
Reinforcement Learning

Andrei Nica, Tudor Berariu

Outline
Reinforcement Learning Introduction

Reward driven agent behavior

Challenges

Approaches

RL agents taxonomy

Deep RL

Reinforcement Learning
Introduction

Reinforcement learning framework
Elements:

● Environment
● Agent
● Observations, state
● Reward signal
● Policy
● Model of the environment

https://en.wikipedia.org/wiki/Reinforcement_learning

Why study RL?
General solution

End-to-end learning from raw data to goal

Agent-based model

Enable real-world sequential decision making

The reinforcement learning problem is the AI problem!

Why study RL?
What are humans driven by?

Learning - basis of intelligence?

Learning how we learn

A single algorithm?

Model for testing our hypothesis

Why now?
1. Advancements in deep learning

2. Advancements in reinforcement learning

3. Advancements in computational capability

Results like: Atari games, Robotics, Beating Go & solving problems in production

History
Origin threads (1950s):
● behaviourist psychology
● optimal control problems
● temporal difference learning

60s, 70s
● Short decline - confusion RL / supervised learning in NN

70s
● Revival - framework importance - Harry Klopf

1989 - RL merge - Chris Watkins's invented the Q-learning algorithm

Applications
Think of any problem?

● Robotics

● Autonomous driving

● Language & dialogue

● Business operations

● Advertising

● Finance

Reward driven agent
behavior

MDP
Defined by tuple
S - finite state space
A - finite action space
P - transition function
R - reward function

Markov property:
Future is conditionally independent of the past given the present

https://en.wikipedia.org/wiki/Markov_decision_process

Goal
Find policy that maximizes expected discounted sum over a potentially infinite
horizon

Each time-step t - agent observes state s -
Takes action a following policy π -
Receives reward r

Problem examples
Observation: binary matrix | joint coordinates, 2D camera frame | Joint coordinates & 2D image

Reward: win/lose | difference with goal shape | maximum distance reached horizontally

And why not more?

https://medium.com/autocomm-technical-blog/end-to-end-autonomo
us-driving-a-not-so-novel-paradigm-42d81dcdb977

Challenges

Curse of dimensionality
Full {State x Action} space too big to experience.

Root of many other challenges

Tabular? Feature extraction?

Go game - lower bound number of legal moves ~2 * 10^170

Exploration

vs

expoitation

Hard maze

“Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for
Reinforcement Learning” (https://arxiv.org/abs/1712.06567)

Partial observability
State != observation

Uncertainty of the true information

POMDP - build belief state

Considered more in Multi agent systems

Missing information - from all observations

E.G. Empty map with agent - orientation

Stochastic or deterministic
Reward, Transition, Actions

Inherent randomness

Still maximize expected return.

Continuous or discrete
State or Action space

Algorithms - different approaches

Q-Learning & TD learning - discrete

Possible solution - discretization (coarse coding or tile coding)

Credit assignment problem
Temporal credit assignment from environment

Feature credit assignment

MAS - agent credit assignment

Change behavior for learning - E.g. maze of colored tiles

Non-stationary environments
Moving goal

Limited by how fast can a agent learning - Can make learning impossible

MAS - learn beside other agents

Generalization
Property or goal of learning?

Cannot experience everything

Compositionality

Approaches

Basic notations

Dynamic programming
Solving a complex problem by breaking it down into a collection of simpler subproblems

Compute the optimal policy but only given the perfect model of the environment as a MDP.

TD learning
Updates some estimates of a function by using prior estimates
Bootstrapping model. No model of environment needed.
Simple TD(0) for Value function
Most SOA based on this idea. Hard to experience entire episode & more sample
efficient

Policy Iteration
Solve MDP. Faster to learn than value iteration *

2 steps: Evaluate & Improve

Value Iteration
Offline planning (knowledge of the world)

Policy determined from value

Monte Carlo Method
Classic method for estimating value function and discovering the optimal policy
only from experience.

Value of states = average sampled returns

Use of samples inefficiently.

Cannot replicate on some environments. (Same starting point)

Beating Go champions: Supervised learning + policy gradients + value functions + Monte Carlo tree search:
D. Silver et al. “Mastering the game of Go with deep neural networks and tree search”. Nature (2016).

Q-Learning

Planning and learning
What if we had a model of the environment?

How can we use it?

Can we learn the model?

RL agents taxonomy

RL agents taxonomy
Value | Policy driven

Model-based | Model-free

On-policy | Off-Policy

Deep learning

What changed
Appearance of large labeled data

Massively parallel computing with GPUs

Backprop-friendly activation functions (ReLu, ELU, LeakyRelu, SELU ...)

Improved architectures (Resnets, inception modules, and Highway networks ...)

Software platforms - Frameworks (Tensorflow, Pytorch, CNTK, Caffe ...)

New regularization techniques (dropout, batch normalization, layer norm …)

Robust optimizers (Adam, Adadelta, RMSprop, …)

Deep RL

Deep reinforcement learning
Deep models allow RL algorithms to solve complex problems

● End to end learning
● Directly from raw observations
● Process complex sensory input
● Compute really complex functions
● Choose complex actions

Environments
Benchmark

● ALE Atari 2600 (57 games)
● Starcraft II
● DeepMind Lab (Quake III Arena)
● MuJoCo
● Carla & Microsoft AirSim
● Safety environments
● Behavioural psychology
● House environments
● City simulators

https://github.com/eleurent/phd-bibliography

Value driven
Estimate value function or Q-function of the optimal policy

DQN - 2015
“Human-level control through deep reinforcement learning”

Value driven
Rainbow network (DeepMind)
“Rainbow: Combining Improvements in Deep Reinforcement Learning”

● DQN
● Prioritized replay
● Multi-step learning
● Noisy DQN
● Dueling DQN
● Double DQN
● Distributional DQN

Policy driven
Policy gradients: directly differentiate

Reinforce; “Parameterization trick”

Examples:

● Reinforce
● Trust region Policy Optimization (TRPO)
● Proximal Policy Optimization (PPO)
● Natural gradient
● Distributed Proximal Policy Optimization (DPPO)

PPO
“Proximal Policy Optimization Algorithms”

Best at continuous action space

Actor-Critic
Estimate value function or Q-function of the current policy, use it to improve policy

Best of both worlds

Examples:

● Critic-Reinforce
● Deep deterministic policy gradient (DDPG)
● Asynchronous Advantage Actor-Critic (A3C)
● GPU A3C

GA3C
“GA3C: Reinforcement Learning through Asynchronous Advantage Actor-Critic on a GPU”

Auxiliary tasks

Auxiliary tasks

UNREAL Agent
“Reinforcement Learning with
Unsupervised Auxiliary Tasks”

● Base A3C Agent
● Pixel Control
● Reward Prediction
● Value Function Replay

Future work

Future work
What are some challenges DRL and possible solutions

● Reward assignment; Slow learning
● Transfer learning; Multi-task learning; Imitation learning; Inverse RL;

Hierarchical learning; Lifelong learning; Meta learning; Curriculum learning

Multi-agent systems

E.g. Communication emergence in MAS

