user if found in a chat reply (“asl” like answers)
• Percentage of slang words
• Percentage of words with a sexual connotation
• Readability scores (Flesch)
• Who started the conversation

• AdaBoost (with DecisionStump): 90%

• Random Forest: 93%
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Main conclusions

• Feature selection is useful when the number of features is large
• Reduced from 10k+ features to hundreds/thousands

• We used MI, there are others techniques

• Fewer features can be as descriptive as (or even more descriptive 
than) the BoW model
• Difficult to choose

• Need additional computations and information

• Need to understand the dataset
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Practical ML

• Brief discussion of alternatives that might be used by a programmer

• The main idea is to show that it is simple to start working on a ML 
task

• However, it is more difficult to achieve very good results
• Experience

• Theoretical underpinnings of models

• Statistical background
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R language

• Designed for “statistical computing”

• Lots of packages and functions for ML & statistics 

• Simple to output visualizations

• Easy to write code, short

• It is kind of slow on some tasks 

• Need to understand some new concepts: data frame, factor, etc.

• You may find the same functionality in several packages (e.g. NaïveBayes, 
Cohen’s Kappa, etc.)
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Python (sklearn)

• sklearn (scikit-learn) package developed for ML

• Uses existing packages numpy, scipy

• Started as a GSOC project in 2007

• It is new, implemented efficiently (time and memory), lots of 
functionality

• Easy to write code
• Naming conventions, parameters, etc.
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• Source: http://peekaboo-vision.blogspot.ro/2013/01/machine-learning-cheat-sheet-for-scikit.html
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Java (Weka)

• Similar to scikit-learn, but developed in Java

• Older (since 1997) and more stable than scikit-learn

• Some implementations are (were) a little bit more inefficient, 
especially related to memory consumption

• However, usually it is fast, accurate, and has lots of other useful 
utilities

• It also has a GUI for getting some results fast without writing any code

Machine Learning for Natural Language Processing23-Jun-16 68



Not discussed

• RapidMiner
• Easy to use
• GUI interface for building the processing pipeline
• Can write some code/plugins

• Matlab/Octave
• Numeric computing 
• Paid vs. free

• SPSS/SAS/Stata
• Somehow similar to R, faster, more robust, expensive

• Many others:
• Apache Mahout / MALLET / NLTK / Orange / MLPACK
• Specific solutions for various ML models
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Practical NLP

• Again, there are a wide variety of open-source tools for NLP

• In most programming languages

• We present only a few, most popular 

• They contain set of tools which form a NLP pipeline (at least morphology & 
syntax, some semantics and pragmatics)

• Stanford CoreNLP

• Python NLTK

• Cython spaCy – newer

• There are several other specific tools (e.g. for Word2Vec, LSA, WordNet, 
etc.) and NLP packages (OpenNLP, Lingpipe)
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Stanford CoreNLP

• Implemented in Java

• Widely used in research and commercial products

• Pipeline: sentence splitter, tokenizer, lemmatizer, POS tagger, 
(syntactic and dependency) parser, corefernce resolution, named-
entity recognition, etc.

• Available for several languages (English, Chinese, Spanish, French, 
German)

• Link: http://stanfordnlp.github.io/CoreNLP/

• Demo: http://nlp.stanford.edu:8080/corenlp/
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NLTK

• Natural Language ToolKit

• Available in Python

• Lots of implemented modules (full list here: http://www.nltk.org/py-
modindex.html) 

• Provides the same functionality as CoreNLP and even more (can use 
CoreNLP if needed)

• Also implements several classifier and some simple conversational 
agents
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SpaCy

• Newer, faster (at least this in their benchmarks) than previous 
solutions

• Implemented in Cython

• “high performance tokenizer, part-of-speech tagger, named entity 
recognizer and syntactic dependency parser, with built-in support for 
word vectors”

• Link: https://spacy.io/
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Other

• Gensim (https://radimrehurek.com/gensim/): for computing word 
embeddings, including Word2Vec

• SyntaxNet (https://research.googleblog.com/2016/05/announcing-
syntaxnet-worlds-most.html) : syntactic parser from Google, released 
in 2016 , very accurate

• Lots more 
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Conclusions

• Lots of interesting ML+NLP tasks and data available
• Do you have access to new and interesting data in your business?

• Several programming alternatives, easy to use

• Understand the basics

• Enhance your Maths (statistics) skills for a better ML experience

• Hands-on experience and communities of practice
• www.kaggle.com (and other similar initiatives)
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Thank you!

traian.rebedea@cs.pub.ro
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