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Abstract—Reliable and scalable Ambient Intelligence means a
distributed system of agents that are capable of working together
or autonomously, depending on the requirements of the situation.
In previous research we have argued in favor of the use of a
representation for context information that can be distributed
among agents, so that each agent knows only the information
that is relevant to its activity. Recognizing interesting information
or relevant situations is done by using context patterns – graph
patterns with potentially unknown nodes and edges labeled with
regular expressions.

In this context, a major challenge is for agents to use a graph
matching algorithm that is adequate to the possibilities of the
devices on which the agents are running. Moreover, it is necessary
that the algorithm is able to provide partial matches. This paper
presents an algorithm specifically designed for this problem,
that uses growing partial matches to obtain the maximum sub-
graph of the context graph that matches (part of) the context
pattern. Experiments were performed with the algorithm and its
performance has been compared with that of other algorithms
adapted to our problem.

I. INTRODUCTION

One of the most important paradigms that have been sug-
gested for the implementation of Ambient Intelligence [1], [2]
environments is the agent-oriented approach. Agents can serve
well the needs of AmI in terms of distribution, autonomy, fault
tolerance and proactive / anticipative behavior [3].

There are two aspects in the real-scale deployment of an
Ambient Intelligence system that are central to our work. One
of them is scale, and how will the system remain available
and useful throughout high loads and/or faults. The other is
information transfer. Mark Weiser, considered the father of
Ubiquitous Computing, sees such an environment as a “world
of information conveyers” [4].

In an ideal future deployment, Ambient Intelligence will be
a unified system that interconnects devices that are present in
every object, in every material, in the whole world. The system
will assist everyone continuously, in any situation, provide
them with the appropriate information and actions with no
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delay, and even with a certain degree of anticipation. This
behavior would be the result of processing large quantities of
information at the global level. These requirements also call
for features like robustness, resilience and availability.

This research is framed by a larger initiative (AmIciTy
– Ambient Intelligence for the Collaborative Integration of
Tasks) to build an agent-based environment for AmI applica-
tions in which context is a first-class notion. The elements of
this initiative are described in some previous work: at the core
of the platform is the context-aware transfer of information
between the agents, as well as a generic class of context-
aware actions [5]. This context-aware behavior of agents relies
on the use of context graphs and context patterns – simple,
flexible, yet powerful representations for the user’s context and
for known situations. By matching context patterns against
the user’s context graph, an agent can recognize the user’s
situation and act accordingly, by detecting incomplete matches
of context patterns in the context graph and suggesting missing
edges [6]. The communication between agents is based on the
principle that every agent sends the information that it deems
interesting to the agents that share context with it and that may
be interested in that piece of information [7]. “Interesting” here
means that it matches a pattern from the agent’s set of patterns.
In fact, most of the generic, non application-specific activity
of the context-aware agent is based on context matching
(matching context patterns against the agent’s context graph).
It is used to detect if the information from other agents
is relevant to the agent; it is used to recognize the user’s
situation and propose possible actions; and it is used to detect
information that may be interesting to neighbor (context-wise)
agents.

While the argument about using context graphs and patterns
for AmI applications has already been made in our previous
work, we cannot forget that a usable AmI system needs to offer
good performance in order to respond promptly to the user’s
needs and act with anticipation should the situation require it.
The question is therefore how the matching of context patterns
against graphs (what we call context matching) can be done by
agents in adequate time, considering the whole range of agents
in the system (large and small). The answer that is proposed
in this paper is an algorithm for matching context patterns
against context graphs that has been created and optimized



specifically for the problem of context matching.
The proposed algorithm starts from individual matches –

only one edge from the pattern that matches one edge from the
graph – and continues with merging pairs of matches until a
maximum match is created. We have tested the algorithm with
several examples from AmI scenarios and we have obtained
very satisfactory results compared with classic graph-matching
algorithms.

The following section presents some related work in the
fields of context-awareness in AmI and graph matching. Based
on the formal model presented in Section III, we propose in
Section IV a new context matching algorithm, that is further
exemplified and tested in Section V. The last section draws
the conclusions.

II. RELATED WORK

Infrastructures for processing context information and build-
ing context-aware applications are usually centralized and use
several layers – going from sensors, through pre-processing,
storage and management, to the application that uses the con-
text information [8]. In our approach [5], we attempt to build
an agent-based infrastructure that is decentralized, in which
each agent has knowledge about the context of its user, and
the main aspect of context-awareness is based on associations
between different pieces of context information. This makes
the system be context-aware not only by consuming context
information, but also by creating and disseminating it through
the system.

Modeling of context information uses representations that
range from tuples to logical, case-based and ontological rep-
resentations [9]. Using graphs and patterns [6] leads to more
flexibility and a simple basic mechanism, that is more adequate
to a constantly changing dynamic context.

Graph matching algorithms have started to gain momentum
at the end of the 70s and were used for pattern-recognition
(PR) problems (especially image recognition and segmenta-
tion). Recently the interest has risen once again, as increased
processing power makes graph matching approachable. It is
a process that can benefit applications in image (static and
video) analysis, chemistry, document processing, biometric
analysis, and biomedical applications. It is notable that in every
application domain there are specific challenges related to the
process of pattern matching, but algorithms are customized
starting from classical, generic graph-matching algorithms,
like the ones enumerated in the rest of this section. None of
those fields has, however, the same particular constraints as
our problem, therefore in this and previous work, algorithms
had to be adapted to solve it.

We may classify graph matching algorithms in two major
categories: exact matching, when the reference structure must
be found entirely in the examined structure; and inexact
matching, when a match might be valid even if the two
entities are different to a certain extent. Among the most
important algorithms for matching of unlabeled graphs are
tree-search algorithms [10] and algorithms for the matching
of a graph against a library of graphs [11]. Some algorithms,

especially those for inexact matching [12], are based on power-
ful mathematical instruments – like expectation maximization
[13], graduated assignment [14], and learning of assignment
coefficients [15].

We have previously adapted several popular algorithms for
graph matching in order to observe their behavior on context
matching problems [16]. The algorithms that we have focused
on were algorithms that can be adapted to the problem of
context matching: they rely on label comparison and can be
adapted to deal with generic edges and nodes. Among them,
algorithms using incremental matching by exploring the entire
state space (McGregor’s algorithm [17]); algorithms using the
equivalence between finding a maximal clique and finding the
maximum common subgraph (algorithms by Bron-Kerbosch
[18], Durand-Pasari [19], Akkoyunlu [20] and Balas-Yu [21]);
and algorithms using the equivalence with the maximal clique,
but considering an extended modular product of the edges, not
of the nodes (Koch’s [22]). While we have found that some of
these algorithms have certain advantages with respect to our
problem, there was room for improvement. In Section V we
offer some comparison of the proposed algorithm with existing
ones.

III. FORMAL MODEL

A. Context Graphs and Patterns
In an Ambient Intelligence system, each agent should have

a representation of the information that is interesting to it, and
also the means of detecting what information is interesting to
it from the stream of information that it receives. Moreover, it
should have a representation of other agents’ interests, in order
to know whom to inform of potentially interesting information,
out of all the agents that share some context with it.

The aim of the representation defined below (introduced
in previous work [6]) is to serve as a simple and flexible
way of representing the knowledge about the user’s current
situation. It must be easy to change, by removing or adding
associations, and it must be able to adapt to the storage space:
an agent must be able to store some relevant information for its
function even if it has very limited storage capabilities. The
representation must also allow the agent to easily aggregate
interesting received information with existing one.

Each agent A has a Context Graph CGA = (V,E) that con-
tains the information that is currently relevant to its function.
Considering a global set of Concepts (strings or URIs) and
a global set of Relations (strings, URIs or the empty string,
for unnamed relations), we have:
CGA = (V,E), where V ⊆ Concepts
E = {edge(from, to, value) | from, to ∈ V, value ∈

Relations}
In order to detect relevant information, or to find potential

problems, an agent has a set of patterns that it matches
against graph CGA. These patterns describe situations that
are relevant to its activity. A pattern s is defined by a graph
GP

s , with the following properties1:

1We will note with the superscript “ P ” the support for generic elements,
like ?-nodes



GP
s = (V P

s , E
P
s )

V P
s ⊆ Concepts ∪ {?}
EP

s = {edge(from, to, value) | from, to ∈ V P
s , value ∈

Relations ∪ {λ}}
We have used λ as a notation for the empty string. An

extended model endows edges in a pattern with the capability
to match entire paths in the graph (described by regular
expressions) but we will not focus on that in the contents of
this paper.

B. Context Matching

By using graph matching algorithms – matching a pattern
from the agent’s set of patterns against the agent’s context
graph – an agent is able to detect interesting information or
problematic situations and is able to decide on appropriate
action to take [5].

The pattern GP
s matches the subgraph G′

A = (V ′, E′), iff
there exists an injective function fv : V P

s −→ V ′, so that the
following conditions are met simultaneously:

(1) ∀vP ∈ V P
s , v

P =? or vP = f(vP ) (same value)
(2a) ∀edge(vPi , vPj , rel) ∈ EP

s , edge(f(v
P
i ), f(v

P
j ), value)

∈ E′, value ∈ {rel, λ}
(2b) ∀edge(vPi , vPj , λ) ∈ EP

s , ∃value ∈ Relations,
edge(f(vPi ), f(v

P
j ), value) ∈ E′

That is, every non-? vertex in the pattern matches (has the
same label) a different vertex from G′

A (fv is injective), and
every edge in the pattern matches (same label for the edge and
vertices) an edge from G′

A. Subgraph G′ should be minimal
(no edges that are not matched by edges in the pattern).

We allow partial matches. A pattern GP
s k-matches (matches

except for k edges) a subgraph G′ of G, if conditions (2)
above are fulfilled for ms− k edges in EP

s , k ∈ {1..ms− 1},
ms = ||EP

s || and G′ remains connected and minimal.
One pattern may match various subgraphs of the context

graph. A match i between a context pattern GP
s and the context

graph CGA of an agent A is defined as:
MA-si(G

′
A, G

P
m, G

P
x , fv, k).

G′
A, G

P
m, G

P
x are graphs: G′

A ⊆ CGA is the subgraph
(partially) matched by the pattern, GP

m = (V P
m , E

P
m) ⊆ GP

s

(or solved part) is the part of the pattern that matches G′
A, and

GP
x = (V P

x , E
P
x ) is the rest of the pattern, which is unmatched.

There is no intersection (common nodes or edges) between
GP

m and GP
x (it is therefore possible for GP

x to contain edges
without containing both of their adjacent vertices).

C. A Simple Example

Let us give a simple example of usage for graphs and
patterns: Suppose that an Ambient Intelligence system, im-
plemented by means of a multi-agent system, is helping
researcher Alex in organizing information on the computer.
Among that information, an e-mail has been received: a call
for papers (CFP) for the Artificial Intelligence Conference,
or AI-Conf. The CFP contains the time when the conference
will take place, the deadline for articles, and the date the CFP
was issued. Alex read the e-mail, but did not take the time to
organize the information inside it. What the AmI system was

capable of extracting so far (possibly by means of pattern-
matching) are the fact that the CFP is a document, that it
contains 2 dates and an interval of time, and that it is about
something called AI-Conf (a name that appears throughout the
document); it also checked automatically the page linked in
the document and the page too contained one of the dates (the
deadline) and the interval in which the conference will take
place (see also Figure 1 (a)).

Alex’s agent is supposed to be able to notify Alex of the
approaching deadline of the conference and of the fact that
Alex has not yet submitted a paper. The agent contains a
pattern describing a conference call for papers, like the one
displayed in Figure 1 (b). The agent’s task is difficult because
while the pattern is defined by relationships, the context
information only contains names for its nodes – but the nodes
are not named in the pattern.

By matching the pattern against the graph, the agent is able
to obtain a partial match (k = 3), inferring the fact that the
CFP is indeed for a conference, the deadline of the conference,
and the fact that there is no article yet submitted to it. The
solved part and remaining unsolved part are shown in Figure
1 (c).

IV. THE PROPOSED ALGORITHM

The purpose of this paper is to present a novel algorithm
for context matching (matching a context pattern to a con-
text graph). This algorithm takes inspiration from existing
approaches, but has been created from scratch in order to best
fit the context matching problem and the agents doing the
matching.

The problem is characterized by the fact that all nodes in
the graph, as well as most of the nodes in the pattern, are
labeled. Most of the edges in the graph and the pattern are
also labeled. The size of the patterns is expected to be small.
The size of the context graph, however, depends on the size
of the device: a powerful device can hold more information
and has the power to match patterns against a larger graph.

A. Algorithm description

Tha algorithm is focused on matching edges. It works with
valid partial matches (as defined in Section III-B) of various
sizes (between 1 and ms edges, i.e. with k ∈ {0..ms − 1})
and merges them in order to form larger (better) matches.
The algorithm has two phases. First, it generates a set of
all possible single-edge matches. Then, it selects pairs of
compatible matches that it merges in order to create new
matches. The search for new matches is close to a depth-first
search, in order to get better matches faster. The gist of the
algorithm is that it does not test the compatibility (from the
point of view of merging) of the matches before each merger,
but instead uses for each match a set of data structures (a
frontier, a set of adjacent merger candidates and a set of non-
adjacent merger candidates) that allow the algorithm to know
precisely if two matches can be merged or not.

The pseudo-code of the algorithm is given in Figure 2. In
this section, we will consider a match as being a tuple



(a) (b) (c)
Figure 1. An example of context graph (a), context pattern (b), and the match between them (c) (the solved part is emphasized by the dashed enclosure).
Some relations have been annotated with subscripts to be able to differentiate them in the text.

M(G′, GP
m, fv, fe, fr,MC,MO, k)

that is, a match is characterized by the matched subgraph,
the matched (solved) part of the pattern, the correspondence
functions for vertices and edges (fv : V P

m −→ V ′, fe : EP
m −→

E′, both are bijections), the frontier (fr = {vP ∈ V P
m | ∃eP ∈

EP
x , e

P adjacent to vP }), the adjacent (or immediate) merger
candidates, the non-adjacent (or outer) merger candidates, and
k.

Let us give some details on how the algorithm works in the
following paragraphs.

In the first phase (illustrated by the pseudo-code func-
tion AddInitialMatches(), the algorithm creates all possible
single-edge matches. That is, it creates a set of all matches of
an edge from the graph pattern and an edge from the graph.

An edge ePkp ∈ EP matches and edge ekg ∈ E if the vertices
adjacent to the pattern edge match (are generic or have the
same value as) the vertices adjacent to the graph edge, and if
either one of the edges is unnamed or the labels of the edges
match. The frontier of the newly created match will be formed
of the two vertices adjacent to the pattern edge (considering
both have other incoming or outgoing edges).

The match can be immediately merged with any other
match whose frontier intersects the frontier of the current
match, provided that all vertices in the intersection have the
same corresponding graph vertex in both matches. That is,
for two matches M1,M2 (with frontiers fr′, fr′′ and merger
candidates MC ′,MC ′′) the condition for M2 ∈ MC ′ (or,
equivalently, M1 ∈MC ′′) is that
fr′ ∩ fr′′ 6= ∅ and ∀vP ∈ fr′ ∩ fr′′, f ′v(vP ) = f ′′v (v

P )
The match could be potentially merged, later, with any other

match that is not adjacent to it. All these potential merger
candidates are gathered in the set MO.

In the second phase of the algorithm, pairs of matches are
picked to be merged. In order to do this, all matches (initial or
merged) are added to a queue (MatchQueue), that is sorted
so that larger matches come first.

For each match, new matches are created by merging the
match with candidates from MC. It is guaranteed that all
matches in MC are compatible. Moreover, as matches are
merged, newly created matches also have MC and MO sets
that are guaranteed to be correct.

A match M resulted from the merging of M1 and M2

is produced by the pseudo-code function Merge(M1,M2).
As the matches are disjoint (except for the common frontier
vertices), it suffices to add in G′, GP

m, fv , fe all the elements
in the corresponding components of M1 and M2. The resulting

frontier is formed of the reunion of the two frontiers, except
for the vertices which are now included completely in the
matched part of the pattern.

The immediate merger candidates of M will be formed of
three disjoint sets: first, MC ′ ∩MC ′′ – the matches that are
merger candidates for both M1 and M2 – these are acceptable
merger candidates for any of the component matches; second,
MC ′′ ∩ MO′ – the matches that were acceptable, but not
immediate, candidates for M1 (in MO′), and were also
immediate merger candidates for M2 – as M contains M2,
these candidates are immediate merger candidates, and M1

did not reject them; third, MC ′ ∩MO′′ – the set symmetric
with the previous one. The matches left out by the merger
are matches that were compatible with one of the component
matches, but not with the other.

The outer merger candidates are candidates that were ac-
ceptable by both M1 and M2 but were not immediate merger
candidates for any of the two.

B. Complexity Analysis

The classic problem of unlabeled graph matching is NP-
complete, and so is the problem of context matching if all
nodes in the pattern are generic and all edges in the pattern are
unnamed. However, it is interesting to look into the complexity
of the proposed algorithm and see how the various operations
can impact the execution time in real-life scenarios. It is no-
table that we are especially interested in performance on small
devices, which will however host agents that are dedicated to
relatively simple functionality, and will therefore hold small
context graphs and small patterns. Such small devices would
be mobile phones and tablets. Very simple graph matching
would be suitable for microcontrollers existing on wireless
sensors. In the case of sensors, context matching does not
bring a performance improvement, but has the advantage that
it is a uniform method of detecting appropriate action, used
throughout the entire system, making an agent on a small
device structurally identical to one on a larger computer.

Throughout this analysis we will use the example in Section
III-C, which is a medium-to-difficult case for a small agent.
The example is further analyzed, from a functional point of
view, in Section V. In this section, we will consider m =
||E|| and mP = ||EP

s || – the number of edges in the graph
and in the pattern. The number of nodes has little impact on
complexity. For our example, the two numbers are 11 and 8,
respectively.



function Match(G,GP ) with G = (V,E), GP = (V P , EP )
1. MatchQueue←− AddInitialMatches()
2. while MatchQueue 6= ∅ // matches should be kept sorted by k
3. M ←− pop(MatchQueue)
4. for each Mc ∈MC
5. MO′ ←−MO′ \ {M}
6. Mresult =Merge(M,Mc)
7. MatchQueue←−MatchQueue ∪Mresult

8. return best match ever generated (lowest k)

function AddInitialMatches()
1. MatchQueue←− ∅
2. for each ePkp = (vPip, v

P
jp, valp) ∈ EP // edges in pattern

3. for each ekg = (vig, vjg, valg) ∈ E // edges in graph
4. if vPip matches vig and vPjp matches vjg and valp matches valg // it is a match
5. MC ←− ∅; MO ←− ∅ // immediate & outer match candidates
6. for each Ma ∈MatchQueue matching ePap with eag
7. if ePap 6= ePkp and eag 6= ekg // matches don’t overlap
8. if {vPip, vPjp} ∩ {vPap, vPbp} 6= ∅ // matches are adjacent
9. if common nodes have the same correspondent in G′ // matches are compatible
10. MC ←−MC ∪Ma // the other match is a merge candidate
11. else MO ←−MO ∪Ma // the other match is an outer candidate
12. MatchQueue←−MatchQueue∪ // add the single-edge match to queue

M(G′ = ({vig, vjg}, {ekg}), GP
m = ({vPip, vPjp}, {ePkp}), // matched subgraph, matched part

fv = {vPip −→ vig, v
P
jp −→ vjg}, fe = {ePkp −→ ekg}, // vertex function, edge function

fr = {vPip, vPjp},MC,MO, k = ||EP || − 1) // frontier, match candidates, k
13. return MatchQueue

function Merge(M1,M2)

with M1(G
′′ = (E′, V ′), GP

m
′
= (V P

m
′
, EP

m
′
), f ′v, f

′
e, fr

′,MC ′,MO′, k′)

and M2(G
′′′ = (E′′, V ′′), GP

m
′′
= (V P

m
′′
, EP

m
′′
), f ′′v , f

′′
e , fr

′′,MC ′′,MO′′, k′′)
1. V = V ′ ∪ V ′′;E = E′ ∪ E′′ // edges are guaranteed to be disjoint
2. V P

m = V P
m

′ ∪ V P
m

′′
;EP

m = EP
m

′ ∪ EP
m

′′

3. fv = f ′v ∪ f ′′v ; fe = f ′e ∪ f ′′e ; fr = ∅ // functions are guaranteed compatible
4. for each vP ∈ fr′ ∪ fr′′,∃eP adjacent to vP , eP /∈ EP

5. fr ←− fr ∪ vP
6. MC ′ ←−MC ′ \ {M2};MC ′′ ←−MC ′′ \ {M1}
7. MC = (MC ′ ∩MC ′′) ∪ (MC ′ ∩MO′′) ∪ (MC ′′ ∩MO′) // matches that are merge candidates (imme-

diate or outer) for both M1 and M2, but are
immediate candidates for at least one of them

8. MO =MO′ ∩MO′′ // matches that are outer to both M1 and M2

9. return M(G′ = (V,E), GP
m = (V P

m , E
P
m), fv, fe, fr,MC,MO, k)

Figure 2. The matching algorithm for a graph and a pattern – Match – is based on two phases: adding the initial, single-edge matches to the queue –
AddInitialMatches – and merging pairs of candidate matches from the queue, using the function Merge.

The first phase of the algorithm – adding initial matches
– tries to create m × mP initial matches. However, in a
realistic scenario, most edges will be labeled, therefore the
actual number is much smaller. Even in our example, which
is very unfavorable, there are 19 initial matches, even if
m × mP = 88. However, for each new initial match, all
previously created matches are explored to find potential
merger candidates. This means a total complexity of the first
phase of around MatchQueue.size2, considering the size of

the queue at the end of the first phase. For our example, 370
edges are compared by the end of the first phase. There are
also a considerable number of node label comparisons, which
depends on how many generic nodes exist in the pattern (the
more the better), but these are the only node comparisons that
are done in the whole algorithm. In our example there are only
about 200.

It is worth noting that it is only the first phase that deals
with label comparison. The second phase deals only with



reference management and comparison, which is much faster
and can benefit from compiler and execution environment
optimizations.

The second phase takes matches from the MatchQueue
and merges them with all their potential candidates. The
merger process is characterized by the set operations that
create the MC and MO components of the result. These
operations are considerably optimized by using efficient set
implementations (hash sets). While iterating over all merger
candidates takes long if there are many candidates, the depth-
first approach leads to large matches being created first and
maximal matches are reached considerably fast compared with
the full matching process. In our example, the maximal match
is found after 1200 edge comparisons, but the total matching
process (completely exhausting the match queue) takes over
2400 edge comparisons. If the maximal match is detected
correctly, the process can stop at half the time.

The conclusion is that, although any graph matching is time
consuming, for a real situation the process is quite fast.

V. EXPERIMENTS AND RESULTS

The proposed algorithm has been implemented (in Java) and
tested on several hand-crafted graphs and patterns (resulted
from Ambient Intelligence scenarios) and on some randomly
created tests, yielding good results.

A. Experimental Tools

During the testing of the algorithm, some visualization tools
have been created.

First, we have developed a linear textual representation
of directed graphs, for the purpose of displaying a human-
readable form of graphs in the output console. It uses vertex
and edge names, arrows, stars and parentheses to completely
display a graph. Each edge is shown only once, and nodes are
repeated once per graph cycle. For instance, a graph that is
formed of three nodes (A,B,C) linked by two edges a and
b is represented as A a−→ B

b−→ C (or, in ASCII output, as
A -a-> B -b-> C). A graph which is the cycle ABC is
represented as A −→ B −→ C −→ ∗A – the star marks the
fact that A has appeared before and its outgoing edges have
been already defined. A tree with the root A and the children
B and C is represented as A(−→ B) −→ C. Finally, a graph
formed of the 3-node cycles (ABC and ABD) is represented
as A −→ B(−→ C −→ ∗A) −→ D −→ ∗A. This linear text
representation makes it easy to follow the workings of the
algorithm, as one can observe in the snippet in Figure 3.

Based on the linear textual representation, we have also built
a graphical representation for graphs and for matches, as the
one in Figure 4. The figure shows how the maximal match is
obtained of our example, by merging a 4-match with a disjoint
single-edge match (7-match) to form a 3-match.

B. Experimental Results

We have tested the proposed algorithm on a large number of
examples. The variables of the examples were the size of the
graph G, the size of the pattern GP , the number of unlabeled

edges, and the number of generic nodes. In comparing the
proposed algorithm with others, we have focused on counting
the number of edge comparisons, as the number of node com-
parisons is very low. To this number we have also added the
number of edge hash comparisons resulted from set operations,
as the second phase of the algorithm relies exclusively on the
set operations required by match merging.

Table I presents the number of matched edges for various
test examples and various graph-matching algorithms. The
displayed examples are the following: a small example with
a 7-edge graph and a 2-edge pattern; the initial example
presented in Section III-C of this paper; the same initial
example, but with no edge labels in the graph or in the pattern
– making this a difficult case because of a large number of
initial matches; the initial example, in which all nodes in the
pattern are generic, making this a difficult case both for node
and for edge matching; and finally, a large example with a
20-node graph and a 12-node pattern.

All test show that the proposed algorithm is at least as
good as the algorithms compared against. We have compared
it against other algorithms as well, notably McGregor and
Larossa. However, the McGregor algorithm is more focused
on node expansion, therefore it is difficult to compare against
it, but we know that it is very inefficient (it relies on
backtracking). The Larossa algorithm [23] is constantly much
more efficient than the proposed algorithm, however its nature
makes it unable to obtain partial matches, and is therefore
unsuitable for the problem at hand [16].

The good results of the proposed algorithm are due to the
fact that it uses a greedy approach, building larger matches
every time. Each match is a good match, and at any step, for
each match, we have the correct set of compatible merger
candidates. While the elements of the match (the frontier
and the match candidates sets) do make the algorithm more
memory-consuming, this consumption is worth the tradeoff for
increased time-performance.

VI. CONCLUSION

Using a flexible but powerful knowledge representation
in AmI-purposed multi-agent systems is key to a reliable,
intelligent and anticipative Ambient Intelligence environment.
Context graphs and patterns offer such a representation, but all
context-aware processes involving them use graph matching to
detect the current situation.

While the problem of matching graphs is computationally
difficult, it is possible to create purpose-built algorithms that
rely on the specific properties of the context matching problem
to increase efficiency in real-world scenarios.

This paper presents such an algorithm, which relies on a
search in the match space, starting from single-edge matches
and merging pairs of matches, while always keeping tabs on
the merger candidates for a match. We have implemented and
tested the algorithm with very satisfactory results.

Future work includes not only improving the proposed
algorithm, but also testing it in more harsh conditions, and



...
merging match [-] (k=5): AIConf (->CFP) (->300311) ->conftime

: ?#3 (-article->?#2) (-CFP->?#5) -deadline->?#2
fv: {?#5=CFP, ?#3=AIConf, ?#2=300311, ?#2=conftime}

and match [2:5] (k=7): CFP-contains->conftime
: ?#5-contains->?#2

fv: {?#5=CFP, ?#2=conftime}
new match [-] (k=4): AIConf (->CFP-contains->conftime) (->*conftime) ->300311

: ?#7 (-CFP->?#8-contains->?#6) (-deadline->*?#6) -article->?#4
fv: {?#8=CFP, ?#7=AIConf, ?#4=300311, ?#6=conftime}

...

Figure 3. An example of output from the matching algorithm, showing the merging of two matches.

+

(a) (b)

−→

(c)

Figure 4. Example of graphical output of the matching algorithm, showing the merging of two matches (a) and (b) into a single match (c). The same example
is used as in Figure 1.

Algorithm Akkoyunlu Bron-Kerbosch Balas-Yu Durand-Pasari Proposed algorithm
Expanded edges:

Small example 124 120 135 119 34
Initial example 5431 5440 6423 5219 2459
No labeled edges 7054 9454 15843 9060 7581
No labels 326044 371943 578401 367725 108902
Large example 20470 19989 22170 18322 11834

Table I
COMPARISON OF NUMBER OF EXPENDED EDGES IN VARIOUS GRAPH MATCHING ALGORITHMS.

on mobile devices, as well as integrating it in an agent-based
framework for Ambient Intelligence applications.
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