
Towards Enabling Context-as-a-Service for Social
Assistive Robotics

Alexandru Sorici
University Politehnica of Bucharest

Bucharest, Romania
alexandru.sorici@cs.pub.ro

Andrei Olaru
University Politehnica of Bucharest

Bucharest, Romania
cs@andreiolaru.ro

Stelian Flonta
Technical University of Cluj-Napoca

Cluj-Napoca, Romania
Stelian.Flonta@aut.utcluj.ro

Enyedi Szilard
Technical University of Cluj-Napoca

Cluj-Napoca, Romania
Szilard.Enyedi@aut.utcluj.ro

Adina Florea
University Politehnica of Bucharest

Bucharest, Romania
adina.florea@cs.pub.ro

Abstract—Integrating assistive robots into global-scale man-
agement systems comes with a number of challenges and re-
quirements which are pervasive to all applications enabling
context-awareness. We argue that the hypermedia model and
the agent-oriented paradigm help achieve the vision of Context-
as-a-Service.

We categorize challenges according to context processing
concerns and use a scenario to exemplify how the proposed archi-
tectural principles help overcome the challenges. A security model
is presented, enabling the correct management of information in
a hierarchy of agents.

Index Terms—context management, context-awareness,
context-as-a-service, hypermedia, software agents, social robotics

I. INTRODUCTION

The observation of an exponential increase of internet-
connected sensors and actuators has been a continuous remark
for the past decade in the Internet-of-Things (IoT) community,
as well as at the level of the everyday consumer of internet-
enabled services. While true in terms of the increase of
devices, the global-scale exploitation of the wealth of data
brought forth by such devices still trends much behind.

Some of the most active and promoted domains of interest
that make use of consumer-oriented IoT devices relate to
Ambient Intelligence (AmI). Notable examples include smart
environments (e.g. intelligent homes, offices or public venues),
as well as eHealth. Active and Assisted Living (AAL) is, in
the context of the steep rise of the elderly population, a much
needed and well financed research and development domain
which sees the use and interplay of many IoT devices and
related technologies.

From the perspective of human computer interaction in AmI
applications, a recent and growing trend is that of robotic

This research was supported by grant PN-III-P1-1.2-PCCDI-2017-0734.
1The final publication can be found on IEEE Xplore

A. Sorici, A. Olaru, S. Fonta, E. Szilard and A. M. Florea, Towards Enabling
Context-as-a-Service for Social Assistive Robotics, 2019 22nd International
Conference on Control Systems and Computer Science (CSCS), Bucharest,
Romania, 2019, pp. 228-235, doi: 10.1109/CSCS.2019.00045.
https://ieeexplore.ieee.org/document/8745138

interfaces. Social Assistive Robotics [1], in particular, refers
to robots that are meant to assist people in a manner that fo-
cuses on social interactions (e.g. speaking, guiding, reminding,
observing, entertaining). For the social interaction between
human and robot, awareness of the surrounding medium and
the current user activity or preferences are required on the part
of the robot. As such, social assistive robotics applications fall
under the category of consumers that need to interface with
the IoT devices that are present in the smart environment.

While there has been steady progress in developing AmI
applications, the vision held by the ISTAG group in its
proposed scenarios [2], back in 2001, where IoT and Ambient
Intelligence (AmI) meet, is still far from reach.

In the Maria scenario [2], for example, a single personal
assistant, running on a smartphone, handles interactions with
transportation, security, communication and smart home sys-
tems. The complexity of these interactions comes from the
need to continuously and seamlessly switch between different
contexts.

Context “is any information that can be used to characterize
the situation of an entity. An entity is a person, place, or
object that is considered relevant to the interaction between
a user and an application, including the user and applications
themselves” [3]. Another definition [4] states that context is
the dressing of a focus, separating the focus of the user or
the application from the “dressing” – data which is not vital,
but which can improve reasoning on the focus. While these
definitions look general, they also offer an explanation for the
complexity of deploying the Maria scenario.

In a smart environment application, user focus may change
rapidly from the current activity at home or at the work-
place, to finding the nearest restaurant conforming to personal
preferences given current position on a road, or to moni-
toring personal health parameters. The consumer of context
is mobile and changes focus quickly, while the means to
derive the required high-level context information may in-
volve data-driven algorithms (machine-learned data), along-
side knowledge-driven heuristics.

https://ieeexplore.ieee.org/document/8745138

For a social robot that caters to a group of users (e.g. as
guide in an office building, museum or exhibition venue), the
change in its own context (e.g. the room it is in, the exhibition
item next to which it is placed), as well as that of the users it is
helping, is an essential element that needs constant monitoring.

When discussing the use of IoT devices for context-
awareness in smart environments, a recent model of gaining
access to the data of such devices is that of Sensing-as-a-
Service [5]. The model tackles the issue of siloed systems,
proposing the existence of several stakeholders: the sensor
owner (e.g. an individual person, a state or a private or-
ganization), the sensor publishers (organizations implement-
ing means for sensor data collection), the extended service
providers (organizations that bring added value by analyzing
and aggregating sensor data) and the final consumer.

The sensing-as-a-service vision carries with it implicit non-
functional requirements for openness and scalability, since the
model allows for and encourages organizations to play several
of the mentioned roles at once, thus leading to the development
of context prosumers (producer and consumer at the same
time).

From a context management perspective, implementing the
sensing-as-a-service model, as well as the ISTAG vision for
AmI, brings about a number of challenges, which we group
along the main functionality aspects of context management.

Representation and Reasoning. At global scale, a single
context model or reasoning/inference technology cannot be
expected for all application domains [6]. Mechanisms that
facilitate conversion from one model to another, as well as
on-demand execution of various context processing procedures
have to be considered.

Context Provisioning. This perspective focuses on how
context information is supplied to services that can add value
to raw data through inference. The challenge in AmI and
sensing-as-a-service lies in the fact that the input base can no
longer be considered static. A means to search for and select
the most appropriate/available context sources required for a
consumer request is needed [7]. Furthermore, the information
push behavior of a context producer must be controllable (e.g.
altering frequency of updates or sending only on-change),
while from a security perspective, the producer must possess
means to perform access control.

Query and Dissemination. The large-scale nature of
sensing-as-a-service and pervasive AmI means that there must
be a means to handle queries/subscriptions with a large se-
lection base. Handling of frequently overlapping queries, as
well as result caching should be enabled where appropriate.
Another challenge comes from the principle that context
information should be consumed as close as possible to its
production source, thereby increasing the chance of relevance.
An organizational scheme is needed that facilitates local
consumption of context information, while at the same time
enabling a structured dissemination of context information for
remote consumers.

Context Service Deployment. The challenge from the
deployment perspective is to find the means to facilitate

scalability, search and discoverability of context management
services. An organizational scheme that facilitates a single
entry-point for all context life cycle entities (producers, proces-
sors, consumers) is required. The deployment structure must
address mobility of context consumers and, more importantly,
the shift in their focus, which brings a change in the necessary
context information.

Compounded with these core issues are two additional
concerns which we want to address in this paper. One relates to
the means by which a social robot is integrated as a consumer
of a Context Management Service and how the information it
gathers from the service is used in its internal reasoning cycle.
The second one relates to the issue of privacy and control of
access to sensitive context information (e.g. the location of a
user, the availability status), which is of importance especially
when such information is made available to autonomous
robotic platforms.

The hypermedia model is an appropriate architecture for
such systems, ensuring the development of open, scalable and
evolvable systems, which answer well to the presented chal-
lenges. Moreover, the agent-oriented paradigm helps moving
the development focus from a system-wide perspective to one
that is centered on individual entities.

In Section II we explain why existing work towards con-
text management middleware does not currently fulfill the
requirements listed previously. Section III details our argument
that the fundamental engineering techniques that sustain the
Web (e.g. hypermedia-driven interactions, RESTful [8] pro-
tocols, knowledge graphs, publish/subscribe mechanisms) can
be coupled with the organizational and behavioral principles
stemming from the Multi-Agent System (MAS) literature
to obtain architectural specifications for Context-as-a-Service
(CaaS) systems supporting application areas as large-scale as
AmI and Sensing-as-a-Service. We further discuss how social
robots can act as both producers and consumers of context
information in CaaS systems. In Section IV we describe a
method for context encryption/decryption in a deployment
that follows a hierarchical distribution of context management
elements. Finally, section V concludes the paper.

II. RELATED WORK

Recent survey papers [6], [9], [10] perform a good review
of several of the existing context management middleware.
While each solution covers many aspects that are essential for
the implementation of a context management life cycle, most
of the existing proposals either focus on specializing for a
particular application domain (e.g. SeCoMan [11] – location,
CoCaMAAL [12] – eHealth), or on the engineering effort for
one of the focus requirements outlined in the introduction.
CA4IOT [7], for example, defines an architecture and a
reasoning process that enables a context-aware selection of the
best sensors, with respect to a complex user query. It thereby
offers a reference regarding the challenge of managing a large
selection base for context input. However, the middleware
focuses mostly on this aspect and the application scenario was
limited to the domain of smart agriculture.

CONSERT [13] is a context middleware that uses the multi-
agent programming paradigm to design autonomous manage-
ment for each of the context life cycle entities. It further
proposes a deployment mechanism that follows an explicit
organizational scheme, which uses Context Dimensions (well-
defined focus points of a consumer that dominate the rest
of the perceived context information - e.g. location, activity,
role in an organization) to connect the different instances of
context agents. While conceptually it answers to the chal-
lenges enumerated under the query/dissemination and service
deployment categories, it does not meet the requirements for
context provisioning and multi-modal, on-demand reasoning
capabilities. Furthermore, the middleware has not undergone
any real-world scenario validation.

FIWARE1 is an open-source cloud platform aiming to
provide reliable means for developing open, collaborative
and mature ecosystems of smart, context-aware, internet-scale
applications. It comes close to the set of requirements outlined
in the introduction.

The context management reference architecture of FI-
WARE2 is based on the interaction between key Generic
Enablers (GE) that facilitate the development of a context
processing pipeline. The central element is the Context Broker
GE, which defines the context model and allows for context
information storage, update and look-up. The Context Broker
can be connected to a series of other GEs which complement
its functionality. An IoT Broker plays the role of an intermedi-
ary between raw information coming from IoT devices and the
Context Broker where the information needs to be stored. To
facilitate discovery of IoT devices and their capabilities, each
IoT Broker communicates with an IoT Discovery GE. Short
term reasoning and long term analysis of context events are
enabled by the connection of the Context Broker to Complex
Event Processing and Big Data Analysis GEs respectively.

A core feature of the FIWARE platform is its reliance on
web-based standards for enabling the communication between
GEs. The Open Mobile Alliance (OMA) NGSI-9 and NGSI-
10 [14] are two specifications for RESTful interaction proto-
cols that define means to semantically describe the capabilities
of IoT devices (NGSI-9) and the exchange of context content
itself (e.g. publishing, updating, querying – through NGSI-10).

The modular, GE-based architecture of FIWARE and its
standardized communication interfaces render it a good can-
didate for the requirements presented in the introduction. In
a demo implementation3 the federation of several Context
Broker GEs is showcased, exemplifying how both aggregation
and load balancing of context information can be enabled.

However, while the structural elements are there, the FI-
WARE platform proposes no conceptual means of organizing
the connection of its GEs, so as to enable large-scale, auto-
mated discoverability and dissemination of information. The
Context Broker interconnection has to be manually specified

1FIWARE (https://www.fiware.org/, https://www.fiware.org/developers/
catalogue/)

2FIWARE Context Management Architecture (https://goo.gl/Yvwv5A)
3FIWARE Lab Demo Platform (https://goo.gl/CbzMyt)

and is predefined at development time. Furthermore, the exist-
ing Context Broker implementation does not handle complex
(composite) query execution, nor can the Complext Event
Processing GE manage on-demand context reasoning.

Nonetheless, the takeaway point of FIWARE is that the
defined RESTful interfaces contain in their specification the
potential to enable all the types of interaction outlined as
required. Either upgrading the existing GEs, or delivering fresh
implementations compatible with the NGSI-9 and NGSI-10
specifications has the potential to overcome the challenges.

In the field of social robotics, there are already projects
that look to enable context-aware decision making of the
robotic units. Many among these [15], [16] are looking into
Human Activity Recognition to better understand the current
context of the user(s) the robot is supposed to help. With
respect to this, the robots act as context producers. However,
the STRANDS project [16], for example, is looking into
building systems that enable long-term autonomy of social
robots. Ensuring the context-awareness (from both consumer
and producer perspectives) of a mobile robotic unit is therefore
essential for such a goal (being aware of both its environment,
as well as the state of the users therein).

III. HYPERMEDIA-DRIVEN CAAS
While the exact mechanisms and methods for context man-

agement are highly application-dependent, the multitude of
entities and stakeholders in a global-scale system for the man-
agement of context information requires a suitable underlying
architecture, which can answer to the outlined challenges and
also fulfill the non-functional requirements of openness and
scalability.

In the following we first lay out a set of architectural
principles that have their grounding in the technologies that
support the Web. We then enter into more details regarding
proposed deployment and query handling mechanisms. The
latter permits us to further explain how social robots are inte-
grated as consumers of CaaS services, while also considering
access control methods.

A. Architectural principles
The purpose of this architectural specification is to lead

to the development of systems that support a large-scale
Context-as-a-Service (CaaS) view, where context management
can be offloaded to a network of context life cycle entities,
each working under its own policy on context production,
reasoning, or query management/dissemination.

Such an underlying architecture is the resource-oriented
model of the Web and the hypermedia-driven interactions it
supports (using the HTTP protocol), which we believe would
contribute greatly to the implementation of the CaaS paradigm.
Moreover, the agent-oriented paradigm can contribute to mod-
eling individual entities in the CaaS ecosystem, by focusing on
a perspective centered on individual participants, rather than
on the system as a whole.

Hypermedia underpins the World Wide Web as a network
of uniquely identifiable (by means of URIs) resources inter-
connected through web services. However, to truly exploit the

https://www.fiware.org/
https://www.fiware.org/developers/catalogue/
https://www.fiware.org/developers/catalogue/
https://goo.gl/Yvwv5A
https://goo.gl/CbzMyt

Fig. 1. An example of context management services enabling a scenario in which a social robot is both a producer of activity information and a consumer
of information regarding warnings in its current enclosed space. The personal agent gathers activity information and environmental data to issue warnings
about potential dehydration. Temperature readings are also used for the temperature control of the building.

resource-oriented nature for the modeling of context process-
ing entities, their state (e.g. context production capabilities,
query subscription results, active reasoning mechanisms) has
to be explicitly (semantically) described and the means to
change their state should be clearly identifiable, following
the principle of hypermedia as the engine of application state
(HATEOAS).

In terms of the context service deployment challenges, the
use of a hypermedia environment and RESTful [8] interac-
tions is not sufficient on its own to facilitate discoverability
and efficient search / query propagation. In the architectural
specification we envision, context life cycle entities must have
a structured means by which to determine their required
connections. We draw inspiration from the vision of Socio-
Technical Networks (STNs) [17] and the proposed deployment
organization scheme of CONSERT [13]. All URIs referring to
connections between entities of an STN are typed relations,
meaning that there is a clear semantic attached to them (e.g.
ownership, membership, collocation). In CONSERT, Context
Dimensions and Context Domains are concepts defining key
properties and values that relate a context consumer to context
sources that might be of interest to his current focus. They
furthermore help organize the space of deployed context life
cycle entities into a tree-like hierarchy, which facilitates their
management and indicates clearly the context sub-model of
which they are responsible.

In the example from Figure 1, where an elderly person,
living in a care facility, is performing a physical exercise
(workout) session in a room, there are two dimensions of
context distinguishable: a spatial one and an activity-based
one. From the spatial perspective, the 〈building manager〉
keeps track of a hierarchy of two domains – particular rooms,
which are 〈includedIn〉 the building and where the two
elderly users reside.

In our example, the care facility owns a 〈social robot〉,
which is able to monitor the users (e.g. detect a defined set of
activities carried out by a person, based on the robot’s video
input), as well as notify them verbally about specific events
(e.g. a warning regarding their health state, a reminder for
medication intake). In the context model, an activity has a
place where it is carried out, a relation which is modelled
semantically and explicitly by both the robot (which acts as
a context producer by detecting the activity and where it
is carried out), as well as the 〈personal agent〉 (which
acts as a context consumer) on behalf of the user. By this
relation, the 〈personal agent〉 is able to use a discovery
mechanism through which it looks explicitly for a context
processor responsible for the space in which the workout
activity takes place. The 〈personal agent〉 is then able to
launch a query for the current temperature in the room. The
result of this query is forwarded to the 〈workout activity

manager〉, where this context processor uses it, together with
data from the 〈smart watch〉, to infer whether the user is
subject to dehydration or not. In case the user is dehydrated
the 〈personal agent〉 looks for means to inform the user of
this fact. The agent knows that the 〈smartphone〉 on which
it runs can notify the user through a text message. However,
since being engaged in a workout activity means the user
might not have the phone with them, the 〈personal agent〉
queries the 〈room〉 (and if needed, the 〈building manager〉)
for context information about entities having the capability to
notify the user verbally. Since the 〈social robot〉 publishes
such a capability and is currently in the room, the 〈personal
agent〉 opts to use the robot for notifying the user about
drinking some water.

The critical observation regarding the deployment perspec-
tive in the given example is that the 〈personal agent〉
is or becomes aware of two Context Domains (the jogging

activity and the agricultural field location) and is able to
connect to the relevant context processors to retrieve context
that ”dresses” the current focus of the user (his well-being
while working out). This is made possible by the explicit,
typed spatial inclusion and current activity relations which
relate the 〈personal agent〉 with the 〈workout activity

manager〉 / 〈building manager〉. The physical runtime of
the latter is not important (it may be a cloud-based deployment
or a local server arrangement) as long as the typed relations
enable discovery / search of the relevant URIs.

From a query / dissemination perspective, a Context
Dimension-based organization of context processors facilitates
query routing. In our example, a manner of handling queries
similar to the one described by Mayer et al. [18] is proposed.
Both the smart thermostat and the personal agent subscribe for
temperature updates to the 〈building manager〉 processor.
Being mobile consumers, they will request temperature up-
dates for given locations (rooms) within the building. If tem-
perature analysis is managed by different processors, queries
sent to the processor for the entire building must be routed
to the one corresponding to current consumer location. The
Context Dimension / Context Domain based organization of
the processors enables the same type of query routing mech-
anism as described in [18] (including Context Domain-based
range queries). Furthermore, modeling a subscription query for
temperature updates as a web resource, identifiable by a URI,
enables incremental updates of the answers, load-balancing
through web-based publish/subscribe implementations (e.g.
WebSub4), as well as the use of caching mechanisms, since
it is expected that temperature updates will be given on an
on-change basis, rather then on a time-based one.

An agent-oriented view of the context life cycle elements
in our example is of relevance from the context provisioning
perspective. Software agents are entities that are able to act
autonomously in their environment in order to achieve or
maintain their goals. Among the main features of agents that
are part of a multi-agent system are autonomy, reactivity, pro-
activity and social interaction.

The owner of the care facility is the one that deployed the
temperature sensors and the 〈building manager〉 and 〈room
manager〉 processor(s) which analyze the temperature. The
〈personal agent〉 may be able to discover the existence of
the processors but this may not guarantee that he has the right
to access their information. This use case can be viewed as a
sensing-as-a-service instance, where the 〈building / room

manager〉 is an extended service provider and the 〈personal
agent〉 a final consumer. If we model/design the life cycle
entities as agents, then access to the temperature data can
be subject to an automated, agent based negotiation. The
〈building / room manager〉 processor can make use of
goal-based policies, that require it to, for example, accept
query requests only for a specific user activity context, such
as the workout one. Apart from a semantics based access
control, the web-based environment of the context processor

4WebSub W3C Recommendation (https://www.w3.org/TR/websub/)

agents enables them to make use of existing techniques for
authentication and authorization.

The agent-oriented view is suitable for the multi-modal and
on-demand context reasoning perspective as well. In our
example, the 〈workout activity〉 processor may by default
provide reasoning methods for user well-being analysis based
on smart-watch data alone. When the 〈personal agent〉 is
able to access additional room temperature information, it may
request that the 〈workout activity〉 processor executes
a knowledge-driven heuristic that includes temperature data
alongside the previous smartwatch information to gauge the
well-being state. Since such interactions between the consumer
and processor context entities resemble a service request, more
than a state change for the processor, technologies such as
gRPC5 can be used to enable them.

B. Deployment and Query mechanism

Social robots are expected to be able to interface with many
IoT devices and to obtain the context information that is
relevant to the current or an expected future user situation.
For example, if the robot detects that the user is engaged
in a form of physical exercises at home, it is convenient for
it to be able to automatically subscribe to sources providing
context information for relevant health and home monitoring
parameters (e.g. heart rate, room temperature) such that it may
proactively offer notifications or warnings to the user while he
is carrying out the exercises.

Deployment. To this end, facilitation of context information
discovery is an important concern, because it is expected that
there will be many social robot types and many sources for
health and home monitoring information.

We discussed previously that a structured organization of
context information by means of typed relations is a necessary
step to enable discovery, navigation and access control. To
achieve this, we propose an explicit indexing mechanism based
on the Context Dimension and Context Domain organization
elements considered in [13]. All context life cycle entities
are indexed under one or more Context Domains, that are
structured along a Context Dimension. If no such index is
provided, then the information provided / managed by the
context life cycle entities is considered to be part of the all

Context Domain.
In the example in Figure 1 there are three relevant Context

Dimensions which relate to the spatial localization and their
current activity, as well as to the maintenance activity carried
out by the smart thermostat in the building. Consider the
dimensions defined by the properties locatedIn(User,

EnclosedSpace), engagedIn(User, Activity) and
engagedIn(Application, MaintenanceActivity).
Four Context Domains are defined based on these dimensions:
an instance of Activity (Workout) for the user, an instance
of MaintenanceActivity for the smart thermostat and two
instances of EnclosedSpace, the FacilityRooms in which
the users are located.

5gRPC open-source universal RPC framework (https://grpc.io)

https://www.w3.org/TR/websub/

In keeping with the sensing-as-a-service principle, the
owner of the temperature sensors can define under which
Context Dimensions and Context Domains the informa-
tion can be indexed. The indexing can be performed
explicitly, or it may be inferred based on other exist-
ing typed relations. For example, assume sensor infor-
mation is initially submitted to the 〈building manager〉
processor based on a ownedBy(Sensor, SensorOwner)

Context Dimension, where the SensorOwner is a sub-
class of User. If there exists then context informa-
tion that states that managesActivity(SensorOwner,

TemperatureMgmt), the reasoning policy of the 〈building
manager〉 can lead it to infer that this information may
be forwarded to all consumers who define an interest in
the engagedIn(Application, MaintenanceAcitivty),
where the Context Domain for the MaintenanceActivity is
defined by the TemperatureMgmt instance. A complete dis-
cussion of this mechanism is however out of the scope of this
paper.

The essential part of the indexing mechanism is that context
information comes clearly defined with a scope in which it
is considered as relevant (e.g. temperature information for a
person near a agricultural field only becomes relevant if the
person is engaged in a workout activity). It furthermore means
that, using Context Dimensions and Context Domains con-
sumers can automatically search and find which information is
available/relevant given the situation of the users who employ
those context consumers.

Querying. The organization of context information in
a structured manner allows exploitation of more efficient
query/dissemination mechanisms, as well. In [19] we men-
tion that Context Domains can, by default, be exploited
in a flat structure (i.e. as different instances of the ob-
ject part of a Context Dimension). However, if the Con-
text Domains have relations which favor the construc-
tion of a hierarchy (e.g. includedIn(EnclosedSpace,

EnclosedSpace), partOf(Activity, Activity)) then
the ensuing organizational structure can be exploited in terms
of dissemination and querying.

In Figure 2 an example of a Context Domain hier-
archy based on the locatedIn(User, EnclosedSpace)

Context Dimension is presented. The object part of the
Context Dimension allows for the existence of a hi-
erarchy inducing relation (includedIn(EnclosedSpace,
EnclosedSpace). The latter is used to define the relationship
between the Context Domain instances.

In compliance with the locality principles for context in-
formation consumption, a hierarchical organization allows
a child 〈context processor〉 to forward information it
receives to its parent, but not the other way around. In
so doing, a type of granularity of the disseminated context
information can be obtained. For example, a consumer who is
subscribed to the 〈context processor〉 of an instance of a
CareFacility may obtain information about the localization
of people at the level of the building, as opposed to individual
FacilityRooms (i.e. know if someone is in the building, but

Fig. 2. Context Domain hierarchy example showing the Context Dimension
and the relation that induces the hierarchy. Notice the subclassOf relation
that may exist in between different levels of the hierarchy

not in which room).
From a query/subscription perspective, the Context Domain

hierarchy enables both exact domain, as well as domain range
queries [19]. This mechanism is similar to the one described
in [18]. A query can have a scope from which it expects
to receive an answer. In exact domain queries the scope is
defined by a single Context Domain (e.g. the Domain_3_0

FacilityRoom). In a domain range query, the scope has
upper and lower bounds, expressed in terms of the existing
Context Domain hierarchy (e.g. any temperature information
collected in between Domain_0 and Domain_3_0). Note that
domain ranges may be expressed between individual instances,
as well as between the types of the instances (thereby increas-
ing the range).

C. Social Robots as CaaS Prosumers

In our example, the social robot is the perfect example of a
context prosumer, i.e. acting as both consumer and producer
of context information. From the production perspective, we
distinguish two types of context information. On the one hand,
the robot acts as mobile sensor, which is able to detect actions
and activities of a user by means of analyzing the video feed
it receives. That is, the robot provides context information
characterizing an external entity (the user). On the other hand,
the robot provides context information characterizing itself, in
the form of the capabilities that it has, such as being able to
deliver voice notifications.

As a context consumer, the robot uses knowledge that the
user it supervises has a new context focus (that of the work-
out, expressed through the 〈engagedIn(User, Activity〉
Context Dimension), such that it can now search for and sub-
scribe to context information indexed under the corresponding
Context Dimension and Context Domain.

It is worth noting that, from a technical perspective, the
integration of a social robot as a context prosumer is not dif-
ficult if the CaaS system with which it is being integrated fol-

lows the hypermedia-oriented architectural principles outlined
previously. The reason is that all modern high-level robotics
frameworks contain libraries that facilitate communication
over the web. The challenge from the robotics perspective is
to facilitate the integration of context information as events
that affect the robot reasoning life cycle. With respect to this,
modeling the robot itself as an agent (more precisely, as a
BDI [20] agent) presents an advantage, as the BDI paradigm
specifically installs a reasoning life cycle where events alter
the beliefs of the agent or inform the selection of the next
action/decision to take.

IV. ACCESS CONTROLLED CONTEXT DISSEMINATION

In a complex context management system, it is necessary
that sensitive, personal or personally identifiable information
6 is only accessible to the indented recipients. For instance,
in the scenario illustrated in Figure 1, the user in the room to
the right (say, user A) will only want its activity data to be
available to the user in the room to the left (say, user B), only
if user A has explicitly permitted it. Otherwise, even if the
data may circulate in the system (e.g. for routing purposes),
it must not be readable for unauthorized entities.

Since many Context Dimensions are naturally hierarchical
(such as spatial or activity-related context), an agent hierarchy
is adequate for organizing a context-aware system [21].

In order to protect the context information managed by the
agents, the data can be encrypted with partial keys, by that
agent, with its own key. Although the agents have the means
of communicating with each other, neither of them can decrypt
the data belonging to the others, since the key that one agent
possesses can decrypt only its own data. However, a node at
a higher level can access the data of its “subordinate” agents
and can decipher them with its own key, without needing all
the partial keys from the subordinate agents.

Function trees. A function tree, where the nodes are
functions, can be generated starting from a function of multiple
variables. In the following, we will describe an algorithm for
generating a function tree.

We choose the numbers p1, p2, . . . , pl ∈ N∗, for each
k ∈ {1, 2, . . . , l} and we define the sets: Dk

def
= 1, pl

def
=

{1, 2, . . . , pk}. Additionally, for each k ∈ {1, 2, .., l} we
choose the functions gk : N∗ → N∗. Let A be a finite cyclical
group (Zq , •) . If x1, x2, . . . , xl ∈ A distinct elements, we
define the functions like so:
F 0 : D1 ×D2 × . . . Dl → A
F 0 (m1, m2, . . . ,ml) = x1

g1(m1)x2
g2(m2) . . . x1

gl(ml)

F 1
s1 : D2 ×D3 × . . . Dl → A

F 1
s1 (m2, . . . ,ml) = F

0
(s1, m2, . . . ,ml),

where s1 ∈ D1

F 2
s1,s2

: D3 ×D4 × . . . Dl → A

F 2
s1,s2

(m3, . . . ,ml) = F
0
(s1, s2, . . . ,ml),

where s1 ∈ D1, s2 ∈ D2

F 3
s1,s2,s3 : D4 ×D5 × . . . Dl → A

6PII(https://en.wikipedia.org/wiki/Personally identifiable information)

F 3
s1,s2,s3

(m4, . . . ,ml) = F
0
(s1, s2, s3, . . . ,ml),

where s1 ∈ D1, s2 ∈ D2, s3 ∈ D3

. . .
F l−1
s1,s2,s3...sl−1

: Dl → A

F l−1
s1,s2,s3...sl−1

(ml) = F
0
(s1, s2, s3, . . . , sl−1,ml),

where s1 ∈ D1, s2 ∈ D2, s3 ∈ D3,.., sl−1 ∈ Dl−1

Finally, we get the following values that are elements of A:
F l
s1,s2,s3...sl

= F
0
(s1, s2, s3, . . . , sl) where s1 ∈ D1, s2 ∈

D2, s3 ∈ D3,. . . , sl ∈ Dl.
Each function or value has, with respect to the notation, an

exponent and an index. The exponent is a natural number from
the set {0, 1, 2, .., l} , and the index is a vector
s
def
= s1, s2, s3 . . . sj

def
= (s1, s2, s3, . . . , sj) ∈ D1 × D2 ×

. . . Dj
def
=D . Using the notations, we can build a tree:

• The root is the function F 0 at level 0.
• The functions and values are on the levels corresponding

to their exponents.
• A function is the descendant of another, parent function,

if their indices are:
(s1, s2, s3, . . . , sj, sj+1) ∈ D1 ×D2 × . . . Dj ×Dj+1

(s1, s2, s3, . . . , sj) ∈ D1 ×D2 × . . . Dj , respectively
• The leaves are values of F 0 .
• The tree has arcs oriented from the lower level towards

the upper level.
It is important for the tree to be directional, because this is

the way the access permissions are represented.
Figure 3 exemplifies this tree generation algorithm.

Fig. 3. A function tree.

If A is a cyclical group where the discrete logarithm
problem is difficult to solve, knowing the value or formula for
the descendant does not yield the formula for the parent. This
fact results from the way the functions are defined. Vice versa,
knowing the formula for the parent, one can immediately have
the formula for the descendant, by simply replacing numbers
in the formula of the parent. Thus, all nodes can be traversed,
exploring the path from the root to the leaves.

A subtree composed of merging paths that start from the
root and end in leaves is a system of private, hierarchical keys.
By allocating these keys, in a bi-univocal fashion, to a system
of agents, one can ensure access to the data held by an agent
α by an agent β if and only if α is a descendant of β .

Therefore, to control access to the information stored by
an agent community, one may use a hierarchical encryption

https://en.wikipedia.org/wiki/Personally_identifiable_information

system with public keys. Starting from the access right of
each agent, we build a tree of the agents, this tree having
arcs oriented from the lower levels towards the higher levels,
according to the access credentials. Based on the tree of agents,
we generate a function tree, of the type described above. All
information is encrypted / decrypted using the values from the
leaves as private keys for the ElGamal algorithm [22].

If the leaves of the agent tree are not all on the same
level, the tree is completed with conformity nodes as in Figure
4. A trusted center generates the keys for the algorithm and
distributes them to the agents. This trust authority can be A0

or another trusted entity.

Fig. 4. A function tree with conformity nodes.

We generate a function tree, based on the agent tree. The
values in the leaves are the private keys associated with agents.
Each agent can encrypt with the ElGamal algorithm, using the
public keys for each leaf. Accordingly, each agent can decrypt,
using its own private key, all the information belonging to a
subordinate agent.

It is notable that the key network can be easily replaced with
a new one. Generating the tree means choosing the function
F 0 from which we start generating all the keys, and defining
the function F 0 using an algorithm with random variables,
which can be done by a trust authority, even an agent.

V. CONCLUSIONS

We envision a global-scale CaaS deployment as a conglom-
erate of computing entities obtaining producing, processing,
and consuming context. The multitude and diversity of entities
inevitably leads to a highly heterogeneous system, that needs
to be loosely coupled.

Not only does the hypermedia model naturally support
openness and scalability, but it also answers well to the
challenges of CaaS deployment, while also enabling easy
conceptual integration with social robotics frameworks.

We also argue that context management systems would
benefit from an agent-oriented approach to the implementation
of their individual components. What we can take from
the MAS domain and use in CaaS is not necessarily how
entities can be implemented as agents, but the agent-oriented
perspective. Moving from a system-wide view to an entity-
centered helps designing components that are able to work in
highly heterogeneous systems.

REFERENCES

[1] D. Feil-Seifer and M. J. Mataric, “Defining socially assistive robotics,”
in Rehabilitation Robotics, 2005. ICORR 2005. 9th International Con-
ference on. IEEE, 2005, pp. 465–468.

[2] K. Ducatel, U. européenne. Technologies de la société de l’information,
U. européenne. Institut d’études de prospectives technologiques, and
U. européenne. Société de l’information conviviale, Scenarios for ambi-
ent intelligence in 2010. Office for official publications of the European
Communities Luxembourg, 2001.

[3] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and
P. Steggles, “Towards a better understanding of context and context-
awareness,” in International symposium on handheld and ubiquitous
computing. Springer, 1999, pp. 304–307.

[4] J. Brézillon and P. Brézillon, “Context modeling: Context as a dressing
of a focus,” in Modeling and Using Context, ser. Lecture Notes in
Computer Science, B. Kokinov, D. C. Richardson, T. R. Roth-Berghofer,
and L. Vieu, Eds. Springer Berlin Heidelberg, 2007, vol. 4635, pp.
136–149.

[5] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Sensing
as a service model for smart cities supported by internet of things,”
Transactions on Emerging Telecommunications Technologies, vol. 25,
no. 1, pp. 81–93, 2014.

[6] M. Knappmeyer, S. L. Kiani, E. S. Reetz, N. Baker, and R. Tonjes,
“Survey of context provisioning middleware,” IEEE Communications
Surveys & Tutorials, vol. 15, no. 3, pp. 1492–1519, 2013.

[7] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Ca4iot:
Context awareness for internet of things,” in Green Computing and
Communications (GreenCom), 2012 IEEE International Conference on.
IEEE, 2012, pp. 775–782.

[8] R. T. Fielding and R. N. Taylor, Architectural styles and the design of
network-based software architectures. University of California, Irvine
Irvine, USA, 2000, vol. 7.

[9] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context
aware computing for the internet of things: A survey,” IEEE communi-
cations surveys & tutorials, vol. 16, no. 1, pp. 414–454, 2014.

[10] X. Li, M. Eckert, J.-F. Martinez, and G. Rubio, “Context aware middle-
ware architectures: survey and challenges,” Sensors, vol. 15, no. 8, pp.
20 570–20 607, 2015.

[11] A. H. Celdrán, F. J. G. Clemente, M. G. Pérez, and G. M. Pérez,
“Secoman: A semantic-aware policy framework for developing privacy-
preserving and context-aware smart applications.” IEEE Systems Jour-
nal, vol. 10, no. 3, pp. 1111–1124, 2016.

[12] A. Forkan, I. Khalil, and Z. Tari, “Cocamaal: A cloud-oriented context-
aware middleware in ambient assisted living,” Future Generation Com-
puter Systems, vol. 35, pp. 114–127, 2014.

[13] A. Sorici, G. Picard, O. Boisser, and A. Florea, “Multi-agent based
flexible deployment of context management in ambient intelligence
applications,” in International Conference on Practical Applications of
Agents and Multi-Agent Systems. Springer, 2015, pp. 225–239.

[14] S. Krco, B. Pokric, and F. Carrez, “Designing iot architecture(s): A
european perspective,” in Internet of Things (WF-IoT), 2014 IEEE World
Forum on. IEEE, 2014, pp. 79–84.

[15] P. Lasitha and S. Kodagoda, “Human activity recognition for domestic
robots,” in Field and Service Robotics. Springer, 2015, pp. 395–408.

[16] N. Hawes and et al, “The STRANDS Project: Long-Term Autonomy
in Everyday Environments,” IEEE Robotics and Automation Magazine,
vol. 24, no. 3, pp. 146–156, 2017.

[17] A. Ciortea, A. Zimmermann, O. Boissier, and A. M. Florea,
“Hypermedia-driven socio-technical networks for goal-driven discovery
in the web of things,” in Proceedings of the Seventh International
Workshop on the Web of Things. ACM, 2016, pp. 25–30.

[18] S. Mayer, D. Guinard, and V. Trifa, “Searching in a web-based in-
frastructure for smart things,” in Internet of Things (IOT), 2012 3rd
International Conference on the. IEEE, 2012, pp. 119–126.

[19] A. Sorici, “Multi-agent based context management middleware in sup-
port of ambient intelligence applications,” Ph.D. dissertation, Saint-
Etienne, EMSE and Bucharest, UPB, 2015.

[20] A. S. Rao, M. P. Georgeff et al., “Bdi agents: from theory to practice.”
in ICMAS, vol. 95, 1995, pp. 312–319.

[21] A. Olaru, A. M. Florea, and A. El Fallah Seghrouchni, “A context-aware
multi-agent system as a middleware for ambient intelligence,” Mobile
Networks and Applications, vol. 18, no. 3, pp. 429–443, June 2013.

[22] T. ElGamal, “A public key cryptosystem and a signature scheme based
on discrete logarithms,” IEEE Transactions on Information Theory,
vol. 31, no. 4, pp. 469–472, 1985.

	Introduction
	Related Work
	Hypermedia-driven CaaS
	Architectural principles
	Deployment and Query mechanism
	Social Robots as CaaS Prosumers

	Access Controlled Context Dissemination
	Conclusions
	References

