
A Flexible and Lightweight
Agent Deployment Architecture

Andrei Olaru
Department of Computers

University Politehnica of Bucharest
Bucharest, Romania

andrei.olaru@cs.pub.ro

Alexandru Sorici
Department of Computers

University Politehnica of Bucharest
Bucharest, Romania

alexandru.sorici@cs.pub.ro

Adina Magda Florea
Department of Computers

University Politehnica of Bucharest
Bucharest, Romania

adina.florea@cs.pub.ro

Abstract—While the multi-agent system (MAS) paradigm is
popular for many application domains, different frameworks
exist for different applications. These frameworks are not in-
teroperable and many times force the developer into a specific
model for agents and for the system as a whole.

This paper presents a framework featuring a lightweight,
open model for the entities in a MAS, together with a means
of deployment that brings both flexibility and versatility. This
architecture is compared to the most popular frameworks in the
MAS domain.

Index Terms—software agents, multi-agent systems, deploy-
ment framework, Internet of Things

I. INTRODUCTION

Multi-Agent Systems (MAS) are seen by many researchers
as an adequate paradigm for the implementation of applica-
tions and, more often, middleware, in several domains, such as
Ambient Intelligence (AmI) [1], the Internet of Things (IoT)
[2], Active Assisted Living (AAL) [3], vehicular communi-
cation systems, edge computing [4], robots and swarms, and
many others. In all of these fields, entities – devices, platforms,
users, computing behaviors – are heterogeneous both as origin
and as platform and capabilities; have a high degree of auton-
omy; and interact with other entities. Modeling such scenarios
as multi-agent systems helps researchers and developers in
simulations, as well as in the actual deployment, by leveraging
MAS characteristics such as loose coupling, heterogeneity and
orientation towards the perspective of individual entities.

Current research regarding the implementation of Multi-
agent Systems (MAS) addresses two important, but different,
aspects: the aspect of programming the agents, namely con-
figuring the mental states of the agent and the parameters of
its reasoning cycle, usually using specialized agent-oriented
programming languages; and the aspect of agent organization
and programming the environment, focusing on how the vari-
ous actors in the deployment should be organized and how they
should interact. Some implementations address both levels,

This research was supported by grant PN-III-P1-1.2-PCCDI-2017-0734 and
grant NETIO — 1268/22.01.2018.

1The final publication can be found on IEEE Xplore
A. Olaru, A. Sorici and A. M. Florea, A Flexible and Lightweight Agent
Deployment Architecture, 2019 22nd International Conference on Control
Systems and Computer Science (CSCS), Bucharest, Romania, 2019, pp. 251-
258, doi: 10.1109/CSCS.2019.00048.
https://ieeexplore.ieee.org/document/8744845

offering both the enclosing framework, as well the means to
model the agent internally, either by using an AOP language
which is integrated with the framework (as in the example of
JaCaMo with Jason [5]), or by offering methods to model the
agent’s behavior (as in the example of Jade [6]).

The general goal of this research is to help developers
create systems in which each entity has its own code and
model, but is able to easily integrate itself in a system and
communicate with other entities. We wish to decouple the
implementation and implementation language for the agent’s
behavior (such as by using the BDI model or the Jason
language, etc) from the functionality offered by the agent
platform / development framework, such as communication,
addressing, mobility, monitoring and control.

There are currently several frameworks that allow develop-
ers to focus on programming the behaviour of the agent, letting
the framework take care of agent management, communica-
tion, mobility, and discovery. Examples of existing frameworks
are Jade1, Jiac2 and Jadex3. Some of these also offer the means
to implement agents using the BDI model. Jason and the Ja-
CaMo framework4 also combine AOP language and execution
platform. However, we found that each of these platforms
lack the means to easily deploy certain types of scenarios. In
JaCaMo it is difficult to discover services and artifacts through
the tools provided to the AOP language, which is needed in
IoT scenarios; in Jade there is no support for entities above
the agents, implementing groups and organizations, which is
needed in complex scenarios; in Jiac it is difficult to move
away from the Java EE-inspired model, which may be needed
on more restrictive platforms.

Another class of multi-agent system related tools are mod-
eling and simulation frameworks. They allow the simulation
of large numbers of agents on the local machine or on
high-performance computing clusters. However, they don’t
offer support for distributed deployment and communication

1Java Agent DEvelopment Framework (http://jade.tilab.com/, accessed
March 2019)

2Java-based Intelligent Agent Componentware (http://www.jiac.de/,
accessed March 2019)

3Jadex Active Components (https://www.activecomponents.org, accessed
March 2019)

4JaCaMo Multi-Agent Programming Framework
(http://jacamo.sourceforge.net/, accessed March 2019)

between arbitrary devices. Our intention with this research is
to provide an architecture that allows for the same agents to
be deployed both on distributed, real-life setups, but also to
be part of fast local simulations.

This paper addresses the needs of researchers and develop-
ers who need to easily develop, quickly deploy and painlessly
monitor and control multi-agent systems for a variety of
scenarios, with an effort that is only proportional to the
complexity of the scenario. The goal is to offer the means to
focus on programming the behavior of agents, without the need
to think about how the agents communicate or move from one
machine to another, but at the same time offer the possibility
of choosing the appropriate method of communication for
each part of the system, and switch methods at run-time if
necessary, without affecting the implementation of the agents.
Envisaged scenarios also include the simulation of (large
numbers of) agents on the same machine. Another objective is
to enable deployment, control, and monitoring using only the
command line (if needed), as in many complex deployments
most nodes (if not all) do not feature graphic terminals.

While the main application domain of this research is IoT
and the proposed architecture tries to deal primarily with
challenges in the Internet of Things [7], our intention is to
create a framework that can be also used in AmI, AAL,
vehicular networks, robot systems, and MAS simulation.

To this end, we propose a model that comprises two
elements:
• a generic, open architecture for multi-agent systems,

which enables a modular and lightweight implementation
and an easy deployment, both for pre-defined and for
application-specific entities.

• a means to quickly create and/or completely configure a
MAS deployment from the command line and/or using
an XML file, as well as control and monitor the MAS at
run-time from the command line.

We have named the implementation of this proposed model
FLASH-MAS, with “FLASH” being an acronym for “Fast
Lightweight Agent Shell”. The implementation, using the Java
language, is open-source and licensed under the GPLv35.

We have designed FLASH-MAS with the following princi-
ples in mind:
• the model should support the implementation and man-

agement of agents, the environment, artifacts, groups, and
organizations.

• the developer should only write the code for actual
functionality that he/she needs, with minimal overhead
related to deployment.

• the structure of entities offered by the deployment frame-
work (nodes – communication infrastructures – agents –
agent components) should only serve as a guideline and
the developer should be able to replace as much of it
as possible, both the implementation and the structural
elements themselves. For instance, the developer should

5FLASH-MAS implementation
(https://github.com/andreiolaru-ro/FLASH-MAS, accessed March 2019)

be able to implement the environment as an entity, or
compose the environment of several artifacts, as reactive
entities offereing services [8].

• the framework should respect the FIPA Message Structure
Specification [9] and, in the future, the FIPA Abstract
Architecture Specification [10].

• the framework must support a variety of communication
methods, such as TCP/IP, WebSockets6, HTTP-REST7,
publish-subscribe, etc.

• the framework should be deployable to a variety of com-
puting platforms, both powerful and resource-constrained.

• the model should attempt to fuse the speed of agent-
based simulation with the power of network-scale (and,
if possible, larger scale) distributed MAS deployments.

With such ambitious goals in mind, it is clear that development
of the FLASH-MAS platform and its associated model should
focus on the essential: being flexible and lightweight.

The paper continues with reviewing related work in the
field of MAS frameworks, followed by the presentation of
the proposed architecture for FLASH-MAS in Section III and
provided deployment tools in Section IV. Section V presents
a comparison between FLASH-MAS and other similar, popular
frameworks. The last section draws the conclusions.

II. RELATED WORK

Frameworks for multi-agent systems are generally directed
towards one of two goals: deployment as a distributed system
across the network, or local simulation of large numbers of
agents.

In the domain of agent development frameworks enabling
distributed deployment, we see two types of frameworks.
Some, such as Jade, Jiac, Jack and Jadex rely on Java agent
implementations and offer various functionalities and APIs for
agent management, communication and security, also helping
with the agent lifecycle by means of behaviors or similar
constructs. These are the frameworks most used for business
and industrial applications. Other frameworks, such as Jason,
Agent Factory and JaCaMo, rely on some agent-oriented
programming (AOP) language, usually Jason / AgentSpeak for
the implementation of agents, reasoning, and planning.

JADE [6] is by far the most popular agent development
framework. It is a powerful and easy to deploy and it offers
agent management, mobility, and communication for agents
implemented in Java. Its main disadvantage is performance
– for large numbers of agents, Jade becomes slow. The
development of FLASH-MAS has been inspired by Jade, by
means of previous iterations of the model – tATAmI-1 and
tATAmI-2 [11], [12].

Jadex [13] extends Jade agents with reasoning capabilities
(using a BDI model), agent components, and business-oriented
features. However, developing agents in Jadex requires com-
bining Java and XML in advanced specifications that may be

6WebSocket.org (https://tools.ietf.org/html/rfc6455, accessed March 2019)
7Representational State Transfer

(https://en.wikipedia.org/wiki/Representational state transfer, accessed
March 2019)

difficult to grasp by the agent developer. In our model we offer
a variety of means for specifying the elements in the agent
system, which are also suitable for less experienced users.

JACK Intelligent Agents [14] is a production-grade frame-
work for building BDI agents, building on the experience
of PRS [15] and dMARS [16]. It is very well suited for
building agent systems quickly and with relative ease, however
it does not feature the flexibility we are trying to offer in
choosing the messaging components, protocols, and concrete
agent implementations.

JIAC [17] is another production-grade framework for de-
veloping complex agent systems, on both workstations (JIAC-
V) and mobile/embedded devices (microJIAC). Its focus on
industrial applications, by offering features for security, man-
agement and scalability. However, its architecture is based
on the Java EE model, which restricts the possibilities of
implementation for agents, and also forces the use of some
particular base classes for agent components.

Siebog [18], is a Java EE-based framework in which agents
execute in the browser and communicate exclusively through
web protocols. The reliance on Java EE, however, implies a
high cost for the initial deployment and while communication
using web protocols supports an open, heterogeneous system,
it somewhat limits the deployment scenarios.

Jason [19] is based on AgentSpeak and is an AOP language
with its own special syntax to define goals, conditions, and
plans. Jason agents can be run on top of Jade when a
distributed setup is required. Jason is however constraining the
developer into a particular way of programming agents, which
some may find difficult to grasp, especially for developers not
familiar with agent theory. JaCaMo [5] is a framework that
combines the Jason programming language with the Moise
organizational model and with the CArtAgO artifact and
environment infrastructure. JaCaMo is probably one of the
most suited frameworks for deploying MAS, however creating
a JaCaMo deployment involves considerable work and requires
a great deal of background theoretical knowledge. Performing
even common agent-related tasks is not easy to do.

Agent Factory [20], together with its implementation for
mobile devices – Agent Factory Micro Edition, includes
flexibility for implementing agents in various programming
languages, but only contains development kits only for Jason-
based implementations, and development appears to have
stopped some time ago.

Abar et al survey a great number of frameworks for multi-
agent system simulation [21]. Such frameworks are directed
towards the domain of complex systems and support large
numbers of very agents. Since they handle simulation, gen-
erally all agents execute on the same machine or in a HPC
environment.

The most notable MAS simulation frameworks are RePast8

– with its flavors Repast Symphony and Repast HPC [22] –
and Aimpulse Spectrum9. An analysis only on the scalability

8The Repast Suite (https://repast.github.io/, accessed March 2019)
9Aimpulse Spectrum Developer page (https://developer.aimpulse.com,

accessed March 2019)

of various MAS frameworks, also in the context of the need
for simulating large numbers of agents, is done by Lorig et
al [23]. The difference between local simulation frameworks
and distributed deployment frameworks is shown, especially
when comparing Aimpulse Spectrum to Jade. Jade is very slow
because of its communication infrastructure, while Aimpulse
Spectrum is very fast, but does not support distributed deploy-
ments.

There are many agent-based implementations for IoT, both
for specific applications and also as middleware for IoT.
Many such implementations are based on Jade, thanks to Jade
offering FIPA compliance and being very popular.

The ACOSO (Agent-Oriented Cooperative Smart Objects)
Methodology specifies how to model IoT systems in an agent-
oriented manner [24]. The implementation, JACOSO is Jade-
based, showing that, although Jade is not the most adequate
framework for IoT, there are no alternatives. Moreover, since
Jade uses TCP/IP communication, the communication between
agents and between agents and sensors must be done in
different manners.

Calvaresi et al present another agent-based framework for
IoT. They show how the agent-oriented paradigm is adequate
for implementing heterogeneous systems as in the case of
IoT. The proposed implementation relies, again, on Jade, for
reasons of popularity and FIPA compliance.

The Sol agent platform [25] proposes a solution that is quite
close to our research, in that it allows the agent to commu-
nicate using various communication protocols, depending on
the sensors that devices need to communicate with or the
network used by the devices. It uses plugins for different
communication methods and modes and supports discovery,
management and directory services, as well as group mes-
saging. However, it appears that the configuration of the
communication infrastructure cannot be done dynamically, and
the inter-operation between different types of communication
must be done by specialized proxy agents.

Self-OSGi attempts to combine a BDI architecture with the
OSGi component standard, in order to ensure fault tolerance
and automatic reconfiguration [26]. This is related to our
initiative to include components (that we call shards) in
agents. However, our goal of creating a lightweight, portable
framework is not compatible with the heaviness of OSGi. We
also don’t need at this point the advanced features of automatic
reconfiguration offered by OSGi.

III. PROPOSED ARCHITECTURE

The proposed architecture is inspired by the concepts in
the Jade framework, but is focused on allowing the greatest
possible flexibility in implementing communication between
agents, agent components, and the agents themselves.

This means that the same system must be able to contain
agents communicating in a centralized manner by connecting
to a server through TCP/IP or WebSockets, or through proto-
cols allowing non-centralized communication [27], and even
agents communicating only locally with other agents. This

Figure 1. A graphical view on the relations between agents, agent shards, pylons, and nodes. Agents contain agent shards, which assist agents in connecting
to pylons. Pylons deployed across nodes for support infrastructures, ensuring communication and discovery services in the system.

must be done transparently to agents. The agent implemen-
tation must be the same even if the communication method
changes.

Similarly, the system must be able to support different
implementations for agents. This means that Jade agents could
co-exist with ad-hoc agents implemented in plain Java, and
with agents implemented using other agent development tools,
such as Jiac.

High flexibility means that some configuration is needed.
However, it is our intention that the effort to specify the
configuration must be proportional with the complexity of the
system itself, without the need to create complex deployment
files just to deploy a few agents.

The architecture of FLASH-MAS is centered on the concept
of Entity. An entity is a part of the system that exists
for a relatively long time during the system’s execution (is
persistent). All entities have some common features:
• an Entity has a Configuration, which is specified at

deployment of the system or at run-time;
• an Entity is loaded (instantiated) by a Loader, using the

given configuration; a default loader is offered, which just
instantiates the class of the entity;

• an Entity has a state, which can be running or not
running; the entity can be started and stopped;

• an Entity has a context within which it executes, which
is formed by a set of Entities which contain it;

• an Entity may have a name, which can be used to identify
it, but that is not mandatory.

The predefined entities are the following:
• Nodes – each machine that runs FLASH-MAS agents. The

nodes loads all other entities that run initially on that
node, and they execute in its context.

• Pylons – implementations for support services such as
communication, discovery, mobility, remote deployment,
etc. Different instances of the same type of pylon de-
ployed across the system form a support infrastructure
and are able to communicate with each other (e.g. a
WebSocket server and its clients, an underlying Jade
instance, etc). Each pylon executes in the context of a
node.

• Agents – entities that act autonomously according to the
implementation given by the developer. FLASH-MAS also
offers an implementation for agents – the Composite

Agent – which is composed of Agent Shards that process
and post events on an event queue10. Each agent executes
in the context of a node and zero, one, or several pylons.

• Agent Shards – for Composite Agents, components that
implement various features, such as messaging, mon-
itoring, control, mobility, etc. Each shard executes in
the context of an agent. Agent Shards can also be
used by non-Composite Agents in order to interact with
pylons. Agent shards are characterized by their designa-
tion, which indicates what services they can offer (e.g.
messaging, discovery, knowledge management, etc). The
designation is associated to the interface presented by the
shard to the agent.

Figure 1 shows the relations between entities in a system, and
how agents use shards in order to interact with the pylons
executing on the same node. Figure 2 shows how the various
entities in a FLASH-MAS deployment are organized, as an
UML diagram.

The essence of the FLASH-MAS architecture is the relation
between agents, shards, and pylons. For instance, let us take
the case of an agent A who wishes to use the services offered
by the support infrastructure S (e.g. a discovery service).
Agent A executes on node N , where there exists also a
pylon P belonging to support infrastructure S. In order to
use the services offered by the infrastructure, agent A must
include an agent shard C, which is specific to infrastructure
S. Implementation-wise, agent shard C is derived from an
abstract shard offering discovery services, so the actual im-
plementation of the agent does no change. Agent A must not
necessarily be implemented as a Composite Agent; it may have
any implementation, and can contain an instance of shard C
as a member. If we wish to change the support infrastructure
S with a different implementation S′, all that must be done,
from the perspective of agent A, is to replace the reference to
shard C with a reference to another instance C ′, with the same
designation and the same interface. The transition is seamless.

A FLASH-MAS deployment is organized as a hierarchy of
contexts.
• all nodes execute in the context of a virtual, network-scale

deployment;
• pylons execute in the context of the local node;

10For further details on Composite Agents, please consult our work on
tATAmI-2 [12].

Figure 2. UML diagram of a FLASH-MAS deployment, containing a virtual level and an actual level. Entities only exist (execute) at the local level, but
they belong to virtual structures which spread on multiple physical machines. While the entities are presented in the diagram as objects, they are actually
implementations of the respective interfaces (Node, Pylon, Agent, AgentShard).

• pylons belong to virtual, network-scale support infras-
tructures;

• agents execute in the context of one or more pylons (and,
by transitivity, in the context of the local node);

• agent shards execute in the context of agents (and, by
transitivity, in the context of their corresponding pylon).

In order for agents to load the appropriate shards at run-time,
the agent can ask the pylon (which is its context) which is the
recommended shard implementation for a specific designation,
and dynamically load the instance accordingly.

A. Interaction

There needs to be a standard API for each agent shard
designation that we wish to be dynamically and seamlessly
changeable, which all implementations need to respect. In
order to achieve that, several invariants exist.

First, all interaction between entities is done by means of
message-like structures called waves11. A wave has one or
more destinations, can contain elements of metadata, and has
a content. A wave is directly translatable to and easily readable
as plain text. The metadata in the wave is specified as key-
value pairs. A destination of the wave is a list of identifiers,
in which the first identifier is unique throughout the system
(e.g. the identifier of an agent), the second identifier is unique
inside the entity identified by the first, etc.

Messages are particular instances of waves. For instance,
if an agent agentA contains a shard monitoring, which
contains another application-specific module statistics (also
an entity), a message could be addressed just to agent agentA,

11Based on one of the meanings of the word wave, which is to use a hand
gesture towards to signal something to someone.

or it could be addressed directly to module statistics by
specifying agentA/monitoring/statistics as a destination.

Beside the use of waves for interactions, there are some
other invariants:
• all agents are identified by their name; agents are visible

to other communication infrastructures by prefixing the
name of the infrastructure to the name of the agent,
with a separator (in a manner similar to Jade). If the
infrastructure has no name, its agents (or other entities
therein) will not be visible to the outside.

• messages are addressed using the identifiers of agents;
messages have at least one destination and a content,
and can contain additional fields according to the FIPA
standard [9].

• discovery of services offered by agents or artifacts is
done (as specified by the FIPA standard [10]) by category
(functioning in a similar manner with shard designations),
and/or by name, and/or by specifying various key-value
pairs for relevant parameters.

B. Open System

The core feature of FLASH-MAS is flexibility, and what
differentiates it from other frameworks is how it tries as much
as possible not force the user into a particular architecture for
the implementation. As such, the set of entity types that can be
part of a deployment is open. While nodes, pylons and agents
need to exist, the developer is free to add other entity types,
such as artifacts, groups, or others.

Artifacts can be included in the system in a similar fashion
to agents, with the difference that they will not feature and pro-
active behavior. Integration with the system will be ensured by
adding messaging (or similar) shards to artifacts, so that they

<?xml version="1.0" encoding="UTF-8"?>
<deployment xmlns="http://flash.xqhs.net/deployment-schema" [...]>
<package>examples.composite</package>
<loader for="agent:composite"/>

<agent name="AgentA" kind="composite">
<shard name="messaging" />
<shard name="monitoring" classpath="MonitoringTestFeature" />

</agent>
<agent>
<parameter name="name" value="AgentB" />
<parameter name="kind" value="composite" />
<shard name="messaging" />
<shard name="monitoring" classpath="MonitoringTestFeature" />

</agent>
</deployment>

Figure 3. An example deployment file specifying two agents, both containing a messaging shard and a monitoring shard.

can receive messages (or other types of waves) from agents.
For developers that wish to see the environment as a whole, a
pylon representing the environment can be deployed on every
node, in the context of existing communication pylons, and as
a context of agents; each agent would feature a shard that
allows the agent to interact with the environment, through
actions and perceptions represented as waves.

Groups of agents (e.g. agent arrays or organizations) can
be included as entities in the context of pylons (and the
greater context of nodes), and as a context to agents. When
the deployment is loaded, it will be the job of the agent
array to load and configure the agents according to its own
rules. However, agents will continue to benefit from the
FLASH-MAS structure, by having access to the pylons in the
context of which they have been created. If we talk about
creating organizations, in the context of pylons supporting
communication, an additional layer of pylons can be created
that support the assignment of roles to agent and handle the
distributed aspect of the organization (such as communication
restrictions).

Some scenarios may need to include entities that are not able
to run FLASH-MAS agents at all. Examples include very simple
sensors needing gateways, or assistive robots with proprietary
software, communicating by means of ROS12. In these case,
special application-specific entities will need to be deployed
to interface with the devices. Although such entities need to
be built, they can be easily integrated into the deployment
and they can automatically have access to services offered by
support infrastructures, by means of the context mechanisms.

It is important to point out that any new entities can be
introduced without modifying the core code of the framework.
Their contextual placement is established by the deployment
configuration, and their implementation is loaded dynamically
based on their configuration parameters.

IV. DEPLOYMENT TOOLS

One of the main goals of FLASH-MAS is to be easy to
deploy for simple scenarios, but also allow the deployment of

12Robot Operating System
(https://en.wikipedia.org/wiki/Robot Operating System, accessed March
2019)

complex scenarios.
A deployment is specified by combining two structures:

an XML deployment file and command line arguments. Both
structures affect the same configuration, with command line
arguments taking precedence. An example deployment file is
specified in Figure 3. The deployment can be specified entirely
programmatically as well, through the use of a hierarchical
Multimap structure13.

Both the deployment file and the command line describe
the deployment as a hierarchy of contexts, containing the
descriptions of nodes, pylons, agents and shards and any other
needed entities. Each entity is configured using key-value
parameters. Only agents need to be explicitly specified. If no
nodes are specified, a default node is created, containing all
other entities in the deployment; if no pylons are specified,
the default support infrastructure is used, supporting only
communication inside the local node.

A complex system of class finding is used in order to
find the implementation of entities and then loading them
dynamically, using their type and name, without the need for
the developer to specify the classpath for each entity. The
developer may specify root packages where implementations
may be located. For instance, with the impl additional package
specified, the implementation for a Comp Agent will be
searched at the classpaths:

core.CompAgent, core.agent.CompAgent,
core.agent.comp.CompAgent, core.agent.comp.Agent,
impl.CompAgent, impl.agent.CompAgent,
impl.agent.comp.CompAgent, and impl.agent.comp.Agent.

CLI arguments ::= deployment-file? category-descr*

category-descr ::= ’-’ category element element-descr

element ::= kind ’:’ name | kind ’:’ | name

element-descr ::= (par ’:’ val | par)* category-descr*

Figure 4. The grammar of the FLASH-MAS command line.

Since the command line is linear, a hierarchical behavior is
obtained by “navigating” through the levels of the hierarchy.

13Multimap (https://en.wikipedia.org/wiki/Multimap, accessed March
2019)

The level is changed with every new category description (see
Figure 4. A category can be either a predefined name (such
as for the deployment itself, the deployment schema, etc) or
the name of an entity (predefined or new). If the category
is predefined, the level is switched to that category (which
can be below or above the current level); if the category is
not predefined, a new instance of that entity is created as a
subordinate of the current entity.

Entities can have a name, or a kind (a subtype of the entity,
e.g. composite agent), or both. Entities are configured through
parameters given as key-value pairs, although some parameters
may not need an actual value.

For example, a very simple deployment consisting of two
named Java agents can be obtained using only the command
line:
flash -package simple -agent agentA -agent agentB

A more complex deployment can be with the command line:
flash -loader agent:composite -pylon websocket:

server:ws.org -agent -shard messaging -shard

knowledge -pair state:initial

In the deployment described above, a Composite Agent
is launched in the context of a WebSocket pylon that has
its server at ws.org; the agent contains two shards: one
for messaging, as recommended by the pylon, and one for
knowledge management, with an initial knowledge item stating
that the agent is in its initial state.

The command line arguments can also complete the con-
figuration in the deployment file, identifying entities through
a combination of hierarchical navigation and name identifica-
tion. For instance, take the command line:

flash deployment.xml -package additional.goal

-agent agentA -shard goalOriented -goal survive(15,

seconds) -agent agentB -monitoring server:ws.org

In the example above, consider that file deployment.xml has
the content in Figure 3. The CLI arguments will add a package,
a shard for agentA (presumably from the added package) and
will set some configuration for the shard, and will also add a
new parameter value for the monitoring shard of agentB.

V. ELEMENTS OF COMPARISON

The purpose of FLASH-MAS is to provide a lightweight
framework for deploying flexible multi-agent systems in an
effortless manner.

In contrast with Jade, the intention is to easily change
the communication infrastructure that the agents use, without
changing the code of the agent. Moreover, more freedom is
allowed in implementing the agent, since agents only need to
define a method for receiving events from shards, as opposed
to working in a behavior-driven manner. While command-line
deployment is also possible in Jade, FLASH-MAS offers a more
powerful CLI and a complementary XML file.

In contrast with Java EE-based implementations, FLASH-
MAS offers more choice in how the system is organized. While
communication through web services is elegant and modern,
that can be covered in FLASH-MAS as well. WebSocket
communication is available in a centralized manner in which

a node is considered the server and all other pylons send
messages through that node. Moreover, pylons could each
deploy a lightweight web server and use a discovery algorithm
to locate the nodes for each agent. Several such algorithms
exist [27]. The goal of FLASH-MAS is also to use only plain
Java, even without an absolute need for reflection and dynamic
class loading, in order to support a great variety of platforms
with the same code.

In contrast with multi-agent simulation frameworks, we
attempt to offer an architecture and implementations that
enable a distributed deployment, on a heterogeneous system
(not in a HPC environment). However, the goal is to use
FLASH-MAS for fast simulation of many agents as well.
Since the communication method is not fixed, agents can also
communicate using local infrastructure offering immediate
message delivery. Moreover, although Composite Agents use
an event processing thread for each agent, the behavior that
is desired to be simulated can be easily embedded in agents
that are run sequentially by nodes. This is thanks to the fact
that the FLASH-MAS architecture does not force a particular
structure on the agents.

VI. CONCLUSION AND FUTURE WORK

This paper proposes an architecture for a multi-agent system
framework supporting a lightweight and effortless deployment
of systems which are open in terms of the types of entities that
can be part of the system.

The proposed architecture relies on a set of predefined
entities, with the possibility of introducing any number of
new entities just by specifying them in the deployment and
allowing the framework to locate their implementation. All
entities exist in the context of one another, allowing subor-
dinate entities to access the features offered by the entities
containing them.

The framework features a flexible, easy to use deployment
model, that can use both XML deployment files as well as the
CLI in order to specify the entire deployment of the system.

Future work consists of improved integration, implementa-
tion of additional features for the framework, such as mon-
itoring and remote control of entities, groups, organizations,
and artifacts. Experiments will be performed comparing the
performance of FLASH-MAS with that of other frameworks,
such as Jade, Jiac and Repast.

REFERENCES

[1] D. Tapia, A. Abraham, J. Corchado, and R. Alonso, “Agents and
ambient intelligence: case studies,” Journal of Ambient Intelligence and
Humanized Computing, vol. 1, no. 2, pp. 85–93, 2010.

[2] D. Calvaresi, M. Marinoni, A. Sturm, M. Schumacher, and G. Buttazzo,
“The challenge of real-time multi-agent systems for enabling iot and
cps,” in Proceedings of the international conference on web intelligence.
ACM, 2017, pp. 356–364.

[3] D. Calvaresi, D. Cesarini, P. Sernani, M. Marinoni, A. F. Dragoni, and
A. Sturm, “Exploring the ambient assisted living domain: a systematic
review,” Journal of Ambient Intelligence and Humanized Computing,
vol. 8, no. 2, pp. 239–257, 2017.

[4] T. Ogino, S. Kitagami, T. Suganuma, and N. Shiratori, “A multi-
agent based flexible iot edge computing architecture harmonizing its
control with cloud computing,” International Journal of Networking and
Computing, vol. 8, no. 2, pp. 218–239, 2018.

[5] O. Boissier, R. H. Bordini, J. F. Hübner, A. Ricci, and A. Santi,
“Multi-agent oriented programming with JaCaMo,” Science of Computer
Programming, vol. 78, no. 6, pp. 747–761, 2013.

[6] F. Bellifemine, A. Poggi, and G. Rimassa, “Developing multi-agent
systems with JADE,” Intelligent Agents VII Agent Theories Architectures
and Languages, pp. 42–47, 2001.

[7] A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and Q. Z. Sheng,
“Iot middleware: A survey on issues and enabling technologies,” IEEE
Internet of Things Journal, vol. 4, no. 1, pp. 1–20, 2017.

[8] A. Ricci, M. Viroli, and A. Omicini, “Give agents their artifacts: the a&a
approach for engineering working environments in mas,” in Proceedings
of the 6th international joint conference on Autonomous agents and
multiagent systems. ACM, 2007, p. 150.

[9] FIPA, “FIPA ACL message structure specification,” December 2002.
[Online]. Available: http://www.fipa.org/specs/fipa00061/SC00061G.
html

[10] ——, “FIPA abstract architecture specification,” December 2002.
[Online]. Available: http://fipa.org/specs/fipa00001/SC00001L.html

[11] A. Olaru, M.-T. Benea, A. El Fallah Seghrouchni, and A. M.
Florea, “tATAmI: A platform for the development and deployment
of agent-based ami applications,” in Proceedings of ANT-2015, the
6th International Conference on Ambient Systems, Networks and
Technologies, June 2-5, London, United Kingdom, ser. Procedia
Computer Science, E. Shakshuki, Ed., vol. 52. Elsevier, June 2015,
pp. 476–483. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1877050915008182

[12] A. Olaru, “tATAmI-2 – a flexible framework for modular agents,”
in Proceedings of AgTAmI 2015, the International Workshop on
Agent Technology for Ambient Intelligence, the 20th International
Conference on Control Systems and Computer Science, May 27-
29, Bucharest, Romania, I. Dumitrache, A. M. Florea, F. Pop,
and A. Dumitrascu, Eds., vol. 2. IEEE Computer Society, May
2015, pp. 703–710. [Online]. Available: http://ieeexplore.ieee.org/xpl/
articleDetails.jsp?arnumber=7168503

[13] L. Braubach and A. Pokahr, “Jadex active components framework-BDI
agents for disaster rescue coordination.” Software Agents, Agent Systems
and Their Applications, vol. 32, pp. 57–84, 2012.

[14] N. Howden, R. Rönnquist, A. Hodgson, and A. Lucas, “Jack intelli-
gent agents-summary of an agent infrastructure,” in 5th International
conference on autonomous agents, 2001.

[15] M. P. Georgeff and A. L. Lansky, “Reactive reasoning and planning.”
in AAAI, vol. 87, 1987, pp. 677–682.

[16] M. d’Inverno, M. Luck, M. Georgeff, D. Kinny, and M. Wooldridge,
“The dMARS architecture: A specification of the distributed multi-agent
reasoning system,” Autonomous Agents and Multi-Agent Systems, vol. 9,
no. 1-2, pp. 5–53, 2004.

[17] M. Lützenberger, T. Küster, T. Konnerth, A. Thiele, N. Masuch,
A. Heßler, J. Keiser, M. Burkhardt, S. Kaiser, and S. Albayrak, “JIAC
V: A MAS framework for industrial applications,” in Proceedings of
the 2013 international conference on Autonomous agents and multi-
agent systems. International Foundation for Autonomous Agents and
Multiagent Systems, 2013, pp. 1189–1190.

[18] D. Mitrović, M. Ivanović, M. Vidaković, and Z. Budimac, “A scalable
distributed architecture for web-based software agents,” in Computa-
tional Collective Intelligence. Springer, 2015, pp. 67–76.

[19] R. H. Bordini, J. F. Hübner, and M. Wooldridge, Programming multi-
agent systems in AgentSpeak using Jason. John Wiley & Sons, 2007,
vol. 8.

[20] S. Russell, H. Jordan, G. M. O’Hare, and R. W. Collier, “Agent factory:
a framework for prototyping logic-based AOP languages,” in Multiagent
System Technologies. Springer, 2011, pp. 125–136.

[21] S. Abar, G. K. Theodoropoulos, P. Lemarinier, and G. M. O’Hare,
“Agent based modelling and simulation tools: a review of the state-of-art
software,” Computer Science Review, vol. 24, pp. 13–33, 2017.

[22] N. Collier and M. North, “Repast hpc: A platform for large-scale
agentbased modeling,” Large-Scale Computing Techniques for Complex
System Simulations, pp. 81–110, 2011.

[23] F. Lorig, N. Dammenhayn, D.-J. Müller, and I. J. Timm, “Measuring
and comparing scalability of agent-based simulation frameworks,” in
German Conference on Multiagent System Technologies. Springer,
2015, pp. 42–60.

[24] G. Fortino, W. Russo, C. Savaglio, W. Shen, and M. Zhou, “Agent-
oriented cooperative smart objects: From iot system design to implemen-

tation,” IEEE Transactions on Systems, Man, and Cybernetics: Systems,
no. 99, pp. 1–18, 2017.

[25] I. Ayala, M. Amor, and L. Fuentes, “The sol agent platform: Enabling
group communication and interoperability of self-configuring agents
in the internet of things,” Journal of Ambient Intelligence and Smart
Environments, vol. 7, no. 2, pp. 243–269, 2015.

[26] M. Dragone, “Component & service-based agent systems: Self-OSGi,”
in ICAART 2012 - Proceedings of the 4th International Conference
on Agents and Artificial Intelligence, Volume 1 - Artificial Intelligence,
Vilamoura, Algarve, Portugal, 6-8 February, 2012. Citeseer, 2012, pp.
200–210.

[27] A. Rawat, R. Sushil, and L. Sharm, “Mobile agent communication
protocols: a comparative study,” in Computational Intelligence in Data
Mining-Volume 1. Springer, 2015, pp. 131–141.

