A Graph-Based Approach to Context Matching

Andrei Olaru

AI-MAS Group, University Politehnica Bucharest
LIP6, University Pierre et Marie Curie, Paris

28.10.2010
A Graph-Based Approach to Context Matching

- Approach
- Context-Awareness
- Representation
- Patterns
- Solving Problems

overview
A Graph-Based Approach to Context Matching

Approach

Elements of our approach:

- fully distributed system
- use of software agents
- use local information and local communication

Context-Awareness

Representation

Patterns

Solving Problems
Any information that can be used to characterize the situation of entities (i.e. whether a person, place or object) that are considered relevant to the interaction between a user and an application, including the user and the application themselves. [Dey, 2001]

Context-Awareness

Approach

Representation

Patterns

Solving Problems
Any information that can be used to characterize the situation of entities (i.e. whether a person, place or object) that are considered relevant to the interaction between a user and an application, including the user and the application themselves. [Dey, 2001]

Context-awareness enables:

· *pro-activity* – anticipate problems, detect compatible or incompatible contexts.

· *non-intrusiveness* – communicate with other agents, considering privacy, in order to obtain more information on the context.
Any information that can be used to characterize the situation of entities (i.e. whether a person, place or object) that are considered relevant to the interaction between a user and an application, including the user and the application themselves. [Dey, 2001]

Context-awareness enables:

· pro-activity – anticipate problems, detect compatible or incompatible contexts.

· non-intrusiveness – communicate with other agents, considering privacy, in order to obtain more information on the context.
Any information that can be used to characterize the situation of entities (i.e. whether a person, place or object) that are considered relevant to the interaction between a user and an application, including the user and the application themselves. [Dey, 2001]

Context-awareness enables:

- pro-activity – anticipate problems, detect compatible or incompatible contexts.

- non-intrusiveness – communicate with other agents, considering privacy, in order to obtain more information on the context.

Our goal: A simple, generic formalism that allows agents in a multi-agent system, that have only local knowledge, to share and process context-related information and to solve problems.
A Graph-Based Approach to
Context Matching

Approach

Context-Awareness

Representation

Patterns

Solving Problems

Any information that can be used to characterize the situation of entities (i.e. whether a person, place or object) that are considered relevant to the interaction between a user and an application, including the user and the application themselves. [Dey, 2001]

Context-awareness enables:

· pro-activity – anticipate problems, detect compatible or incompatible contexts.

· non-intrusiveness – communicate with other agents, considering privacy, in order to obtain more information on the context.

Our goal: A simple, generic formalism that allows agents in a multi-agent system, that have only local knowledge, to share and process context-related information and to solve problems.

· context-matching ·
A Graph-Based Approach to Context Matching

Approach

Context-Awareness

Representation of Context

Patterns

Solving Problems

The agent of a user holds a context graph $G = (V, E)$:

$V = \{v_i\}$, $E = \{e_k\}$, $e_k = (v_i, v_j, \text{value})$ where $v_i, v_j \in V$, $i, j = 1, n$, $k = 1, m$ values are strings or URI identifiers.
A Graph-Based Approach to Context Matching

Approach

Context-Awareness

Representation of Context

Patterns

Solving Problems

The agent of a user holds a context graph $G = (V, E)$:

- $V = \{v_i\}$,
- $E = \{e_k\}$,
- $e_k = (v_i, v_j, value)$

where $v_i, v_j \in V$, $i, j = 1, n$, $k = 1, m$

Values are strings or URI identifiers.

Computer Science & Engineering Department.
Andrei Olaru.
CATIIS Ziua Doctoranzilor.
Bucharest, Romania, 28.10.2010
A Graph-Based Approach to Context Matching

Approach

Context-Awareness

Representation of Context

Patterns

Solving Problems

The agent of a user holds a context graph G:

$G = (V, E)$

$V = \{v_i\}$, $E = \{e_k\}$, $e_k = (v_i, v_j, value)$

where $v_i, v_j \in V$, $i, j = 1, n$, $k = 1, m$

values are strings or URI identifiers.
Problem: Alice should also think about some means of transportation to the concert.

- patterns are also graphs. The graph for pattern s:

$$G_s^P = (V_s^P, E_s^P)$$

$$V_s^P = \{v_i\}, \quad v_i = string \mid URI \mid ?, \quad i = 1, n$$

$$E_s^P = \{e_k\}, \quad e_k = (v_i, v_j, E_RegExp), \quad v_i, v_j \in V_s^P, \quad k = 1, m$$

where E_RegExp is a regular expression formed of strings or URIs.
agents can communicate and share information.

information sharing is done by starting from shared context and try to extend the common context.
A Graph-Based Approach to Context Matching

- **Approach**
- **Context-Awareness**
- **Representation**
- **Patterns**

Solving Problems
A Graph-Based Approach to Context Matching

Approach

Context-Awareness

Representation

Patterns

Solving Problems

If a pattern $G_s^P = (V_s^P, E_s^P)$ k-matches the subgraph $G' = (V', E')$ of G, we can define a problem p as a tuple (G_s^P, G_p^P), where G_p^P is the problem’s graph:

- $G_p^P = G' \cup G_x^P$
- $G_x^P = (V_x^P, E_x^P)$
- $V_x^P = \{v \in V_s^P, v \notin \text{dom}(f)\}$
- $E_x^P = \{e \in E_s^P \text{ for which condition (2) is not fulfilled}\}$

Note that G_x^P (the unsolved part of the problem) is a subgraph of G_s^P.
A Graph-Based Approach to Context Matching

Approach

Context-Awareness

Representation

Patterns

Solving Problems

One more pattern:
A Graph-Based Approach to Context Matching

- infrastructures for the processing of context information have been proposed [Hong and Landay, 2001, Harter et al., 2002, Lech and Wienhofen, 2005, Henricksen and Indulska, 2006, Baldauf et al., 2007, Feng et al., 2004].

- context as associations [Henricksen and Indulska, 2006, Bettini et al., 2010].

- semantic networks, concept maps [Novak and Canás, 2006] and conceptual graphs [Sowa, 2000].

- graph matching (e.g. for image processing [Bengoetxea et al., 2002])

- we are not discussing ontology aligment [Viterbo et al., 2008].
The pattern *matches* subgraph G' of the context graph G if every non-$?$ vertex from the pattern must match a different vertex from G'; every non-regular-expression edge from the pattern must match an edge from G'; and every regular expression edge from the pattern must match a series (possibly void, if the expression allows it) of edges from G'.

A pattern G_s^P *k-matches* a subgraph G' of G, if the condition for edges above is fulfilled for $m - k$ edges in E_s^P, $k \in [1, m - 1]$, $m = ||E_s^P||$ and G' remains connected.
A survey on context-aware systems.

Inexact graph matching by means of estimation of distribution algorithms.
Pattern Recognition, 35(12):2867–2880.

A survey of context modelling and reasoning techniques.

Understanding and using context.

Towards context-aware data management for ambient intelligence.

The anatomy of a context-aware application.

Developing context-aware pervasive computing applications: Models and approach.

An infrastructure approach to context-aware computing.
Human-Computer Interaction, 16(2):287–303.

AmbieAgents: a scalable infrastructure for mobile and context-aware information services.

The origins of the concept mapping tool and the continuing evolution of the tool.

Knowledge representation: logical, philosophical, and computational foundations.
MIT Press.

Ambient intelligence: Management of distributed and heterogeneous context knowledge.
Thank You!

Any Questions?