Reinforcement Learning

Andrei Nica, Tudor Berariu

Outline

Reinforcement Learning Introduction
Reward driven agent behavior
Challenges

Approaches

RL agents taxonomy

Deep RL

Reinforcement Learning
Introduction

Reinforcement learning framework

Elements: %
Environment
Environment

o

e Agent

e Observations, state 5
e Reward signal 4 m' g
o Policy In terp reter

[

Model of the environment
%’ \?J

§
Agent

https.//en.wikipedia.org/wiki/Reinforcement_learning

Why study RL?

General solution

End-to-end learning from raw data to goal
Agent-based model

Enable real-world sequential decision making

The reinforcement learning problem is the Al problem!

Why study RL?
What are humans driven by?
Learning - basis of intelligence?
Learning how we learn

A single algorithm?

Model for testing our hypothesis

Why now?

1. Advancements in deep learning

2. Advancements in reinforcement learning
3. Advancements in computational capability

Results like: Atari games, Robotics, Beating Go & solving problems in production

History

Origin threads (1950s):
® Dbehaviourist psychology
e optimal control problems
e temporal difference learning

60s, 70s
e Short decline - confusion RL / supervised learning in NN

/70s
e Revival - framework importance - Harry Klopf

1989 - RL merge - Chris Watkins's invented the Q-learning algorithm

Applications

Think of any problem?

Robotics
Autonomous driving
Language & dialogue
Business operations
Advertising

Finance

Reward driven agent
behavior

MDP

Defined by tuple (S,4,P.(,-),R.(-,),7)
S - finite state space

A - finite action space

P - transition function

R - reward function

https://en.wikipedia.org/wiki/Markov_decision_process

Markov property:.
Future is conditionally independent of the past given the present

Goal

Find policy that maximizes expected discounted sum over a potentially infinite
horizon

o0
Z’YtRm (st, 3t+l)
t=0

Each time-step t - agent observes state s -
Takes action a following policy rr -
Receives reward r

Problem examples

Observation: binary matrix | joint coordinates, 2D camera frame | Joint coordinates & 2D image

Reward: win/lose | difference with goal shape | maximum distance reached horizontally

ma

=
-
/K

And why not more?

Steering Acceleration Position

Deep Neural Network

Video LIDAR Radar GPS Other

https://medium.com/autocomm-technical-blog/end-to-end-autonomo
us-driving-a-not-so-novel-paradigm-42d81dcdb977

Challenges

Curse of dimensionality

Full {State x Action} space too big to experience.
Root of many other challenges

Tabular? Feature extraction?

Go game - lower bound number of legal moves ~2 * 10170

Goal =p
Trap 2=
Trap 1=p

Algorit

Start =p

Exploration

(b)

N Strategies

VS

GA - Novelty Search

expoitation

ON

Hard maze

Figure 5. How different algorithms explore the deceptive Image Hard Maze over time. Traditional reward-maximization algorithms
do not exhibit sufficient exploration to avoid the local optimum (going up). In contrast, a GA optimizing for novelty only (GA-NS)
explores the entire environment and ultimately finds the goal. For the evolutionary algorithms (GA-NS, GA, ES), blue crosses represent
the population (pseudo-offspring for ES), red crosses represent the top 7' GA offspring, orange dots represent the final positions of GA
elites and the current mean ES policy, and the black crosses are entries in the GA-NS archive. All 3 evolutionary algorithms had the same
number of evaluations, but ES and the GA have many overlapping points because they revisit locations due to poor exploration, giving
the illusion of fewer evaluations. For DQN and A2C, we plot the end-of-episode position of the agent for each of the 20K episodes prior
to the checkpoint listed above the plot.

“Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for
Reinforcement Learning” (https://arxiv.org/abs/1712.06567)

Partial observability

State != observation

Uncertainty of the true information
POMDP - build belief state

Considered more in Multi agent systems

Missing information - from all observations

E.G. Empty map with agent - orientation

Stochastic or deterministic

Reward, Transition, Actions
Inherent randomness

Still maximize expected return.

Continuous or discrete

State or Action space
Algorithms - different approaches
Q-Learning & TD learning - discrete

Possible solution - discretization (coarse coding or tile coding)

Credit assignment problem

Temporal credit assignment from environment
Feature credit assignment
MAS - agent credit assignment

Change behavior for learning - E.g. maze of colored tiles

Non-stationary environments

Moving goal

Limited by how fast can a agent learning - Can make learning impossible

MAS - learn beside other agents

Generalization

Property or goal of learning?
Cannot experience everything

Compositionality

Approaches

Basic notations

w(s): S — A

T
total discounted reward = Z vy
i=1

T

V™(s) =E[>_~v"'rj] Vs€S
=1

V*(s) =maxV™(s) Vse€S

" =arg max V" (s) Vs€S

Q:SxA R

Dynamic programming
Solving a complex problem by breaking it down into a collection of simpler subproblems

Compute the optimal policy but only given the perfect model of the environment as a MDP.

TD learning

Updates some estimates of a function by using prior estimates

Bootstrapping model. No model of environment needed.

Simple TD(0) for Value function

Most SOA based on this idea. Hard to experience entire episode & more sample
efficient

Tabular TD(0) for estimating v,

Input: the policy 7 to be evaluated
Initialize V(s) arbitrarily (e.g., V(s) = 0, for all s € §T)
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
A « action given by 7 for S
Take action A, observe R, S’
V(S) « V(S) + a[R++V(S') - V(9)]
S+ 9

until S is terminal

Policy lteration

Solve MDP. Faster to learn than value iteration *

2 steps: Evaluate & Improve

Policy iteration (using iterative policy evaluation)

1. Initialization
V(s) € R and 7(s) € A(s) arbitrarily for all s € §

2. Policy Evaluation
Repeat
A+0
For each s € 8:
v V(s)
V(s) « X, p(s's7|s,m(s)) [r + 'yV(.s’)]
A+ max(A, v —V(s)|)
until A < # (a small positive number)

3. Policy Improvement
policy-stable < true
For each s € 8:
old-action < 7(s)
m(s) argmax, 3 . p(s',7|s,a) [r+V(s))]
If old-action # 7(s), then policy-stable < false
If policy-stable, then stop and return V = v, and 7 =~ 7,; else go to 2

Value lteration

Offline planning (knowledge of the world)

Policy determined from value

Value iteration

Initialize array V arbitrarily (e.g., V(s) =0 for all s € 8*)

Repeat
A+0
For each s € 8:
v+ V(s)
V(s) + max, >, . p(s',7]s,a) [r + ’yV(s’)]
A + max(A, |v — V(s)|)
until A < 6 (a small positive number)

Output a deterministic policy, 7 = 7., such that
7(s) = argmax, >, . p(s',7]s,a) [r+9V(s)]

Monte Carlo Method

Classic method for estimating value function and discovering the optimal policy
only from experience.

Value of states = average sampled returns
Use of samples inefficiently.

Cannot replicate on some environments. (Same starting point)

Beating Go champions: Supervised learning + policy gradients + value functions + Monte Carlo tree search:
D. Silver et al. “Mastering the game of Go with deep neural networks and tree search”. Nature (2016).

Q-Learning

7*(s) = arg max Q*(s,a) Vs €S

Q"(s,a) = R(s,a) + yEs [V7(s")]
Q*(s,a) = R(s,a) +v Y _ p(s']s,a)V*(s)

s’eS
Since,

V*(8) = max Q" (s,a)

V*(S) = max R(s,a) +~ Zp(slls, a)V*(s)

s’eS
leamci value
Qst,a) + (1 —) - Q(st,a¢) + «a . (ry + ¥ . max Q(s¢+1,a))
~ ~~ ~~ ‘
old value learning rate reward discount factor

N’
estimate of optimal future value

Planning and learning

What if we had a model of the environment? ,/ \\
Policy/value functions

How can we use it? planning update

Can we learn the model? S pcate Sxperanee
search
control

Model

[Envirment]

RL agents taxonomy

RL agents taxonomy

Value | Policy driven
Model-based | Model-free

On-policy | Off-Policy

Deep learning

What changed

Appearance of large labeled data

Massively parallel computing with GPUs

Backprop-friendly activation functions (ReLu, ELU, LeakyRelu, SELU ...
Improved architectures (Resnets, inception modules, and Highway networks ...)
Software platforms - Frameworks (Tensorflow, Pytorch, CNTK, Caffe ...)

New regularization techniques (dropout, batch normalization, layer norm ...)

Robust optimizers (Adam, Adadelta, RMSprop, ...)

Deep RL

Deep reinforcement learning

Deep models allow RL algorithms to solve complex problems

End to end learning

Directly from raw observations
Process complex sensory input
Compute really complex functions
Choose complex actions

Environments

Benchmark

ALE Atari 2600 (57 games)
Starcraft Il

DeepMind Lab (Quake lll Arena)
MuJoCo

Carla & Microsoft AirSim

Safety environments
Behavioural psychology

House environments

City simulators

https.//github.com/eleurent/phd-bibliography

Value driven

Estimate value function or Q-function of the optimal policy

Video Pinball
Boxing
Breakout

Star Gunner
Robotank
Atlantis

Crazy Climber
Gopher

DQN - 2015

“Human-level control through deep reinforcement learning”

Demon Attack
Name This Game

Convolution
v

Kung-Fu Master
Freeway

Time Pilot
Enduro

/

Fishing Derby
Up and Down
Ice Hockey
Qbert
HERO.
Asterix

Battle Zone
Wizard of Wor
Chopper Command
Centipede
Bank Heist
River Raid
Zaxxon
Amidar

Alien

Venture
Seaquest
Double Dunk
Bowling

Ms. Pac-Man
Asteroids
Frostbite
Gravitar
Private Eye

Montezuma's Revenge |

H

\

At human-level or above

ﬁ?“*l”""****-“mnuullllmlml||ll

Below human-level

o

Value driven

Rainbow network (DeepMind)

“Rainbow: Combining Improvements in Deep Reinforcement Learning”

DQN

Prioritized replay
Multi-step learning
Noisy DQN
Dueling DQN
Double DQN
Distributional DQN

Median human-normalized score

200%

100%

DQN
DDQN
Prioritized DDQN

Dueling DDQN f

e B3 J N
Distributional DQN
Noisy DQN

Rainbow \

1 1
7 44 100 200
Millions of frames

Policy driven

Policy gradients: directly differentiate ¢ =agmaxE,) l;r(st,at)]
Reinforce; “Parameterization trick”

Examples:

Reinforce

Trust region Policy Optimization (TRPO)
Proximal Policy Optimization (PPQO)

Natural gradient

Distributed Proximal Policy Optimization (DPPQ)

PPO

“Proximal Policy Optimization Algorithms”

Best at continuous action space

HalfCheetah-v1 Hopper-v1 InvertedDoublePendulum-v1
1000
2000 2500 . AbAR 1 s000
A Y N 800
1500
2000 6000
1000 1500 600
4000
540 1000 400
0 500 2000 200
-500
0 0 0
0 1000000 0 1000000 0 1000000 0
Reacher-v1 Swimmer-v1 Walker2d-v1
-20
3000 —
-40 —
-60 2000
-80
1000
=100
=120 0

0 1000000 0 1000000 0 1000000

InvertedPendulum-v1

1000000

A2C

A2C + Trust Region
CEM

PPO (Clip)

Vanilla PG, Adaptive
TRPO

Actor-Critic

Estimate value function or Q-function of the current policy, use it to improve policy
Best of both worlds
Examples:

Critic-Reinforce

Deep deterministic policy gradient (DDPG)
Asynchronous Advantage Actor-Critic (A3C)
GPU A3C

GA3C

“GA3C: Reinforcement Learning through Asynchronous Advantage Actor-Critic on a GPU”

policy n(a)

ATARI Simulator

frames

l

Prediction

h -
Queue policy n(a) ?

update

frames

|

Training 3 rewards
Queue Trainers

ATARI Simulator '

agent N,

Auxiliary tasks

™) DeepMind Auxiliary Tasks
@® Live Play
Reward []

Pixel Control

Reward Prediction Value Function Replay

.U(:
as

Actions Value Function

Auxiliary tasks

UNREAL Agent O Deephin . Auxiliary Tasks
@® Live Play

“Reinforcement Learning with
Unsupervised Auxiliary Tasks”

Base A3C Agent
Pixel Control
Reward Prediction

Value Function Repla .
piay Reward Prediction Value Function Replay

Actions Value Function

Future work

Future work

What are some challenges DRL and possible solutions

e Reward assignment; Slow learning
e Transfer learning; Multi-task learning; Imitation learning; Inverse RL;
Hierarchical learning; Lifelong learning; Meta learning; Curriculum learning

Multi-agent systems

E.g. Communication emergence in MAS

